JPH0348448B2 - - Google Patents

Info

Publication number
JPH0348448B2
JPH0348448B2 JP57154960A JP15496082A JPH0348448B2 JP H0348448 B2 JPH0348448 B2 JP H0348448B2 JP 57154960 A JP57154960 A JP 57154960A JP 15496082 A JP15496082 A JP 15496082A JP H0348448 B2 JPH0348448 B2 JP H0348448B2
Authority
JP
Japan
Prior art keywords
voltage
coil
detection
output
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57154960A
Other languages
Japanese (ja)
Other versions
JPS5943316A (en
Inventor
Hajime Suzuki
Yoichi Naganuma
Itsuo Ikuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15496082A priority Critical patent/JPS5943316A/en
Publication of JPS5943316A publication Critical patent/JPS5943316A/en
Publication of JPH0348448B2 publication Critical patent/JPH0348448B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は電磁結合効果を利用した溶融金属湯面
の位置を検出する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting the position of a molten metal surface using an electromagnetic coupling effect.

従来溶融金属の湯面検出方法として、第1図に
1例を示すような電磁誘導を利用した方法が公知
である。すなわち第1図においてMは被検出物
(溶融金属)、Sはパウダあるいはスラグ、Bは金
属容器(たとえば鋳型)、31はあらかじめ定め
られた周波数の交流信号を発振する基準信号発振
器、41は既知の値を有するZ1,Z2,Z3および変
数Z4の各インピーダンスで構成される交流ブリツ
ヂで、Z4はこの場合ここで示される検出コイル2
1のインピーダンス、51は差動増幅器である。
As a conventional method for detecting the level of molten metal, a method using electromagnetic induction, an example of which is shown in FIG. 1, is well known. That is, in FIG. 1, M is an object to be detected (molten metal), S is powder or slag, B is a metal container (for example, a mold), 31 is a reference signal oscillator that oscillates an alternating current signal of a predetermined frequency, and 41 is a known signal. an AC bridge consisting of impedances Z 1 , Z 2 , Z 3 and a variable Z 4 with values of , where Z 4 is in this case the detection coil 2 shown here.
1 is an impedance, and 51 is a differential amplifier.

この構成において、検出コイル21と被検出物
Mとの距離Dを実質的に無現遠に設定したのち、
基準信号発振器31から検出コイル21を含む交
流ブリツヂ41に交流信号を印加すると、交流ブ
リツジ41は公知のようにZ1・Z3=Z2・Z4の条件
が満足されたときに平衡する。従つてこの平衡状
態下では交流ブリツヂ41の出力は零であり、差
動増幅器51には出力が現われない。
In this configuration, after setting the distance D between the detection coil 21 and the object M to be detected to be substantially zero distance,
When an AC signal is applied from the reference signal oscillator 31 to the AC bridge 41 including the detection coil 21, the AC bridge 41 becomes balanced when the condition of Z 1 ·Z 3 =Z 2 ·Z 4 is satisfied, as is well known. Therefore, under this balanced state, the output of the AC bridge 41 is zero, and no output appears in the differential amplifier 51.

この初期設定状態から検出コイル21と被検出
物Mとの距離Dを近づけると、検出コイル21の
インピーダンスZ4は被検出物Mとの電磁誘導によ
るインピーダンスの変化によつて、距離Dに相当
する交流ブリツヂ41の出力変化を得る。而して
検出コイル21から被検出物Mの位置を連続的に
計測することが可能となる。
When the distance D between the detection coil 21 and the detected object M is reduced from this initial setting state, the impedance Z 4 of the detection coil 21 corresponds to the distance D due to the change in impedance due to electromagnetic induction between the detection coil 21 and the detected object M. Obtain the output change of the AC bridge 41. Thus, it becomes possible to continuously measure the position of the detected object M from the detection coil 21.

しかしながら上記従来の検出方式では、 コイル直径寸法からほぼ1義的に計測スパン
の制限を受け、位置変動の大きい被検出物に対
しては必然的に検出コイルの大形化を要し、実
際上適用が困難な場合が多い、 出力変化量あるいは計測スパンの改善のため
に検出コイル21の巻数を多くし、さらに強磁
性体材料のたとえばフエライトコア等に巻設し
ているが、かかる構成では周知のように、外界
の温度変化による検出コイルのインピーダンス
変化を生じ良好な精度が得られないのみでな
く、高温雰囲気中ではそれ自体での耐熱構造が
とり難く、なんらかの冷却装置を必要とし、こ
のことはコスト的に不利であるとともに、特に
冷却水漏洩等の事故を嫌うラインでは使用でき
ない、 取鍋、鋳型等の容器内の溶融金属のレベルあ
るいは位置を検出するとき、前記金属容器の作
用で検出コイルのインピーダンス変化を生じ、
さらに、容器の金属の種類とその経時変化によ
つても出力変化を生じるので、良好な精度を得
ることが困難である、 などの問題があつた。
However, in the conventional detection method described above, the measurement span is almost exclusively limited by the coil diameter, and the detection coil inevitably needs to be enlarged for objects with large positional fluctuations. In order to improve the output variation or measurement span, which is often difficult to apply, the number of turns of the detection coil 21 is increased, and the detection coil 21 is further wound around a ferromagnetic material such as a ferrite core, but such a configuration is not well known. As shown in the figure above, not only does the impedance of the detection coil change due to external temperature changes, making it impossible to obtain good accuracy, but it is also difficult to provide a heat-resistant structure on its own in a high-temperature atmosphere, and some type of cooling device is required. In addition to being disadvantageous in terms of cost, it cannot be used in lines where accidents such as cooling water leakage are particularly averse.When detecting the level or position of molten metal in a container such as a ladle or mold, detection is performed by the action of the metal container. This causes a change in the impedance of the coil,
Furthermore, the output changes depending on the type of metal in the container and its change over time, making it difficult to obtain good accuracy.

