JPS62188438A - Transmission power control system - Google Patents

Transmission power control system

Info

Publication number
JPS62188438A
JPS62188438A JP3004386A JP3004386A JPS62188438A JP S62188438 A JPS62188438 A JP S62188438A JP 3004386 A JP3004386 A JP 3004386A JP 3004386 A JP3004386 A JP 3004386A JP S62188438 A JPS62188438 A JP S62188438A
Authority
JP
Japan
Prior art keywords
signal
transmission power
transmission
level
attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3004386A
Other languages
Japanese (ja)
Other versions
JPH0511688B2 (en
Inventor
Seijiro Oguri
小栗 清治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3004386A priority Critical patent/JPS62188438A/en
Publication of JPS62188438A publication Critical patent/JPS62188438A/en
Publication of JPH0511688B2 publication Critical patent/JPH0511688B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To control the power by controlling a level control means so as to increase the transmission power of a transmission system by alphaXdB (alpha is a constant) higher than a reference transmission power at a fine weather thereby using a reflected signal only of the transmission of its own station without using a beacon signal. CONSTITUTION:A pilot signal is relayed by a satellite and converted into an intermediate frequency, amplified in common by an intermediate frequency amplifier 9 and the result is fed to a pilot reception section 11 via a distributor 10 and used as an AGC and AFC reference signal. The detection output 102 of the pilot reception section 11 is fed to a control circuit 12, where the signal is converted into a digital signal, which is compared with a reference voltage set in a memory in advance to obtain the level reduction XdB of the reception level. Then the ratio alpha of rainfall attenuation of an up-link to a down-link is multiplied with the value X, a digital signal 103 set to a value lower than the reference attenuation of a digital attenuator 4 by alphaXdB is sent, the rainfall attenuation of the up-link is compensated and the reception power of the satellite is kept to the same value as at a fine weather.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は送信′成力制御方式に関し、特に降雨減衰の大
きい準ミリ波帯以上の周波数を使用する地球局にgいて
、アップリンクの降雨減衰を補償するために用いられる
送信電力制御方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a transmission power control method, and particularly relates to a transmission power control method, and particularly relates to a transmission power control method, and is particularly applicable to uplink rain control systems at earth stations that use frequencies above the sub-millimeter wave band, where rainfall attenuation is large. This invention relates to a transmission power control method used to compensate for attenuation.

〔従来の技術〕[Conventional technology]

降雨減衰の大きい準ミリ波帯(Ka、Kuバンド)以上
の周波数を使用する衛星通信方式の地球局に8いては、
降雨減衰の大きいときには地球局の送信電力を増加させ
てアップリンクの降雨減衰を補償するための送信電力制
御が必要となる。この送信電力制御には櫨々の方式が提
案されているが、ダウンリンクの降雨減衰量を衛星から
送出されるビーコン信号を用いて測定し、この測定値か
らアップリンクの減衰量を推定してその分だけ送信′1
力を増加させる推定制御方式や、自局から送出したバイ
ロッ°ト信号が衛星で中継された折返し信号を受信し、
この折返し信号と衛星から送出されるビーコン信号との
受信レベル又は搬送波対雑音電力比(C/N ’)を比
較し、両者の関係が常に晴天時と同一の関係を保つよう
に送信電力を制御するループ制御方式(特開昭58−8
4547号参照)が用いられている。
For satellite communication earth stations that use frequencies above the sub-millimeter wave band (Ka, Ku band) where rain attenuation is large,
When the rain attenuation is large, transmission power control is required to increase the earth station's transmission power to compensate for the uplink rain attenuation. Hashira's method has been proposed for this transmission power control, which measures downlink rainfall attenuation using beacon signals sent from satellites, and estimates uplink attenuation from this measured value. Send that amount'1
An estimated control method that increases the power, and a pilot signal sent from the own station receives a return signal relayed by a satellite.
The received level or carrier-to-noise power ratio (C/N') of this return signal and the beacon signal sent from the satellite is compared, and the transmission power is controlled so that the relationship between the two always maintains the same relationship as on a clear day. Loop control method (Unexamined Japanese Patent Publication No. 58-8
4547) is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の送信電力制御方式は、いずれも衛星から
のビーコン信号な使用するためビーコン信号の出力が変
動する場合には安定な送信電力制御ができないという問
題点がある。
The conventional transmission power control methods described above all use a beacon signal from a satellite, so there is a problem that stable transmission power control cannot be performed when the output of the beacon signal fluctuates.

