JPS583613B2 - Satellite communication method - Google Patents

Satellite communication method

Info

Publication number
JPS583613B2
JPS583613B2 JP53008666A JP866678A JPS583613B2 JP S583613 B2 JPS583613 B2 JP S583613B2 JP 53008666 A JP53008666 A JP 53008666A JP 866678 A JP866678 A JP 866678A JP S583613 B2 JPS583613 B2 JP S583613B2
Authority
JP
Japan
Prior art keywords
station
line
communication
line quality
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53008666A
Other languages
Japanese (ja)
Other versions
JPS54101616A (en
Inventor
岡本照喜
江上俊一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP53008666A priority Critical patent/JPS583613B2/en
Publication of JPS54101616A publication Critical patent/JPS54101616A/en
Publication of JPS583613B2 publication Critical patent/JPS583613B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)

Description

【発明の詳細な説明】 本発明は、空間伝ばん損失に降雨減衰などの変動要因を
含み、対向する1組又は複数組の地球局からの送信波を
1台の中継器で増幅する衛星通信において、特に各局の
送信電力を伝ばん損失の変動に合せて変化させ、衛星中
継器の送信電力を有効利用する地球局送信電力制御方式
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a satellite communication system in which spatial propagation loss includes variable factors such as rain attenuation, and transmit waves from one or more pairs of opposing earth stations are amplified by one repeater. In particular, the present invention relates to an earth station transmission power control method that effectively utilizes the transmission power of a satellite repeater by changing the transmission power of each station in accordance with fluctuations in propagation loss.

従来、衛星通信は降雨減衰が少なく伝ぱん損失がほとん
ど変動しないマイクロ波帯で行われていたため、数波を
1台の衛星中継器で増幅する場合においても、各地球局
の送信出力は固定的に決められ変更する必要はなかった
Conventionally, satellite communications have been carried out in the microwave band, where there is little rainfall attenuation and propagation loss hardly changes, so even when several waves are amplified by one satellite repeater, the transmission output of each earth station is fixed. It was decided that there was no need to change it.

近年、衛星通信にマイクロ波帯より高い周波数帯が用い
られるようになりつつあるが、マイクロ波帯より高い周
波数帯では降雨減衰により伝ばん損失が変動する。
In recent years, frequency bands higher than the microwave band are being used for satellite communications, but propagation loss fluctuates due to rain attenuation in frequency bands higher than the microwave band.

降雨減衰に対応できるように各地球局の送信電力を増加
すると、1台の中継器で数波を共通増幅している場合に
おいては、各波のレベルダイアグラムを常時最適にする
ことはできない。
If the transmission power of each earth station is increased to cope with rain attenuation, the level diagram of each wave cannot always be optimized if several waves are commonly amplified by one repeater.

このためマイクロ波より高い周波数を用いる衛星通信で
は地球局の送信電力を伝ぱん状態に応じて変え、衛星中
継器の出力を最適化する方法が考えられる。
For this reason, in satellite communications that use frequencies higher than microwaves, a method can be considered to optimize the output of the satellite repeater by changing the transmission power of the earth station depending on the propagation state.

その一つは、衛星中継器の入力において各地球局からの
受信入力レベルが一定になるように各地球局の送信電力
を制御する方法であるが、この場合は各地球局から衛星
までのアップリンクの減衰の補償のみであり、ダウンリ
ンクの補償はなされない。
One method is to control the transmission power of each earth station so that the received input level from each earth station is constant at the input of the satellite repeater. Only link attenuation compensation, no downlink compensation.

また、ある特定の制御局に各局における降雨減衰の情報
を集め、制御局において計算機により各局の最適送信電
力を求め、各局への制御回線により各局の送信電力を制
御する方法もとられている。
Another method is to collect information on rainfall attenuation at each station at a specific control station, use a computer at the control station to determine the optimal transmission power for each station, and control the transmission power at each station via a control line to each station.

