JPS6313377B2 - - Google Patents

Info

Publication number
JPS6313377B2
JPS6313377B2 JP57006365A JP636582A JPS6313377B2 JP S6313377 B2 JPS6313377 B2 JP S6313377B2 JP 57006365 A JP57006365 A JP 57006365A JP 636582 A JP636582 A JP 636582A JP S6313377 B2 JPS6313377 B2 JP S6313377B2
Authority
JP
Japan
Prior art keywords
station
level
pilot signal
master station
transmission power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57006365A
Other languages
Japanese (ja)
Other versions
JPS58123241A (en
Inventor
Hiroyuki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57006365A priority Critical patent/JPS58123241A/en
Publication of JPS58123241A publication Critical patent/JPS58123241A/en
Publication of JPS6313377B2 publication Critical patent/JPS6313377B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC

Abstract

PURPOSE:To correct the rainfall attenuation of an up link without wasting the transmitting electric power of a satellite and increasing the scale of a ground station by allowing a subordinate station to receive a pilot signal from a master station and controlling the transmitting electric power of the subordinate station individually according to the received level. CONSTITUTION:When a maximum received level on a fine weather condition is PA, it is the set level of this circuit. At the master station, a common-circuit (CSC circuit) carrier received level from each subordinate station is sampled and a level comparison is made to transmit the pilot signal by increasing the transmitting electric power up to the received level of a station having the highest received level. Since the effective isotropic radiation electric power (EIRP) of the satellite is constant without reference to rainfall attenuation near the master station, i.e. transmitting station, each subordinate station controls its transmitting electric power so that the received level of its own radio wave is equal to that of a pilot signal received by itself, thus making the EIRP constant without reference to the rainfall attenuation.

Description

【発明の詳細な説明】 本発明は衛星通信における地球局の送信電力制
御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transmission power control system for an earth station in satellite communications.

一般に、衛星通信、特に10〜20GHz程度の準ミ
リ波帯を用いる衛星通信においては降雨による電
波の減衰が大きく、通常何らかの方法で補償が行
われている。この補償方式として、衛星から地上
局へのダウンリンクに対しては、サイトダイバー
シテイ方式や予め減衰を補うように地球局にマー
ジンを持たせた制御方式がとられている。一方、
地球局から衛星へのアツプリンクに対しては、サ
イトダイバーシテイ方式や降雨減衰に応じて地球
局の送信電力を制御する方式がとられている。こ
のアツプリンクの場合の電波の降雨減衰に対して
予めマージンを持たせておく方式は、その分だけ
晴天時に送信電力を浪費することになるので、衛
星への送信電力の有効利用という観点からは非常
に不利である。このため、通常衛星でのEIRP
(Equivalent Isotropic Radiated Power;実効
等方放射電力)が常に一定となる様にアツプリン
クの降雨減衰量に応じて地球局の送信電力を制御
する方式がとられている。この方式は一般に地球
局送信電力制御方式といわれている。この送信電
力制御方式として、複数の地球局がアロハ
(ALOHA)方式のようなランダムアクセス方式
のCSC回線(Common Signalling Channel;共
通制御回線)を用いてSCPC(Single Channel
Per Carrier)によるDAMA(Demmand
Assignment Multiple Access)方式で運用され
る場合に問題があつた。
In general, in satellite communications, particularly in satellite communications that use a sub-millimeter wave band of approximately 10 to 20 GHz, radio waves are attenuated significantly due to rainfall, and compensation is usually performed in some way. As a compensation method for the downlink from the satellite to the ground station, a site diversity method or a control method in which the earth station is given a margin in advance to compensate for attenuation is used. on the other hand,
For uplinks from earth stations to satellites, site diversity methods and methods that control the earth station's transmission power according to rainfall attenuation are used. This method of providing a margin in advance for rain attenuation of radio waves in the case of uplink will waste transmission power by that amount on clear skies, so it is not effective from the point of view of effective use of transmission power to the satellite. Very disadvantageous. For this reason, EIRP on normal satellites
A method is used to control the earth station's transmission power according to the uplink rainfall attenuation so that the effective isotropic radiated power (Equivalent Isotropic Radiated Power) is always constant. This method is generally referred to as the earth station transmission power control method. As this transmission power control method, multiple earth stations use a CSC (Common Signaling Channel) line of a random access method such as the ALOHA method to transmit SCPC (Single Channel).
DAMA (Demand) by Per Carrier)
There was a problem when using the Assignment Multiple Access) method.

