JPS6343020B2 - - Google Patents

Info

Publication number
JPS6343020B2
JPS6343020B2 JP56183295A JP18329581A JPS6343020B2 JP S6343020 B2 JPS6343020 B2 JP S6343020B2 JP 56183295 A JP56183295 A JP 56183295A JP 18329581 A JP18329581 A JP 18329581A JP S6343020 B2 JPS6343020 B2 JP S6343020B2
Authority
JP
Japan
Prior art keywords
satellite
signal
station
transmission power
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56183295A
Other languages
Japanese (ja)
Other versions
JPS5884545A (en
Inventor
Goro Ooshima
Satoru Oono
Yasuhisa Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56183295A priority Critical patent/JPS5884545A/en
Priority to AU90605/82A priority patent/AU553961B2/en
Priority to DE8282110584T priority patent/DE3273703D1/en
Priority to CA000415642A priority patent/CA1196961A/en
Priority to EP82110584A priority patent/EP0079612B1/en
Publication of JPS5884545A publication Critical patent/JPS5884545A/en
Priority to US06/725,528 priority patent/US4567485A/en
Publication of JPS6343020B2 publication Critical patent/JPS6343020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18543Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for adaptation of transmission parameters, e.g. power control

Abstract

PURPOSE:To simplify the control of other earth stations, by controlling the transmission power of a specific station out of a plurality of earth stations so as to make the effective radiation power of a satellite constant, and controlling the transmission power of the other earth station with a pilot signal used for said control. CONSTITUTION:A plurality of earth stations 2-n+1 use one transponder of a satellite 1 and perform mutual communication with the SCPC system. A specific earth station 2 transmits a reference pilot signal f0 of the SCPC system, receives a pilot signal fp fold-returned from the satellite 1 and a beacon signal fb radiated from the satellite 1, controls the transmission power of itself so as to keep the power ratio of the both constant independently of the weather, allowing to make the effective radiation power of the signal fp constant. The earth station 3-n+1 receive the said signal fp and fold-returned signals f'3-f'n+1 of communication signals assigned to each station and controls the transmission power of each station so that the reception level of the both or the C/N ratio can be the same as that at fine weather.

Description

【発明の詳細な説明】 本発明は衛星通信送信電力制御方式に関する。[Detailed description of the invention] The present invention relates to a satellite communication transmission power control system.

衛星通信、特に準ミリ波帯等の高い周波数を用
いる衛星通信においては、降雨による減衰が大き
く、これに対する適当な対策が必要である。
Satellite communications, especially satellite communications that use high frequencies such as sub-millimeter wave bands, are subject to significant attenuation due to rain, and appropriate countermeasures are required to deal with this.

ダウンリンクに対しては、減衰を補うだけ地球
局受信装置にマージンを持たせるか、又はサイト
ダイバーシテイ方式を用いて降雨による影響を除
去するのが適切な方法と考えられる。
For the downlink, it is considered appropriate to provide a margin in the earth station receiver to compensate for attenuation, or to use a site diversity method to eliminate the effects of rain.

一方、アツプリンクに対しては、サイトダイバ
ーシテイ方式をとる場合は別として、降雨減衰に
対してあらかじめ定めた特定のマージンを持つ送
信電力を用いることは、晴天時に衛星の送信電力
をその分だけ不必要に消費することとなり、衛星
送信電力の有効利用の観点から非常に不利であ
る。そこで、アツプリンクの降雨減衰に応じて地
球局からの送信電力を制御する方法が考えられ、
これを一般に地球局の送信電力制御と呼んでい
る。
On the other hand, for uplinks, apart from using the site diversity method, using a transmission power with a certain predetermined margin against rain attenuation means that the satellite's transmission power is reduced by that amount during clear skies. This results in unnecessary consumption, which is very disadvantageous from the viewpoint of effective use of satellite transmission power. Therefore, a method of controlling the transmission power from the earth station according to the rainfall attenuation of the uplink has been considered.
This is generally called earth station transmission power control.