この場合、特定の制御局が必要であり、かつ、制御局へ
各局の降雨減衰を伝達する回線及び各局の送信電力を制
御する回線も必要である。
In this case, a specific control station is required, and a line for transmitting the rain attenuation of each station to the control station and a line for controlling the transmission power of each station are also required.

これらの問題に対処する方法として、本願発明者の1人
は衛星回線の品質を表わす回線S/Nを用いた送信電力
制御を行う衛星通信方式をすでに提案した(特公昭56
−24422号公報参照)。
As a way to deal with these problems, one of the inventors of the present invention has already proposed a satellite communication system that controls transmission power using line S/N, which represents the quality of the satellite line.
(Refer to Publication No.-24422).

しかし、この方式は、主地球局と従地球局間の通信にお
いて主地球局の送信電力を制御して主地球局→従地球局
、従地球局→主地球局の回線S/Nが等しい値になるよ
うに制御するもので、従地球局の送信電力の制御は考慮
していなかった。
However, in this method, the transmission power of the main earth station is controlled in communication between the main earth station and the slave earth station, so that the line S/N from the master earth station to the slave earth station and from the slave earth station to the master earth station is equal. However, control of the transmitting power of the slave earth station was not taken into account.

これは主地球局として、大形地球局を従地球局として小
形地球局を想定していたためであり、小形地球局と小形
地球局の通信への適用は考えられていなかった。
This is because a small earth station was assumed to be the main earth station and a large earth station as the slave earth station, and application to communication between small earth stations was not considered.

小形地球局と小形地球局の通信の場合、両地球局の送信
電力を制御する必要があるが、単に両方向の回線品質(
S/N)を等しくするように各地球局の送信電力を制御
した場合、制御が収束しないおそれがある。
In the case of communication between small earth stations, it is necessary to control the transmission power of both earth stations, but it is simply necessary to control the line quality in both directions (
If the transmission power of each earth station is controlled so as to equalize the signal-to-noise ratio (S/N), there is a risk that the control will not converge.

本発明は、1台の衛星中継器で対向する1組又は複数組
の地球局間の通信信号を共通増幅する場合において、各
局間の回線品質が常時ある基準値に一致するように各局
の送信電力を制御することにより、簡単なる方法で伝ぱ
ん損失に変動要因が存在する衛星通信系全体の回線設定
を最適化し各通信回線の回線不稼動率を大幅に減少させ
ることができる衛星通信方式を提供するものである。
The present invention provides a method for transmitting signals from each station so that the line quality between each station always matches a certain reference value when a single satellite repeater commonly amplifies communication signals between one or more pairs of earth stations facing each other. By controlling power, we have developed a satellite communication system that can easily optimize the line settings of the entire satellite communication system, where there are fluctuation factors in propagation loss, and significantly reduce the line unavailability of each communication line. This is what we provide.

以下図面を用いて本発明を詳細に説明する。The present invention will be explained in detail below using the drawings.

第1図は本発明を適用する衛星通信回線の構成の1例を
示したもので、1は1台の衛星中継器を示し、2はこれ
にアクセスする各地球局を示している。
FIG. 1 shows an example of the configuration of a satellite communication line to which the present invention is applied, in which 1 represents one satellite repeater, and 2 represents each earth station that accesses it.

図では、A−B,C−D,E−Fの3組の通信を1台の
中継器1で増幅する場合を示している。
The figure shows a case where three sets of communications, AB, CD, and EF, are amplified by one repeater 1.

このうち、A局−B局の通信を例にとって説明する。Among these, communication between station A and station B will be explained as an example.

なお衛星中継器1の出力は入力に対して単調に増加する
ことを前提とする。
It is assumed that the output of the satellite repeater 1 increases monotonically with respect to the input.

また各組の通信にはそれぞれの専用の周波数が割当てら
れているものとする。
It is also assumed that each group of communication is assigned its own dedicated frequency.

このとき、A局の送信電力を増加すれば、A→Bの回線
品質は向上し、共通増幅されているB→AおよびC■D
,E■Fの回線品質は若干劣化する。
At this time, if the transmission power of station A is increased, the line quality from A to B will improve, and the commonly amplified B→A and C D
, the line quality of E■F deteriorates slightly.