本発明の目的は、上述の問題点を除去し、ビーコン信号
を使用せずに自局送信の折返し信号のみを用いて制御可
能な送1ざ電力制御方式を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned problems and provide a transmission power control method that can be controlled using only a return signal transmitted from the own station without using a beacon signal.

〔問題点fa:解決するための手段〕[Problem fa: Means to solve]

本発明の送信電力制御方式は、衛星通信方式の地球局で
アップリンクの降雨減衰を補償するために用いらnる送
信電力制御方式に8いて、前記地球局の送信系が制御信
号で利得または減衰量が変化するレベル制御手段を備え
、前記地球局の受信系が自局から常時送出されている送
信信号の一つン衛星経由で折返し受信する折返し受信手
段を備え、この折返し受筒手段の出力からあらかじめ設
定さnた晴天時の基準受信レベルからのレベル低下量X
dBを求め、前記送信系の送信4カがあらかじめ定めら
ルた晴天時の基準送信電力よりもαXdB(αは定数)
増加するように前記レベル制御手段を制御するように構
成されている。
The transmission power control method of the present invention is a transmission power control method used in an earth station of a satellite communication system to compensate for uplink rain attenuation, and the transmission system of the earth station uses a control signal to control the gain or The receiving system of the earth station is provided with a level control means for changing the amount of attenuation, and the receiving system of the earth station is provided with return receiving means for returning and receiving one of the transmission signals constantly transmitted from the earth station via the satellite, and the return receiving means is Amount of level decrease from the standard reception level in clear weather set in advance from the output
dB is calculated, and the four transmitters of the transmission system are αX dB (α is a constant) compared to the predetermined standard transmission power in clear weather.
The level control means is configured to control the level control means to increase the level.

〔作用〕[Effect]

衛星通信伝搬路の降雨にょる伝搬損失(dBで表示した
値)の増加量、すなわち降雨減衰tは周波数の二乗にほ
ぼ比例し、同一伝搬路に対するアップリンクの降雨減衰
量ΔLuとダウンリンクの降雨減衰量ΔLu  との間
には、降雨量にかかわらず一定の比例関係が成立するこ
とが知らnている。
The amount of increase in propagation loss (value expressed in dB) due to rainfall on the satellite communication propagation path, that is, the rain attenuation t, is approximately proportional to the square of the frequency, and the amount of rain attenuation ΔLu on the uplink and the rain on the downlink for the same propagation path are It is known that a constant proportional relationship holds between the amount of attenuation ΔLu and the amount of rainfall.

いまΔLu/ΔLD−α、送信電力制御による送信電力
増加量を△Pとすると、衛星を中継して折返された自局
送信信号の受信レベルのレベル低下量Xは(1)式で表
される。
Now, if ΔLu/ΔLD-α and the amount of increase in transmission power due to transmission power control is ΔP, then the amount of decrease in the reception level of the own station's transmission signal relayed by the satellite and returned is expressed by equation (1). .

X=−(ΔF−ΔLu−ΔLn)  ・・−(1)アッ
プリンクの降雨減衰量を送信・1力制御により補償する
ためにはΔP=ΔLuとすればよく、このような制御が
行われた場合のXは(1)式よりX=ΔLu となる。
X = - (ΔF - ΔLu - ΔLn) ... - (1) In order to compensate for uplink rain attenuation by transmission/1 power control, it is sufficient to set ΔP = ΔLu, and such control was performed. According to equation (1), X in this case becomes X=ΔLu.