このような目的の送信電力制御方式は、例えば
昭和53年度電子通信学会総合全国大会予槁・論文
番号S10−11「準ミリ波車載局通信方式」(ページ
8−293,294)および昭和53年度電子通信学会光
電波部門全国大会予槁・論文番号182「BS主局の
上り回線降雨減衰の補償方法について」(ページ
182)に見られるように既に提案されてはいるが、
前者は特定の二局間の運用にのみ着目して考案さ
れたもので多数局による運用には適さない外、制
御のために周波数を専用する欠点がある。後者の
一つの方法は衛星側で受信電力を検出しテレメー
タ信号に乗せて送り返すため、衛星側にあらかじ
め特定の施設を必要とし、特に多数局運用には不
適当である。後者の他の方法は自局から送信し衛
星で折返された信号を受信し、そのレベル低下か
らアツプリンク周波数とダウンリンク周波数の降
雨減衰の相関性を利用してアツプリンクの減衰量
を推定してこれを補償するように送信電力を制御
するもので、相関が完全でなく個々のケースにお
けるばらつきによる制御誤差は避けられない欠点
がある。
Transmission power control systems for such purposes are described, for example, in the 1981 IEICE General Conference Preliminary Paper No. S10-11 "Semi-millimeter-wave vehicle-mounted station communication system" (pages 8-293, 294) and Preliminary Paper No. 182 of the Institute of Electronics and Communication Engineers' National Conference of Optical and Radio Division, "Compensation Method for Uplink Rain Attenuation of BS Main Station" (Page
Although it has already been proposed as seen in 182),
The former was devised focusing only on operation between two specific stations, and is not suitable for operation with multiple stations, and has the disadvantage of dedicating a frequency for control. One of the latter methods detects the received power on the satellite side and sends it back on a telemeter signal, so it requires specific facilities on the satellite side in advance, and is particularly inappropriate for multi-station operation. The other method of the latter is to receive the signal transmitted from the own station and reflected back by the satellite, and estimate the amount of attenuation of the uplink by using the correlation of the rain attenuation of the uplink frequency and downlink frequency from the drop in the level of the signal. The transmission power is controlled to compensate for this, but the correlation is not perfect and control errors due to variations in individual cases are unavoidable.

本発明の目的は上述の欠点を除去し、制御のた
めの専用周波数や、衛星側の特定の施設や、少数
の特定地球局を除いてはビーコン受信設備も必要
とせず、且つ相関性の不完全による制御誤差のな
い衛星通信送信電力制御方式を提供することであ
る。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, and to eliminate the need for dedicated frequencies for control, specific facilities on the satellite side, and beacon reception equipment except for a small number of specific earth stations, and without correlation. It is an object of the present invention to provide a satellite communication transmission power control system that is completely free from control errors.

本発明の衛星通信送信電力制御方式は、複数の
地球局が衛星を介して通信を行う衛星通信方式に
おいて、前記地球局のうちの少なくとも一つの特
定地球局が自局から送信し前記衛星で折返された
通信用周波数帯域内のパイロツト信号および通信
用信号の少なくとも一方の信号をビーコン信号と
比較して前記衛星における実効放射電力(EIRP)
を降雨減衰にかかわらず一定とする制御手段を備
え、前記特定地球局を除く全部または一部の地球
局が自局から送信し前記衛星で折返された折返し
信号と前記特定地球局から送出され前記衛星にお
けるEIRPが一定となるよう制御されたパイロツ
ト信号または通信用信号とを受信比較してその値
があらかじめ定められた値と一致するよう前記地
球局の送信電力を制御する送信電力制御手段を備
えることによつて構成される。
The satellite communication transmission power control method of the present invention is a satellite communication method in which a plurality of earth stations communicate via a satellite, in which at least one specific earth station among the earth stations transmits from its own station and returns the signal at the satellite. The effective radiated power (EIRP) of the satellite is determined by comparing at least one of the pilot signal and the communication signal within the communication frequency band with the beacon signal.
control means for keeping the constant regardless of rainfall attenuation; A transmission power control means is provided for receiving and comparing a pilot signal or a communication signal which is controlled so that the EIRP in the satellite is constant, and controlling the transmission power of the earth station so that the value thereof matches a predetermined value. consists of things.