逆にB局の送信電力を増加すれば、B→Aの回線品質は
向上し、A→B及びC■D並びにE4+Fの回線品質は
若干劣化する。
Conversely, if the transmission power of station B is increased, the line quality from B to A will improve, but the line quality from A to B, C and D, and E4+F will slightly deteriorate.

各通信回線は双方向回線であり、上記のような回線の性
質を考えれば、最適の回線設定はA→B及びB→Aの回
線品質が等しい時になることがわかる。
Each communication line is a bidirectional line, and considering the above-mentioned line properties, it can be seen that the optimum line setting is when the line quality from A to B and from B to A is equal.

このような回線設定はA局およびB局の送信電力を変え
ることによって可能であるが、等しくする回線品質の基
準値を与えれば、A局またはB局において測定した双方
向の回線品質をもとに自局の送信電力を制御し、双方向
の回線品質をその基準値に一致させることができる。
This kind of line setting is possible by changing the transmission power of stations A and B, but if a reference value for line quality to be made equal is given, it is possible to set the line quality based on the bidirectional line quality measured at station A or B. It is possible to control the transmission power of its own station and make the bidirectional line quality match the standard value.

各局における送信電力制御の手順をA局を例にとって述
べれば次のとおりである。
The procedure for transmitting power control in each station will be described below, taking station A as an example.

まず、A局も含めてすべての局においては、後に述べる
方法により、自局→相千局及び相手局→自局の回線品質
を常時知ることができる。
First, all stations, including station A, can always know the line quality from their own station to their own station and from their partner station to their own station by a method described later.

回線品質をS/Nで表わしA→B及びB→Aの回線品質
をS/NA→B、S/NB→Aとし、基準とする回線品
質をS/N0とすると、A局において測定したS/NA
→B,S/NB→Aが (i)S/NA→B>S/NB→Aの場合は、S/NB
→A>S/N0であればA局の送信電力を減らし、 S/NB→A<S/N0であればB局の送信電力を増加
する。
Line quality is represented by S/N, and the line quality of A → B and B → A is S/NA → B, S/NB → A, and the standard line quality is S/N0. /NA
→B, S/NB→A is (i) S/NA→B>S/NB→A, then S/NB
→ If A>S/N0, reduce the transmit power of station A, and increase the transmit power of station B if S/NB→A<S/N0.

また、 (ii)S/NA→B<S/NB→Aの場合は、S/N
A→B<S/N0であればB局の送信電力を減らし、 S/NA→B<S/N0であればA局の送信電力を増加
する。
(ii) If S/NA→B<S/NB→A, S/N
If A→B<S/N0, the transmit power of station B is reduced, and if S/NA→B<S/N0, the transmit power of station A is increased.

このような手順の送信電力制御をA局およびB局におい
て行なえば、双方向の回線品質を基準値S/N0へ一致
させることができる。
If the transmission power control of such a procedure is performed at the A station and the B station, the bidirectional line quality can be made to match the reference value S/N0.

第2図は、回線S/N測定チャンネル(パイロット)を
ベースバンドに置いた時の実施例であり、第3図はその
時の各局の構成を示したものである。
FIG. 2 shows an example in which the line S/N measurement channel (pilot) is placed on the baseband, and FIG. 3 shows the configuration of each station at that time.

この実施例において、送信側で送信ベースバンドユニッ
ト11は多重電話信号入力とパイロット1,2を合成し
、変調器10に印加し、その出力はアツプコンバータ9
により周波数変換して送信機8を介してアンテナ18に
送られる。
In this embodiment, on the transmitting side, a transmitting baseband unit 11 combines the multiplex telephone signal input and pilots 1 and 2 and applies it to a modulator 10 whose output is an upconverter 9.
The signal is frequency-converted and sent to the antenna 18 via the transmitter 8.