従来、この種の衛星通信地球局の送信電力制御
方式には、第1図に示すように、A1局より送信
して衛星1を介してB1局に送り再び衛星1を介
して折り返し、この折り返し信号をA1局で受信
したパイロツト信号の(S/N)1と、B1局より
送信しA1局で受信したパイロツト信号の(S/
N)2とが等しくなるようにA1局の送信電力を制
御する方式がある。また、第2図に示すように、
地球局A2と衛星1ととの間で衛星受信電力のテ
レメトリー値を用いて送信電力を制御する方式が
あつた。しかし、第1図の方式は、パイロツト信
号として二波使用しているため、それだけ衛星送
信電力を使用する必要があり、衛星送信電力の有
効利用の点からみて不利であつた。また、第2図
の方式は衛星テレメトリの受信装置が必要であり
地球局の規模が大きくなるという欠点があつた。
Conventionally, the transmission power control method of this type of satellite communication earth station has been as shown in Figure 1. This return signal is divided into (S/N) 1 of the pilot signal received by A 1 station and (S/N) 1 of the pilot signal transmitted from B 1 station and received by A 1 station.
N) There is a method to control the transmission power of one station so that A2 is equal to A1 . Also, as shown in Figure 2,
There was a method of controlling the transmission power between the earth station A2 and the satellite 1 using the telemetry value of the satellite reception power. However, since the method shown in FIG. 1 uses two waves as pilot signals, it is necessary to use satellite transmission power accordingly, which is disadvantageous from the point of view of effective use of satellite transmission power. Furthermore, the method shown in FIG. 2 requires a satellite telemetry receiving device, which has the disadvantage of increasing the size of the earth station.

本発明の目的は、これらの欠点を除き、衛星の
送信電力の無駄や地球局の規模の増大なくしてア
ツプリンクの降雨減衰を補正するようにした衛星
通信地球局の送信電力制御方式を提供することに
ある。
An object of the present invention is to eliminate these drawbacks and provide a transmission power control method for a satellite communications earth station that corrects uplink rain attenuation without wasting satellite transmission power or increasing the scale of the earth station. There is a particular thing.

本発明の衛星通信地球局の送信電力制御方式
は、ランダムアクセス衛星通信における共通制御
回線を通じて親局と子局とを含む複数の地球局が
運用されるとき、前記親局から非通話状態の前記
子局に対して順次アツプリンク送信要求を行い、
この送信要求に対応して前記子局からそれぞれ送
信出力を送り、前記親局はこれら送信出力を受け
て各各受信キヤリアレベルをそれぞれ検出し、こ
れら受信キヤリアレベルのうちの最大のレベルと
等しくなるようにその親局のパイロツト信号の送
信電力を制御して送出し、この親局のパイロツト
信号を前記子局で受けてそのパイロツト信号の受
信レベルに応じて各自の子局の送信電力を制御す
ることにより、前記アツプリンクの電波減衰を補
償することを特徴とする。
The transmission power control method of a satellite communication earth station according to the present invention is such that when a plurality of earth stations including a master station and a slave station are operated through a common control line in random access satellite communication, the master station Sequentially requests uplink transmission to slave stations,
In response to this transmission request, each of the slave stations sends a transmission output, and the master station receives these transmission outputs, detects each received carrier level, and becomes equal to the maximum level of these received carrier levels. The transmission power of the pilot signal of the master station is controlled and transmitted so that the pilot signal of the master station is received by the slave station, and the transmission power of each slave station is controlled according to the reception level of the pilot signal. Accordingly, the uplink radio wave attenuation is compensated for.

以下図面により本発明を詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.