次に図面を参照して本発明を詳細に説明する。
第1図は本発明の一実施例の構成図で、衛星1の
同一トランスポンダを用いて固定チヤンネル割当
て(プリ・アサイン)のシングル・チヤンネル・
パー・キヤリア(SCPC)方式で相互に通信を行
うn個の地球局から構成されている。特定地球局
2はSCPC方式の基準周波数となるパイロツト信
号fpを送出し、衛星1のトランスポンダで周波数
変換されて折返されるダウンリンクのパイロツト
信号fpと衛星1から放射されるビーコン信号fb
を受信し、両者の受信電力比が晴雨にかかわらず
一定となるよう自局の送信電力を制御し、衛星に
おけるパイロツト信号fpのEIRPを一定とするよ
う構成されている。地球局3,4……およびn+
1は上記パイロツト信号fpと、各局に割当てられ
た送信チヤンネルのうちの特定の1チヤンネル
f3,f4……fo+1から送信され衛星1で折返された
通信用信号または試験用信号f3′,f4′…f′o+1とを受
信し、両者のC/Nの比が晴天時の値と同一とな
るよう送信電力を制御し、衛星1のEIRPを降雨
減衰にかかわらず一定とするよう構成されてい
る。
Next, the present invention will be explained in detail with reference to the drawings.
FIG. 1 is a block diagram of one embodiment of the present invention, which uses the same transponder of satellite 1 to perform a single channel pre-assignment.
It consists of n earth stations that communicate with each other using the SCPC method. The specific earth station 2 sends out a pilot signal f p that becomes the reference frequency of the SCPC system, and a downlink pilot signal f p that is frequency-converted and returned by the transponder of the satellite 1 and a beacon signal f b emitted from the satellite 1. The transmitting power of the own station is controlled so that the received power ratio between the two is constant regardless of whether it is rain or shine, and the EIRP of the pilot signal f p at the satellite is kept constant. Earth stations 3, 4... and n+
1 is the pilot signal f p and one specific channel among the transmission channels assigned to each station.
f 3 , f 4 ...Receive communication signals or test signals f 3 ′, f 4 ′...f′ o+1 transmitted from f o+ 1 and returned by satellite 1, and check the C/N of both. The configuration is such that the transmission power is controlled so that the ratio is the same as the value under clear weather, and the EIRP of satellite 1 is kept constant regardless of rain attenuation.