受信側では、アンテナ18の出力は受信機12で受信さ
れダウンコンバータ13で周波数変換された後、復調器
14で復調され、受信ベースバンドユニット15で多重
電話出力とパイロット1及び後述のパイロット2に分離
する。
On the receiving side, the output of the antenna 18 is received by the receiver 12, frequency-converted by the down converter 13, demodulated by the demodulator 14, and converted into multiplex telephone output and pilot 1 and pilot 2 by the receiving baseband unit 15. To separate.

16は回線品質検出回路として動作するパイロット検出
フィルタ、17はS/N検出及び送信電力制御のための
制御論理回路である。
16 is a pilot detection filter that operates as a line quality detection circuit, and 17 is a control logic circuit for S/N detection and transmission power control.

第2図において、3は伝送する多重電話信号、4,5は
送出するパイロット1及びパイロット2,6,7は受信
するパイロット1及びパイロット2である。
In FIG. 2, 3 is a multiplex telephone signal to be transmitted, 4 and 5 are pilots 1 to be sent out, and pilots 2, 6, and 7 are pilots 1 and 2 to be received.

送出するパイロットのうち、パイロット1は自局より送
出するパイロット、パイロット2は、相手局より送出さ
れ自局で受信したパイロットを第3図の如く折り返し相
手局へ送出するものである。
Among the pilots to be sent out, pilot 1 is a pilot sent out from the own station, and pilot 2 is a pilot sent out from the other station and received by the own station, and is returned to the other station as shown in FIG.

受信するパイロットのうち、パイロット1は自局より送
出し相手局で折り返されたパイロット、パイロット2は
相手局より送出されたパイロットである。
Among the received pilots, pilot 1 is a pilot sent from the own station and returned by the partner station, and pilot 2 is a pilot sent out from the partner station.

受信されたパイロットのうち、パイロット1から自局→
相手局→自局の回線品質がわかり、パイロット2から相
手局→自局の回線品質でわかるので、制御論理回路17
ではこれらを用いて相手局→自局双方向の回線品質を測
定することができ、これをもとに双方向の回線品面が基
準値S/NO になるように前述の手順に従い自局の送
信機8の送信電力を制御する。
Among the received pilots, from pilot 1 to own station →
Since the line quality from the other station to the own station is known, and the line quality from the other station to the own station can be determined from the pilot 2, the control logic circuit 17
Now, you can use these to measure the line quality in both directions from the other station to your own station, and based on this, follow the steps above to make sure that the line quality in both directions reaches the reference value S/NO. Controls the transmission power of the transmitter 8.

このようにして各局間の通信回線の品質をある基準値に
一致させるわけであるが、この基準値を衛星中継器の全
出力が許容できる最大レベルになるように常時選べば、
常に全通信システムの回線設定を最適化することが可能
となり、各局の不稼動率の大幅な改善ができる。
In this way, the quality of the communication line between each station is matched to a certain standard value, but if this standard value is always selected so that the total output of the satellite repeater is at the maximum allowable level,
It becomes possible to constantly optimize the line settings of the entire communication system, and the downtime rate of each station can be significantly improved.

以上説明したように本発明により、1台の衛星中継器で
対向する1組または複数組の地球局間の通信信号を共通
増幅する場合において、各地球局間の回線品質が均等に
なるように各地球局の送信電力を制御すれば、衛星中継
器は平常時の通信に対しては十分の余裕を持っているか
ら、いずれか1局での降雨減衰に対しては余裕分をわり
あてることが可能であり、全体として各局間の通信の不
稼動率を大幅に小さくすることができる効果がある。
As explained above, according to the present invention, when a single satellite repeater commonly amplifies communication signals between one or more pairs of opposing earth stations, the line quality between each earth station can be made equal. If the transmission power of each earth station is controlled, the satellite repeater will have enough margin for normal communication, so the margin should be allocated for rain attenuation at any one station. This has the effect of significantly reducing the downtime rate of communication between each station as a whole.