第3図a,bは本発明の送信電力制御を説明す
る送信レベル図である。第3図aは親局の要求に
よりCSC回線に送出されたA局からH局までの各
バーストの配列を示し、第3図bは親局でのCSC
回線の受信キヤリアレベルを示している。ここで
PAは晴天時に於ける最大の受信レベルとすると、
この回線の設定レベルとなる。ここで親局に於て
は、各子局からのCSC回線キヤリア受信レベルを
サンプリングし、各々一定の時定数の積分回路を
通した後レベル比較を行い、受信レベルの最も大
きい局の受信レベルと同一レベルまでそのパイロ
ツト信号の送信電力を上げて送信するように制御
する。この様に制御されたパイロツト信号は送信
局である親局付近の降雨減衰如何によらず衛星で
のEIRPが一定となるので、各子局は自局電波の
受信レベルが自局で受信したパイロツト信号の受
信レベルと同一レベルになる様自局送信電力を制
御することにより降雨減衰によらず衛星での
EIRPが一定となるようにすることができる。
FIGS. 3a and 3b are transmission level diagrams illustrating the transmission power control of the present invention. Figure 3a shows the arrangement of each burst from station A to station H sent out to the CSC line at the request of the master station, and Figure 3b shows the sequence of bursts sent to the CSC line at the master station's request.
Indicates the receiving carrier level of the line. here
Assuming that P A is the maximum reception level under clear skies,
This is the setting level for this line. Here, at the master station, the CSC line carrier reception level from each slave station is sampled, and after passing through an integrating circuit with a fixed time constant, the levels are compared, and the reception level is compared with that of the station with the highest reception level. Control is performed to increase the transmission power of the pilot signal to the same level and transmit it. Since the pilot signal controlled in this way has a constant EIRP at the satellite regardless of rain attenuation near the master station, which is the transmitting station, each slave station can adjust the reception level of its own radio waves to the pilot signal received by its own station. By controlling the transmitting power of the local station so that it is at the same level as the signal receiving level, the satellite transmits power is not affected by rain attenuation.
EIRP can be made constant.

一般に、衛星通信は広域で利用されるが、一方
雨域は数十Km範囲とされており、すべての地球局
が降雨減衰を受けることは希であると考えられる
ので、本方式により実用的な送信電力制御が充分
可能である。
Satellite communication is generally used over a wide area, but the rainy area is said to be within a range of several tens of kilometers, and it is thought that it is rare for all earth stations to experience rain attenuation. Transmission power control is fully possible.

第4図a,bは本発明の実施例の親局および子
局を示すブロツク図である。図中、2は空中線、
3は受信信号が入力される低雑音増幅器、4は受
信周波数変換器、5,7は受信および送信側の
AGC増幅器、6はAGC/AFC制御装置、8は送
信周波数変換器、9は大電力増幅器、10はIF
信号分波器、11はIF信号合成器、12,17
はCSC復調および変調装置、13,19はチヤン
ネル選択装置、14はDAMA装置、15,16
はチヤンネル復調および変調装置、19はレベル
検出器、20はレベル比較器、21はCSC回線キ
ヤリア検出回路、22はパイロツトキヤリア検出
装置である。
FIGS. 4a and 4b are block diagrams showing a master station and a slave station according to an embodiment of the present invention. In the figure, 2 is an antenna,
3 is a low noise amplifier into which the received signal is input, 4 is a receiving frequency converter, and 5 and 7 are on the receiving and transmitting sides.
AGC amplifier, 6 is AGC/AFC control device, 8 is transmitting frequency converter, 9 is high power amplifier, 10 is IF
Signal splitter, 11 is IF signal combiner, 12, 17
is a CSC demodulation and modulation device, 13, 19 is a channel selection device, 14 is a DAMA device, 15, 16
19 is a channel demodulation and modulation device, 19 is a level detector, 20 is a level comparator, 21 is a CSC line carrier detection circuit, and 22 is a pilot carrier detection device.

この実施例の動作は次のとおりである。 The operation of this embodiment is as follows.