第2図は特定地球局2の一実施例のブロツク図
で、送受共用のアンテナ5と、低雑音増幅器1
0、ハイブリツド11、ビーコン信号用ダウンコ
ンバータ12、アンテナ制御信号(ANT
CONT)およびビーコンレベル出力101を出
力するビーコン受信部13、通信およびパイロツ
ト信号用のダウンコンバータ14、中間周波増幅
器15,15の出力(RX SIG)に方向性結合器
を介して結合されAFC信号・AGC信号およびパ
イロツトレベル出力102を出力するパイロツト
信号受信部16とから構成される受信系と、パイ
ロツト信号発信器20、パイロツト信号と通信用
信号(TX SIG)とを合成するコンバイナ21、
制御信号によつて利得制御可能な中間周波増幅器
22、アツプコンバータ23および送信電力増幅
器24から成る送信系と、ビーコンレベル出力1
01とパイロツトレベル出力102を比較して受
信電力比を出力する比較器17および上記受信電
力比が降雨減衰にかかわらず常に一定値を保つよ
う送信系の送信電力を制御する制御信号103を
発生する送信電力制御盤18から成る制御系とに
よつて構成されている。この構成は本出願と同日
に同一出願人より出願される特許出願「衛星通信
地球局送信電力制御方式」の発明によるものであ
つて、パイロツト信号の衛星におけるEIRPを降
雨減衰にかかわらず常に一定に保つことができ
る。なお、詳細は上記特許出願を参照されたい。
FIG. 2 is a block diagram of an embodiment of the specific earth station 2, which includes an antenna 5 for both transmitting and receiving, and a low-noise amplifier 1.
0, hybrid 11, beacon signal down converter 12, antenna control signal (ANT
CONT) and a beacon level output 101, a down converter 14 for communication and pilot signals, and the outputs (RX SIG) of intermediate frequency amplifiers 15 and 15 are coupled via a directional coupler to the AFC signal and A receiving system consisting of a pilot signal receiving section 16 that outputs an AGC signal and a pilot level output 102, a pilot signal transmitter 20, a combiner 21 that combines the pilot signal and a communication signal (TX SIG),
A transmission system consisting of an intermediate frequency amplifier 22, an up converter 23, and a transmission power amplifier 24 whose gain can be controlled by a control signal, and a beacon level output 1
01 and a pilot level output 102 to output a received power ratio, and a control signal 103 that controls the transmission power of the transmission system so that the received power ratio always remains constant regardless of rain attenuation. The control system includes a transmission power control panel 18. This configuration is based on the invention of the patent application ``Satellite Communication Earth Station Transmission Power Control System'' filed by the same applicant on the same day as this application, and is designed to keep the EIRP of the pilot signal at the satellite constant regardless of rainfall attenuation. can be kept. For details, please refer to the above patent application.

第3図は特定地球局を除く他の地球局3,4…
およびn+1の一実施例のブロツク図で、送信共
用のアンテナ6と、低雑音増幅器(LNA)30、
通信用信号およびパイロツト信号fpを中間周波数
に変換するダウンコンバータ(D/C)31、そ
の出力を増幅しAGC動作をする中間周波増幅器
(IF AMP)32、IF AMP32で共通増幅され
た信号をSCPCの各チヤンネルユニツトおよびパ
イロツト信号受信部に分配するデバイダー
(DIV)33、DIV33の出力に接続されパイロ
ツト信号を検出してAFC信号とAGC信号とC/
N出力104を出力するパイロツト信号受信部
(PIL REC)34、自局から送信し衛星で折返さ
れたチヤンネルNo.1の通信用信号を受信しC/N
出力105を出力する受信チヤンネルユニツト
(RX CHU No.1′)35、相手局からの通信用信
号を受信復調してチヤンネル受信出力(RX
OUT)を送信する受信チヤンネルユニツト36
(RX CHU No.1)および37(RX CHU No.
m)より成る受信系と、チヤンネル送信入力
(TX IN)を変調し各チヤンネル周波数に対応し
た中間周波信号を発生する送信チヤンネルユニツ
ト41(TX CHU No.1)42(TX CHU
No.2)、43(TX CHU No.m)、41の入力側
に挿入されチヤンネル送信入力が無い場合にも送
信出力が無くならず同一キヤリア出力を送出する
よう制御する試験用信号発生器(TEST SIG)
40、各送信チヤンネルユニツトの出力を合成す
るコンバイナ(COMB)44、制御信号により
利得が制御される送信用中間周波増幅器(V.G
AMP)45、中間周波数信号を送信周波数に変
換するアツプコンバータ(U/C)46およびそ
の出力を必要な送信電力まで増幅する送信電力増
幅器(HPA)47から成る送信系と、PIL REC
34のC/N出力104とRX CHU35のC/
N出力105を比較し両者の比を出力する比較器
50およびその出力を受けこれが晴天時の値と保
つようV.G AMP45の利得を制御する制御信号
106を発生する送信電力制御盤51から成る制
御系とから構成されている。
Figure 3 shows earth stations 3 and 4 other than the specified earth station...
and n+1 is a block diagram of an embodiment of the antenna 6 used for transmission, a low noise amplifier (LNA) 30,
A down converter (D/C) 31 that converts the communication signal and pilot signal f p to an intermediate frequency, an intermediate frequency amplifier (IF AMP) 32 that amplifies the output and performs AGC operation, and a common amplified signal by the IF AMP 32. Divider (DIV) 33, which distributes to each channel unit and pilot signal receiving section of SCPC, is connected to the output of DIV33, detects the pilot signal, and divides the AFC signal, AGC signal, and C/
The pilot signal receiving unit (PIL REC) 34 outputs the N output 104, receives the communication signal of channel No. 1 transmitted from its own station and returned by the satellite, and receives the C/N signal.
The reception channel unit (RX CHU No. 1') 35 outputs output 105, receives and demodulates the communication signal from the other station, and outputs the channel reception output (RX CHU No. 1').
A receiving channel unit 36 transmitting OUT)
(RX CHU No. 1) and 37 (RX CHU No.
m), and a transmission channel unit 41 (TX CHU No. 1) and 42 (TX CHU No. 1) that modulate the channel transmission input (TX IN) and generate an intermediate frequency signal corresponding to each channel frequency.
No. 2), 43 (TX CHU No. SIG)
40, a combiner (COMB) 44 that combines the outputs of each transmission channel unit, and a transmission intermediate frequency amplifier (VG) whose gain is controlled by a control signal.
AMP) 45, an up converter (U/C) 46 that converts an intermediate frequency signal to a transmission frequency, and a transmission power amplifier (HPA) 47 that amplifies its output to the required transmission power, and a PIL REC
34 C/N output 104 and RX CHU35 C/N output
A control system consisting of a comparator 50 that compares the N output 105 and outputs the ratio between the two, and a transmission power control panel 51 that receives the output and generates a control signal 106 that controls the gain of the VG AMP 45 so that the gain is maintained at the value on a clear day. It is composed of.