また、本発明の方法によれば、回線品質の基準値として
その時の伝ぱん状態に対応して適轟な値を与えれば、1
台の中継器にアクセスしている各局において相手局との
回線品質をみながら自局の送信電力を制御することによ
り、全体として最適の回線レベルダイアグラムの設定が
できる効果がある。
In addition, according to the method of the present invention, if an appropriate value is given as the standard value of line quality in accordance with the propagation state at that time, 1
By controlling the transmission power of each station accessing the same repeater while checking the line quality with the other station, it is possible to set the optimum line level diagram as a whole.

さらに、本発明は両方向の回線品質(S/N)をある一
定の基準値へ収束するように制御するものであり、通信
している各地球局の送信電力を制御しても発散のおそれ
はない。
Furthermore, the present invention controls the line quality (S/N) in both directions so that it converges to a certain reference value, and there is no risk of divergence even if the transmission power of each communicating earth station is controlled. do not have.

従って小形地球局と小形地球局との通信へも適用可能で
ある。
Therefore, it is also applicable to communication between small earth stations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する衛星通信系の構成を示す系統
図、第2図は本発明に用いる信号配列を示す図、第3図
は本発明を実施する場合の地球局の構成例を示すブロッ
ク図である。 1・・・・・・衛星中継器、2・・・・・・地球局、3
・・・・・・多重電話信号、4・・・・・・送信パイロ
ット1、5・・・・・・送信パイロット2、6・・・・
・・受信パイロット1、7・・・・・゜受信パイロット
2、8・・・・・・送信機、9・・・・・・アップコン
バータ、10・・・・・・変調器、11・・・・・・送
信ベースバンドユニット、12・・・・・・受信機、1
3・・・・・・ダウンコンバータ、14・・・・・・復
調器、15・・・・・・受信ペースバンドユニット、1
6・・・・・・パイロット検出フィルタ、17・・・・
・・S/N検出および送信電力制御用の制御論理回路。
Fig. 1 is a system diagram showing the configuration of a satellite communication system to which the present invention is applied, Fig. 2 is a diagram showing a signal arrangement used in the present invention, and Fig. 3 is an example of the configuration of an earth station when implementing the present invention. FIG. 1...Satellite repeater, 2...Earth station, 3
...Multiple telephone signal, 4...Transmission pilot 1, 5...Transmission pilot 2, 6...
...Receive pilot 1, 7...゜Receive pilot 2, 8...Transmitter, 9...Up converter, 10...Modulator, 11... ...Transmission baseband unit, 12 ...Receiver, 1
3... Down converter, 14... Demodulator, 15... Receiving paceband unit, 1
6...Pilot detection filter, 17...
...Control logic circuit for S/N detection and transmission power control.

Claims (1)

【特許請求の範囲】 1 通信衛星の1台の中継器で対向する1組又は複数組
の地球局間の通信信号を共通増幅する場合において、各
地球局の送信電力を対向する前記地球局間のすべての回
線を回線品質が予め定めた基準値に一致するように制御
することを特徴とする衛星通信方式。 2 前記対向する1組又は複数組のうちこのそれぞれの
組の地球局間の通信回線に2チャンネルの回線品質測定
用チャンネルを設け、その1チャンネルは相手局から自
局までの回線品質の測定に使用するとともに他の1チャ
ンネルは自局から相手局を介して自局までの折返し回線
の回線品質の測定に使用し、該測定によって得られる自
局から相手局並びに相手局から自局の双方向の回線品質
が常時前記予め定めた基準値に一致するように自局およ
び相手局においてその送信電力を制御することを特徴と
する特許請求の範囲第1項記載の衛星通信方式。 3 前記基準値を前記中継器の全出力が常時一定になる
ように選んで各局間の通信全体を常時最適化することを
特徴とする特許請求の範囲第1項または第2項に記載の
衛星通信方式。
[Claims] 1. When a single repeater of a communication satellite commonly amplifies communication signals between one or more pairs of opposing earth stations, the transmission power of each earth station is adjusted between the opposing earth stations. A satellite communication system characterized by controlling all the lines so that the line quality matches a predetermined reference value. 2 Two channels for line quality measurement are provided in the communication line between each pair of earth stations among the pair or pairs of earth stations facing each other, and one channel is used for measuring the line quality from the other station to the local station. In addition, the other channel is used to measure the line quality of the return line from the local station to the local station via the other station, and the two-way communication from the local station to the other station and from the other station to the local station obtained by this measurement. 2. The satellite communication system according to claim 1, wherein transmission power is controlled at the local station and the other station so that the line quality always matches the predetermined reference value. 3. The satellite according to claim 1 or 2, wherein the reference value is selected so that the total output of the repeater is always constant, so that the entire communication between each station is always optimized. Communication method.
JP53008666A 1978-01-27 1978-01-27 Satellite communication method Expired JPS583613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53008666A JPS583613B2 (en) 1978-01-27 1978-01-27 Satellite communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53008666A JPS583613B2 (en) 1978-01-27 1978-01-27 Satellite communication method