まず、親局の場合、受信周波数変換器4の出力
において、CSC回線のキヤリアレベルを検出す
る。すなわち、親局はDAMA装置14から各地
球局に同期したタイミング信号を受けて各地球局
からのバースト信号レベルを抽出し、各々積分回
路を通し最も大きな受信レベルとパイロツト信号
の受信レベルとを比較し、最大受信レベルとパイ
ロツト信号の受信レベルとが等しくなるように制
御させる。このため受信周波数変換器4の出力を
とり出すCSC回線キヤリア検出回路21と、この
キヤリア検出回路21をDAMA装置14に同期
させるサンプリング識別回路19と、この識別回
路19の出力のうちの最大レベルと比較する比較
回路20と、この比較回路出力により送信レベル
を制御するAGC増幅器7とを付加して構成され
る。
First, in the case of the master station, the carrier level of the CSC line is detected at the output of the reception frequency converter 4. That is, the master station receives a timing signal synchronized with each earth station from the DAMA device 14, extracts the burst signal level from each earth station, and compares the highest reception level with the reception level of the pilot signal through each integration circuit. Then, control is performed so that the maximum reception level and the reception level of the pilot signal are equal. For this purpose, a CSC line carrier detection circuit 21 that extracts the output of the reception frequency converter 4, a sampling identification circuit 19 that synchronizes this carrier detection circuit 21 with the DAMA device 14, and a maximum level of the output of this identification circuit 19 are provided. It is constructed by adding a comparison circuit 20 for comparison and an AGC amplifier 7 for controlling the transmission level based on the output of this comparison circuit.

次に、子局の場合、受信周波数変換器4出力か
らパイロツト信号のキヤリア検出回路によりその
パイロツト信号のキヤリアレベルと、自局送信時
の自局電波の受信キヤリアレベルとを検出し、各
各AGC増幅器7に含まれる各積分回路を通して
パイロツト信号の受信レベルと自局電波の受信レ
ベルとが等しくなるように制御する。
Next, in the case of a slave station, the carrier detection circuit for the pilot signal detects the carrier level of the pilot signal from the output of the receiving frequency converter 4, and the received carrier level of the own station radio wave when transmitting the own station, and then outputs the signal to each AGC. Control is performed through each integrating circuit included in the amplifier 7 so that the reception level of the pilot signal and the reception level of the local radio wave are equal.

以上説明したように、本発明によれば、簡易な
回路の付加により地球局規模の増大なくして経済
的で確実な衛星通信地球局送信電力制御機能が得
られる。
As described above, according to the present invention, an economical and reliable satellite communication earth station transmission power control function can be obtained by adding a simple circuit and without increasing the scale of the earth station.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来のパイロツト方式および
テレメトリ方式の衛星通信地球局送信電力制御方
式の説明図、第3図a,bは本発明を説明する各
子局のバーストの配列および親局における受信キ
ヤリアレベルを示す説明図、第4図a,bは本発
明の実施例の親局および子局のブロツク図であ
る。 図において、1……人工衛星、2……空中線、
3……低雑音増幅器、4……受信周波数変換器、
5,7……AGC増幅器、6……AGC/AFC制御
装置、8……送信周波数変換器、9……大電力増
巾装置、10……IF信号分波器、11……IF信
号合成器、12……CSC復調装置、13……チヤ
ンネル選択装置、14……DAMA装置、15…
…チヤンネル復調装置、16……チヤンネル変調
装置、17……CSC変調装置、18……チヤンネ
ル選択装置、19……レベル検出器、20……レ
ベル比較器、21……CSC回線キヤリア検出回
路、22……パイロツトキヤリア検出回路、であ
る。
Figures 1 and 2 are explanatory diagrams of conventional pilot and telemetry satellite communications earth station transmission power control systems, and Figures 3a and 3b illustrate the burst arrangement of each slave station and the master station to explain the present invention. FIGS. 4a and 4b are block diagrams of a master station and a slave station according to an embodiment of the present invention. In the figure, 1...Artificial satellite, 2...Antenna,
3...Low noise amplifier, 4...Reception frequency converter,
5, 7...AGC amplifier, 6...AGC/AFC control device, 8...Transmission frequency converter, 9...High power amplification device, 10...IF signal splitter, 11...IF signal combiner , 12...CSC demodulator, 13...channel selection device, 14...DAMA device, 15...
... Channel demodulation device, 16 ... Channel modulation device, 17 ... CSC modulation device, 18 ... Channel selection device, 19 ... Level detector, 20 ... Level comparator, 21 ... CSC line carrier detection circuit, 22 ...Pilot carrier detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 ランダムアクセス衛星通信における共通制御
回線を通じて親局と子局とを含む複数の地球局が
運用されるとき、前記親局から非通話状態の前記
子局に対して順次アツプリンク送信要求を行い、
この送信要求に対応して前記子局からそれぞれ送
信出力を送り、前記親局はこれら送信出力を受け
て各受信キヤリアレベルをそれぞれ検出し、これ
ら受信キヤリアレベルのうちの最大のレベルと等
しくなるようにその親局のパイロツト信号の送信
電力を制御して送出し、この親局のパイロツト信
号を前記子局で受けてそのパイロツト信号の受信
レベルに応じて各自の子局の送信電力を制御する
ことにより、前記アツプリンクの電波減衰を補償
することを特徴とする衛星通信地球局の送信電力
制御方式。
1. When a plurality of earth stations including a master station and a slave station are operated through a common control line in random access satellite communication, the master station sequentially requests uplink transmission to the slave stations in a non-communicating state,
In response to this transmission request, each of the slave stations sends a transmission output, and the master station receives these transmission outputs, detects each reception carrier level, and adjusts the level so that it becomes equal to the maximum level of these reception carrier levels. control the transmission power of the pilot signal of the master station and send it out, receive the pilot signal of the master station at the slave station, and control the transmission power of each slave station according to the reception level of the pilot signal. A transmission power control method for a satellite communication earth station, characterized in that the uplink radio wave attenuation is compensated for by:
JP57006365A 1982-01-19 1982-01-19 Transmitting electric power controlling system of satellite communication ground station Granted JPS58123241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57006365A JPS58123241A (en) 1982-01-19 1982-01-19 Transmitting electric power controlling system of satellite communication ground station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57006365A JPS58123241A (en) 1982-01-19 1982-01-19 Transmitting electric power controlling system of satellite communication ground station