以上説明した本実施例の構成を第2図に説明し
た特定地球局の構成と対比すると、第2図の回路
における衛星から晴雨にかかわらず一定のEIRP
で放射されるビーコン信号受信系が第3図の回路
では衛星のEIRPが晴雨にかかわらず一定となる
よう制御されたパイロツト信号受信系に、第2図
の地球局から送出し衛星を折返して受信するパイ
ロツト信号系が第3図ではSCPC通信用のチヤン
ネルNo.1の折返し信号系に、第2図のCOMP1
7の入力信号101,102が信号レベルである
のに対して第3図ではCOMP50の入力信号1
04,105がC/Nとなつている。いま、第3
図の回路においてCOMP50の入力が信号レベ
ルであれば第2図と全く同様な動作原理によつて
本実施例の構成によつてチヤンネルNo.1の衛星に
おけるEIRPが晴雨にかかわらず一定に制御でき
ることは容易に理解できる。ビーコン信号を用い
た第2図の回路で信号レベルの代りにC/Nを用
いるとビーコン信号は衛星から送出されるのでア
ツプリンク雑音の寄与が無いのに対して折返し信
号はアツプリンクからの雑音寄与があるため
EIRP一定とならないが、本実施例の回路では
C/Nを比較する両信号共ほぼ同様のアツプリン
ク雑音寄与があり、衛星受信機の雑音温度は一般
に高く降雨によるアツプリンク伝ぱん路の雑音温
度上昇は殆ど無視できるので信号レベルの代りに
C/Nを用いてもチヤンネルNo.1の衛星EIRPを
殆ど一定に制御することができる。C/Nを用い
ることは受信系の利得安定度に対する要求を大き
く緩和できる利点がある。
Comparing the configuration of this embodiment explained above with the configuration of the specific earth station explained in FIG.
In the circuit shown in Figure 3, the beacon signal received by the beacon signal emitted from the earth station in Figure 2 is received by the pilot signal reception system, which is controlled so that the satellite's EIRP remains constant regardless of rain or shine. The pilot signal system used in Figure 3 is the return signal system for channel No. 1 for SCPC communication, and the COMP1 signal system in Figure 2 is
Input signals 101 and 102 of COMP50 are at signal level, whereas input signal 1 of COMP50 in FIG.
04,105 is C/N. Now, the third
In the circuit shown in the figure, if the input of COMP50 is at a signal level, the EIRP of the channel No. 1 satellite can be controlled to be constant regardless of rain or shine by using the same operating principle as in Figure 2 and using the configuration of this embodiment. is easy to understand. If C/N is used instead of the signal level in the circuit shown in Figure 2 using a beacon signal, the beacon signal is sent from the satellite, so there is no contribution from uplink noise, but the return signal is due to noise from the uplink. Because of the contribution
Although the EIRP is not constant, in the circuit of this example, both signals whose C/N is compared have almost the same uplink noise contribution, and the noise temperature of the satellite receiver is generally high and the noise temperature of the uplink propagation path due to rainfall is high. Since the increase is almost negligible, the channel No. 1 satellite EIRP can be controlled to be almost constant even if C/N is used instead of the signal level. The use of C/N has the advantage of greatly relaxing the requirements for gain stability of the receiving system.