従って、ΔP=αΔLo=αXとなるようにΔPを制御
すればよいことになる。
Therefore, it is sufficient to control ΔP so that ΔP=αΔLo=αX.

この条件はビーコン信号の受信レベル低下量からアップ
リンクの降雨減衰量を推定して送信電力を制御するとき
の制御条件と同一である。従って。
This condition is the same as the control condition when controlling the transmission power by estimating the amount of rain attenuation in the uplink from the amount of reduction in the reception level of the beacon signal. Therefore.

本発明の送信電力制御方式の制御回路は従来の推定制御
方式と同様な構成で実現することができる。
The control circuit of the transmission power control method of the present invention can be realized with a configuration similar to that of the conventional estimation control method.

〔実施例〕〔Example〕

次に、図面の参照し°C本発明の実施例を詳細に説明す
る。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例のブロック図で、5CPC方
式のバイロフト信号ン送信する地球局が、自局のパイロ
ット信号を折返し受信して送信′1力制御を行う場合を
示している。第1図にどいて、パイロット発情部1で発
生されたパイロット信号は1合成器2で通信用送信信号
101と合成さnたのち、ディジタル信号入力により減
衰tv指定できるディジタル減衰器3.アップコンバー
タ4.′を力増幅器5を経てアンテナ6から送信さnる
。このパイロット信号は衛星で中継され、折返し信号は
他の通信用受信信号と共にアンテナ6゜低雑音増幅器7
.ダウンコンバータ8を経て中間周波数に変換されたの
ち、中間周波増幅器9で共通増幅されたのち分配器10
を経てパイロット受信部11に送られ、AGC及びAF
C基準信号として用いられる。パイロット受信部11の
検波出力102は制御回路12に加えられ、ここでディ
ジタル信号に変換され、あらかじめメモリに設定された
基準電圧(晴天時のパイロット受信部の検波出力)と比
較し、受信レベルのレベル低下量XdBが求められる。
FIG. 1 is a block diagram of an embodiment of the present invention, showing a case where an earth station transmitting a 5CPC viroft signal returns and receives its own pilot signal to perform transmission power control. Referring to FIG. 1, a pilot signal generated by a pilot estrus section 1 is combined with a communication transmission signal 101 in a combiner 2, and then a digital attenuator 3. Up converter 4. ' is transmitted from the antenna 6 via the force amplifier 5. This pilot signal is relayed by the satellite, and the returned signal is sent to the antenna 6° and the low noise amplifier 7 along with other communication reception signals.
.. After being converted to an intermediate frequency through a down converter 8, it is commonly amplified by an intermediate frequency amplifier 9, and then a distributor 10.
is sent to the pilot receiving section 11 via AGC and AF.
It is used as a C reference signal. The detection output 102 of the pilot receiver 11 is applied to the control circuit 12, where it is converted into a digital signal, and compared with a reference voltage (detection output of the pilot receiver on a clear day) set in memory in advance to determine the reception level. The level reduction amount XdB is determined.

次に、アップリンクとダウンリンクとの降雨減衰量の比
αをXに乗算し、ディジタル減衰器4の減衰量の基準よ
りαXdB低い値に設定するディジタル信号103が送
出され、アップリングの降雨減衰は補償され、衛星の受
信電力はほぼ晴天時と同一に保たれる。
Next, a digital signal 103 that multiplies X by the ratio α of rain attenuation between the uplink and downlink and sets the value to a value αXdB lower than the attenuation standard of the digital attenuator 4 is sent out, and the rain attenuation of the uplink is is compensated for, and the received power of the satellite is kept almost the same as on a clear day.