Publications (2)

Publication Number Publication Date
JPS54101616A JPS54101616A (en) 1979-08-10
JPS583613B2 true JPS583613B2 (en) 1983-01-22

Family

ID=11699250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53008666A Expired JPS583613B2 (en) 1978-01-27 1978-01-27 Satellite communication method

Country Status (1)

Country Link
JP (1) JPS583613B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116438A (en) * 1981-01-13 1982-07-20 Nec Corp Radio communication system
JPS5884545A (en) * 1981-11-16 1983-05-20 Nec Corp Transmission power control system for satellite communication
JPS5884544A (en) * 1981-11-16 1983-05-20 Nec Corp Transmission power control system for satellite communication
JPS5884547A (en) * 1981-11-16 1983-05-20 Nec Corp Transmission power control system of earth station for satellite communication
JPS58143635A (en) * 1982-02-20 1983-08-26 Nippon Telegr & Teleph Corp <Ntt> Transmission power controlling system of satellite communication
JPS58172256U (en) * 1982-05-12 1983-11-17 ソニー株式会社 data transmission equipment
JPS58200640A (en) * 1982-05-18 1983-11-22 Nec Corp Controlling system of electric power for transmitting satellite communication

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624422A (en) * 1979-08-06 1981-03-09 Nok Corp Preparation of compound having perfluoroalkyl end group

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624422A (en) * 1979-08-06 1981-03-09 Nok Corp Preparation of compound having perfluoroalkyl end group

Also Published As

Publication number Publication date
JPS54101616A (en) 1979-08-10

Similar Documents

Publication Publication Date Title
EP2037599B1 (en) Booster, monitoring, apparatus, booster system, control method and monitoring method
US4004224A (en) Method for fade correction of communication transmission over directional radio paths
JPS583613B2 (en) Satellite communication method
JPH04372234A (en) Transmission power control system
US4803738A (en) Radio communications system with reduced D/U ratio variations
US5828335A (en) Spacecraft communication channel power control system
CN100531005C (en) A method and device for relay amplification in TD-SCDMA system
JPH04233338A (en) Adjacent channel interference compensating system
JPH0870274A (en) Mobile communication system and mobile station equipment
JPH03198438A (en) Transmission power control system
JPH0452013B2 (en)
JPH0356021B2 (en)
JP2659275B2 (en) Wireless communication system
JPS6342447B2 (en)
JPH05218924A (en) Transmission power control system
JPS61195028A (en) Repeater for communication satellite
JPH02104131A (en) Transmitter
JPS5843636A (en) Non-linear distortion compensating system of satellite communication
JP2595751B2 (en) Wireless transceiver
JP2616594B2 (en) Reception level information transfer method for mobile satellite communication system.
JPS609231A (en) Correcting system for gain variance of satellite repeater
JPH0637681A (en) Transmission power control system
JPH0389726A (en) Line quality compensation system
JPS5884544A (en) Transmission power control system for satellite communication
JPH07162332A (en) Hot stand-by transmitter-receiver