上述の実施例の説明ではSCPC方式を用いる場
合について述べたが、FM多重通話路方式による
衛星通信においても特定地球局がビーコン信号と
自局送信の通信用信号(FMキヤリア)を折返し
受信してこの通信用信号の衛星EIRPを安定化し、
この特定地球局と交信する他の地球局がこの安定
化された信号と自局送信信号の折返し信号を受信
してそれぞれ送信電力を制御することもできる。
又、ビーコン信号を用いる特定地球局が複数であ
つてもよく、更に特定地球局以外の地球局の一部
が本方式による送信電力制御を行ない、他の地球
局が別の制御方式例えば特定地球局によつて衛星
EIRPを安定化されたパイロツト信号または通信
用信号を受信しそのレベル変動またはC/N変動
からアツプリンクの降雨減衰を相関性を利用して
算定して送信電力を制御する本出願と同日に同一
出願人より出願される別の特許出願「衛星通信送
信電力制御方式」の発明による方法を採用しても
差支えない。
In the above embodiment, the SCPC method is used, but even in satellite communication using the FM multiple channel method, a specific earth station receives the beacon signal and the communication signal (FM carrier) sent by its own station in return. The satellite EIRP of this communication signal is stabilized,
Other earth stations communicating with this specific earth station can receive this stabilized signal and a return signal of their own transmission signal, and can control their respective transmission power.
Furthermore, there may be a plurality of specified earth stations that use beacon signals, and some of the earth stations other than the specified earth station perform transmission power control using this method, and other earth stations use another control method, such as the specified earth station. satellite by station
This application was filed on the same day as this application, in which a pilot signal or communication signal stabilized by EIRP is received, and the uplink rain attenuation is calculated from the level fluctuation or C/N fluctuation using correlation to control the transmission power. There is no problem in adopting the method based on the invention of another patent application filed by the applicant, "Satellite communication transmission power control method."

又、上述の第3図の実施例はプリ・アサインの
SCPC方式について示してあるが、デマンド・ア
サイン方式(DAMA)の場合であつても各地球
局が使用を割当てられたチヤンネルの通話用信号
の一つを折返し信号として受信するようRX
CHU35の周波数制御を行えば同様に送信電力
制御ができる。又、FM多重、SCPCいずれの場
合も折返し受信装置が通信用の受信装置の予備機
を兼ねるように構成することも、更に前述の別出
願いかかる相関性を利用する制御法を併用し、予
備機運用のため折返し受信ができないときはこの
方法に切換えるように構成することもできる。
In addition, the embodiment shown in FIG.
Although the SCPC method is shown, even in the case of the demand assignment method (DAMA), each earth station receives one of the call signals of the assigned channel as a return signal.
If the frequency of the CHU 35 is controlled, the transmission power can be controlled in the same way. In addition, in both cases of FM multiplexing and SCPC, it is also possible to configure the return receiving device to also serve as a backup device for the communication receiving device, and also to use the control method that utilizes the correlation as described in the separate application mentioned above to serve as a backup device. It is also possible to configure the system to switch to this method when return reception is not possible due to aircraft operations.