第2図は本発明の他の実施例のブロック図であり、第1
図との相違は送信系のレベル制御用にピンダイオード減
衰器13を用い、電力増幅器5の出力の一部を方向性結
合器14を介してレベル検出器15に分岐し、ここで検
出さnた検出電圧vDヲ制御回路16で照合電圧Vaと
比較し1両者が一致してV D=V aとなるようにビ
ンダイオード減衰器13を制御するように構成されてい
る。
FIG. 2 is a block diagram of another embodiment of the present invention.
The difference from the diagram is that a pin diode attenuator 13 is used for level control of the transmission system, and a part of the output of the power amplifier 5 is branched to a level detector 15 via a directional coupler 14, where n is detected. The detected voltage vD is compared with the reference voltage Va in a control circuit 16, and the bin diode attenuator 13 is controlled so that the two match and VD=Va.

なS、照合電圧vRは、送信電力を晴天時の基準電力に
制御するための基準電圧Voと、パイロット受信部11
0レベル低下量から求めた降雨減衰補償用の補正電圧V
cとの和で与えられ、送信電力の変動防止と降雨時のア
ップリンクの送信電力増加とを同じ制御ループで行うよ
うに構成されている。
S, reference voltage vR is the reference voltage Vo for controlling the transmission power to the reference power in clear weather, and the pilot receiving unit 11
Correction voltage V for rain attenuation compensation obtained from the amount of 0 level decrease
c, and is configured to prevent fluctuations in transmission power and increase uplink transmission power during rain in the same control loop.

上記いずれの実施例に8いても、地球局受信系の利得変
動は降雨減衰と区別できないため送信電力を変化させる
要因となるので、受信系の安定度は良好にする必要があ
る。従って、変動の大きい場合には低雑音増幅器の入力
側に利得制御用の信号を方向性結合器を介して挿入し、
その出力が一定となるような制御ループを構成するなど
の対策を行うことが望ましい。
In any of the above embodiments, gain fluctuations in the earth station receiving system cannot be distinguished from rain attenuation and become a factor that changes the transmission power, so it is necessary to maintain good stability in the receiving system. Therefore, when the fluctuation is large, a gain control signal is inserted into the input side of the low-noise amplifier via a directional coupler.
It is desirable to take measures such as configuring a control loop that keeps the output constant.

上述の実施例では5CPC方式のパイロット信号を用い
て制御を行う場合を説明したが、送信系の合成器に常時
一定レベルで入力されている信号であれば、パイロット
信号でな(通信用送信信号を用いて制御することもで@
、5cpc方式でなくFM方式の搬送波を用いて制御す
ることも可能である。
In the above embodiment, a case where control is performed using a 5CPC pilot signal has been explained, but if the signal is always input to the transmitter system combiner at a constant level, it cannot be used as a pilot signal (transmission signal for communication). It can also be controlled using @
, it is also possible to control using an FM system carrier wave instead of the 5cpc system.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の送信電力制御方式
によれば、ビーコン信号を使用せずにアップリンクの送
信電力制御を行えるため、ビーコン受信機を装備しない
簡易な構成の地球局でも送信電力制御が可能となる効果
がある。
As explained in detail above, according to the transmission power control method of the present invention, uplink transmission power can be controlled without using beacon signals, so even earth stations with a simple configuration that are not equipped with a beacon receiver can transmit data. This has the effect of enabling power control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図は本発
明の他の実施例のブロック図である。 1・・・・・・バイロフト発信部、2・・・・・・合成
器、3・・・・・・アップコンバータ、4・・・・・・
ディジタル減衰器。 5・・・・・・電力増幅器、6・・・・・・アンテナ、
7・・・・・・低雑音増幅器、8・・・・・・ダウンコ
ンバータ、9・・・・・・中間周波増幅器、10・・・
・・・分配器、11・・・・・・パイロット受信部、1
2,16・・・・・・制御回路、13・・・・・・ピン
ダイオード減衰器、14・・・・・・方向性結合器、1
5・・・・・・レベル検出器。
FIG. 1 is a block diagram of one embodiment of the invention, and FIG. 2 is a block diagram of another embodiment of the invention. 1...Biloft transmitter, 2...Synthesizer, 3...Up converter, 4...
Digital attenuator. 5...Power amplifier, 6...Antenna,
7...Low noise amplifier, 8...Down converter, 9...Intermediate frequency amplifier, 10...
...Distributor, 11...Pilot receiving section, 1
2, 16... Control circuit, 13... Pin diode attenuator, 14... Directional coupler, 1
5...Level detector.