Publications (2)

Publication Number Publication Date
JPS58123241A JPS58123241A (en) 1983-07-22
JPS6313377B2 true JPS6313377B2 (en) 1988-03-25

Family

ID=11636329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57006365A Granted JPS58123241A (en) 1982-01-19 1982-01-19 Transmitting electric power controlling system of satellite communication ground station

Country Status (1)

Country Link
JP (1) JPS58123241A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113612A (en) * 1988-10-22 1990-04-25 Nec Corp Automatic gain control circuit

Also Published As

Publication number Publication date
JPS58123241A (en) 1983-07-22

Similar Documents

Publication Publication Date Title
US10320495B2 (en) Method of characterizing the performance of a payload of a satellite in orbit and associated IOT system
US8385223B2 (en) Interference resistant satellite link power control using downlink beacon
KR100215947B1 (en) Transmitting power control method in cdma
US7751823B2 (en) Systems and methods for controlling a level of interference to a wireless receiver responsive to an activity factor associated with a wireless transmitter
US4731866A (en) Transmission power control system in a satellite communication
RU98100194A (en) FEEDBACK POWER MANAGEMENT IN A COMMUNICATION SYSTEM THROUGH LOW ORBIT SATELLITES
US8483609B2 (en) Interference resistant satellite link power control using uplink noise measurements
JP2000512830A (en) Method and apparatus for controlling power transmitted by a ground station in a VSAT network
KR102449640B1 (en) Autonomous satellite automatic gain control
US6763006B1 (en) Method and apparatus for controlling uplink transmission power within a satellite communication system
JPS60190035A (en) Control system of satellite communication transmission power
US5828335A (en) Spacecraft communication channel power control system
JPS6313377B2 (en)
JP4037302B2 (en) Satellite communication system, base station and mobile station
JPS6322743B2 (en)
JPH0356021B2 (en)
JP2014053751A (en) Satellite diversity (d sat-d) system for performing dynamic switching between multiple satellites
JPH0666719B2 (en) Transmission power control device for satellite communication earth station
JPH025631A (en) Transmission power control system for satellite communication
JPH0356020B2 (en)
JPS6343020B2 (en)
KR970007605B1 (en) Radio frequency broadcasting systems
JPS6342451B2 (en)
JP2013143663A (en) Satellite diversity system using close range two earth stations
JP2013187867A (en) Time delay diversity/satellite diversity/site diversity (tdd/sat.d/sd) method using close range two earth stations