以上詳細に説明したごとく、本発明によれば多
数局運用を行なう衛星通信において、制御のため
の専用周波数を使用せず、衛星側に特定の施設を
設ける必要もなく、且つ少数の特定地球局以外は
ビーコン受信設備も不必要で、相関性利用による
制御誤差も生じない衛星通信送信電力制御方式を
実現できる効果がある。
As explained in detail above, according to the present invention, in satellite communication that operates multiple stations, it is not necessary to use a dedicated frequency for control, there is no need to provide specific facilities on the satellite side, and a small number of specific earth stations can be used. Other than that, no beacon receiving equipment is required, and there is an effect of realizing a satellite communication transmission power control system that does not generate control errors due to the use of correlation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は
第1図の構成の特定地球局の一実施例を示すブロ
ツク図、第3図は第1図の構成の特定地球局以外
の地球局の一実施例のブロツク図である。 1……衛星、2,3,4……地球局、5,6…
…アンテナ、10,30……低雑音増幅器、11
……ハイブリツド、12,14,31……ダウン
コンバータ、13……ビーコン受信部、15,2
2,32,45……中間周波増幅器、16,34
……パイロツト信号受信部、17,50……比較
器、18,51……送信電力制御盤、20……パ
イロツト信号発振器、21,44……コンバイ
ナ、23,46……アツプコンバータ、24,4
7……送信電力増幅器、33……デバイダー、3
5,36,37……受信チヤンネルユニツト、4
0……試験用信号発生器、41,42,43……
送信チヤンネルユニツト。
Figure 1 is a block diagram of an embodiment of the present invention, Figure 2 is a block diagram of an embodiment of a specific earth station having the configuration shown in Figure 1, and Figure 3 is a block diagram of a specific earth station other than the specific earth station having the configuration shown in Figure 1. 1 is a block diagram of an embodiment of an earth station; FIG. 1... Satellite, 2, 3, 4... Earth station, 5, 6...
...Antenna, 10,30...Low noise amplifier, 11
...Hybrid, 12,14,31...Down converter, 13...Beacon receiver, 15,2
2, 32, 45...Intermediate frequency amplifier, 16, 34
...Pilot signal receiving unit, 17,50...Comparator, 18,51...Transmission power control board, 20...Pilot signal oscillator, 21,44...Combiner, 23,46...Up converter, 24,4
7... Transmission power amplifier, 33... Divider, 3
5, 36, 37...reception channel unit, 4
0... Test signal generator, 41, 42, 43...
Transmission channel unit.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の地球局が衛星を介して通信を行う衛星
通信方式において、前記地球局のうちの少なくと
も一つの特定地球局が自局から送信し前記衛星で
折返された通信用周波数帯域内のパイロツト信号
および通信用信号の少なくとも一方の信号をビー
コン信号と比較して前記衛星における実効放射電
力を降雨減衰にかかわらず一定とする制御手段を
備え、前記特定地球局を除く全部または一部の地
球局が自局から送信し前記衛星で折返された折返
し信号と前記特定地球局から送信され前記衛星に
おける実効放射電力が一定となるよう制御された
パイロツト信号または通信用信号とを受信比較し
てその値があらかじめ定められた値と一致するよ
う前記地球局の送信電力を制御する送信電力制御
手段を備えたことを特徴とする衛星通信送信電力
制御方式。
1 In a satellite communication system in which a plurality of earth stations communicate via a satellite, a pilot signal within the communication frequency band transmitted by at least one specific earth station among the earth stations and returned by the satellite. and control means for comparing at least one of the communication signals with a beacon signal to keep the effective radiated power at the satellite constant regardless of rain attenuation, wherein all or some of the earth stations except the specific earth station A return signal transmitted from the own station and returned by the satellite is received and compared with a pilot signal or communication signal transmitted from the specific earth station and controlled so that the effective radiated power at the satellite is constant, and the value thereof is determined. A satellite communication transmission power control system comprising a transmission power control means for controlling the transmission power of the earth station so as to match a predetermined value.
JP56183295A 1981-11-16 1981-11-16 Transmission power control system for satellite communication Granted JPS5884545A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56183295A JPS5884545A (en) 1981-11-16 1981-11-16 Transmission power control system for satellite communication
AU90605/82A AU553961B2 (en) 1981-11-16 1982-11-16 Satellite earth station output control
DE8282110584T DE3273703D1 (en) 1981-11-16 1982-11-16 Earth station transmission power control system
CA000415642A CA1196961A (en) 1981-11-16 1982-11-16 Earth station transmission power control system for keeping an eirp of down link signals constant irrespective of weather
EP82110584A EP0079612B1 (en) 1981-11-16 1982-11-16 Earth station transmission power control system
US06/725,528 US4567485A (en) 1981-11-16 1985-04-23 Earth station transmission power control system for keeping an EIRP of down link signals constant irrespective of weather