Claims (1)

【特許請求の範囲】[Claims] 衛星通信方式の地球局でアップリンクの降雨減衰を補償
するために用いられる送信電力制御方式において、前記
地球局の送信系が制御信号で利得または減衰量が変化す
るレベル制御手段を備え、前記地球局の受信系が自局か
ら常時送出されている送信信号の一つを衛星経由で折返
し受信する折返し受信手段を備え、この折返し受信手段
の出力からあらかじめ設定された晴天時の基準受信レベ
ルからのレベル低下量XdBを求め、前記送信系の送信
電力があらかじめ定められた晴天時の基準送信電力より
もαXdB(αは定数)増加するように前記レベル制御
手段を制御することを特徴とする送信電力制御方式。
In a transmission power control method used to compensate for uplink rain attenuation in an earth station of a satellite communication system, the transmission system of the earth station is provided with a level control means for changing the gain or attenuation amount by a control signal, The receiving system of the station is equipped with a return receiving means for returning and receiving one of the transmission signals constantly sent from the own station via a satellite, and from the output of this return receiving means, it is possible to calculate the signal from the preset standard reception level in clear weather. Transmission power characterized in that the level reduction amount XdB is determined and the level control means is controlled so that the transmission power of the transmission system is increased by αXdB (α is a constant) from a predetermined reference transmission power in clear weather. control method.
JP3004386A 1986-02-13 1986-02-13 Transmission power control system Granted JPS62188438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3004386A JPS62188438A (en) 1986-02-13 1986-02-13 Transmission power control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3004386A JPS62188438A (en) 1986-02-13 1986-02-13 Transmission power control system

Publications (2)

Publication Number Publication Date
JPS62188438A true JPS62188438A (en) 1987-08-18
JPH0511688B2 JPH0511688B2 (en) 1993-02-16

Family

ID=12292794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3004386A Granted JPS62188438A (en) 1986-02-13 1986-02-13 Transmission power control system

Country Status (1)

Country Link
JP (1) JPS62188438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005323342A (en) * 2004-04-05 2005-11-17 Nippon Hoso Kyokai <Nhk> Transmitting system and receiving apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005323342A (en) * 2004-04-05 2005-11-17 Nippon Hoso Kyokai <Nhk> Transmitting system and receiving apparatus

Also Published As

Publication number Publication date
JPH0511688B2 (en) 1993-02-16

Similar Documents

Publication Publication Date Title
EP0079612B1 (en) Earth station transmission power control system
JPH04267612A (en) Parallel amplifier and signal amplification method
US5257029A (en) Transmission power control method and apparatus in satellite communication
US7171159B2 (en) Transmission power control in a satellite communication system
US5828335A (en) Spacecraft communication channel power control system
JPS6377226A (en) Communication system
JPS62188438A (en) Transmission power control system
JPH0356021B2 (en)
JPH02280424A (en) Transmission power control system
JP2842596B2 (en) Earth station transmission power control method
JPS61195028A (en) Repeater for communication satellite
JPS5992635A (en) Transmit electric power controller of satellite communication earth station
JP3038899B2 (en) Automatic frequency / gain control circuit
JPS63132536A (en) Satellite communication earth station device
JPS58200640A (en) Controlling system of electric power for transmitting satellite communication
JPS6342451B2 (en)
JPS5810937A (en) Transmission power controlling system for earth station of satellite communication
JPH01168128A (en) Transmission power control system
JPH0666719B2 (en) Transmission power control device for satellite communication earth station
JPS62261231A (en) Transmission power controller
JPS609231A (en) Correcting system for gain variance of satellite repeater
JPS6341250B2 (en)
JPS627223A (en) Transmission power compensating device
JPH0356020B2 (en)
JPH05344021A (en) Radio equipment