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56183295A JPS5884545A (en) 1981-11-16 1981-11-16 Transmission power control system for satellite communication

Publications (2)

Publication Number Publication Date
JPS5884545A JPS5884545A (en) 1983-05-20
JPS6343020B2 true JPS6343020B2 (en) 1988-08-26

Family

ID=16133158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56183295A Granted JPS5884545A (en) 1981-11-16 1981-11-16 Transmission power control system for satellite communication

Country Status (1)

Country Link
JP (1) JPS5884545A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113517A (en) * 1974-07-24 1976-02-03 Mitsubishi Electric Corp
JPS54101616A (en) * 1978-01-27 1979-08-10 Nippon Telegr & Teleph Corp <Ntt> Satellite communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113517A (en) * 1974-07-24 1976-02-03 Mitsubishi Electric Corp
JPS54101616A (en) * 1978-01-27 1979-08-10 Nippon Telegr & Teleph Corp <Ntt> Satellite communication system

Also Published As

Publication number Publication date
JPS5884545A (en) 1983-05-20

Similar Documents

Publication Publication Date Title
EP0079612B1 (en) Earth station transmission power control system
EP1511193B1 (en) System and method for boosting and monitoring
EP2442460B1 (en) Flexible coverage areas for return link signals in a spot beam satellite communication system
US7085530B2 (en) Dynamic capacity allocation of in-building system
EP0154338B1 (en) Precipitation loss compensation and disablement for avoidance of satellite transponder overloading
EP0966804A1 (en) System and method for enhanced satellite payload power utilization
EP0715786A1 (en) Base station equipment using diversity reception
US5828335A (en) Spacecraft communication channel power control system
JPS6343020B2 (en)
US6072985A (en) Spacecraft cellular communication system with mutually offset high-margin forward control signals
JPH0356021B2 (en)
EP0991198B1 (en) Transmitter/Receiver apparatus with an antenna for use of both signal transmission and reception
US6212378B1 (en) Spacecraft cellular communication system in which the return control receive slot duration is a function of antenna beam direction
JPS6342451B2 (en)
JPS5992635A (en) Transmit electric power controller of satellite communication earth station
JPH0870274A (en) Mobile communication system and mobile station equipment
EP1487125B1 (en) Transmitter/receiver apparatus with an antenna for use of both signal transmission and reception
JPS58200640A (en) Controlling system of electric power for transmitting satellite communication
JPS5810937A (en) Transmission power controlling system for earth station of satellite communication
JPS6313377B2 (en)
JPH0356020B2 (en)
KR20030068334A (en) A Outer RF Repeater System
JPS632506B2 (en)
JPS62188438A (en) Transmission power control system
JPH01168128A (en) Transmission power control system