本発明は前記従来法の問題点を解消し、高温雰
囲気において特に冷却装置を用いることなく容器
内の湯面レベルを非接触にて連続的に検出可能な
装置を提供するものであり、その要旨は、溶融金
属面上に近接して、非磁性質でかつ耐熱性を有す
る1対のコイルを1定の間隔をあけて溶融金属面
の垂線を軸とする対称な位置に並設した検出部
と、前記1対のコイルの一方のコイルに交流電圧
を印加し、これにより生成される電磁界内に設け
た他方のコイルの誘起電圧を直流電圧信号とする
検波平滑部と、前記溶融金属の容器の作用により
定まり前記検出部と溶融金属面間の距離に対応し
ない電圧値をあらかじめ記憶させておき、該記憶
させた電圧により前記検波平滑部出力電圧の補正
をおこなう補正機能部を備えたことを特徴とする
溶融金属湯面検出装置である。
The present invention solves the problems of the conventional method and provides a device that can continuously detect the level of hot water in a container without contact in a high-temperature atmosphere without using a cooling device. is a detection unit in which a pair of non-magnetic and heat-resistant coils are arranged close to the molten metal surface at symmetrical positions with a constant interval as the axis. a detection smoothing section that applies an AC voltage to one of the pair of coils and uses the induced voltage of the other coil in the electromagnetic field generated thereby as a DC voltage signal; A correction function section is provided which stores in advance a voltage value that is determined by the action of the container and does not correspond to the distance between the detection section and the molten metal surface, and corrects the output voltage of the detection smoothing section using the stored voltage. This is a molten metal level detection device characterized by:

本発明装置は、耐熱,高絶縁特性を有するボビ
ンに耐熱素線を巻設した検出コイルを1対とし、
一方は送波コイル、他方は受波コイルとし、1定
の間隔と傾きをつけて並設し、溶融金属面に対峙
固定する。
The device of the present invention includes a pair of detection coils each having a heat-resistant strand wound around a bobbin having heat-resistant and high insulation properties.
One is a transmitting coil and the other is a receiving coil, which are arranged side by side with a certain interval and inclination, and are fixed facing each other on the molten metal surface.

この構成で、前記送波コイルに高周波定電流を
通電し、これにより電磁界を生成する。この電磁
界内に並設した受波コイルには、公知のように電
磁誘導による誘起電圧が発生する。この誘起電圧
は送・受波コイルと被検出物との距離を実質的に
無限遠に設定したとき、主として送波コイルの励
振電流と送・受波コイルの配置構成で決まる一定
電圧となる。
With this configuration, a high frequency constant current is passed through the transmitting coil, thereby generating an electromagnetic field. As is well known, an induced voltage due to electromagnetic induction is generated in the receiving coils arranged in parallel within this electromagnetic field. When the distance between the transmitting/receiving coil and the object to be detected is set to substantially infinity, this induced voltage becomes a constant voltage mainly determined by the excitation current of the transmitting coil and the arrangement of the transmitting/receiving coil.

この状態から被検出物が検出コイルに接近して
くると、電磁界は被検出物の作用でその分布状態
が変り、受波コイルの誘起電圧は検出コイルと被
検出物間の距離に対応した電圧変化が得られ、こ
の電圧変化から距離を測定することができる。さ
らに取鍋,鋳型等の容器の影響度をあらかじめ自
己学習する機能により外界の影響を補正し、常に
距離に対する出力特性を一定とするようにしてい
るので、信頼性の高い検出が可能である。
When the detected object approaches the detection coil from this state, the distribution of the electromagnetic field changes due to the effect of the detected object, and the induced voltage in the receiving coil corresponds to the distance between the detection coil and the detected object. A voltage change is obtained from which distance can be measured. Furthermore, a function that self-learns the degree of influence of containers such as ladles and molds in advance compensates for the influence of the outside world and always maintains constant output characteristics with respect to distance, making highly reliable detection possible.

またこの構成によると、 被検出物の物性変化による影響はきわめて小
さくすることができる、 高絶縁特性を有する耐熱形検出コイルのため
高温雰囲気中に設置することができる、 励振電流の定電流化と、温度によるインピー
ダンス変動を受けにくい検出コイルと、該検出
コイルや増幅器を含む回路定数を適正化するこ
とにより温度補償のための補正情報とその回路
を要しない、 などの特徴を有し、かつ外界の影響を補正する自
己補正機能を付加することで信頼性の高い溶融金
属湯面検出を行うことができる。
Additionally, with this configuration, the effects of changes in the physical properties of the object to be detected can be minimized, the heat-resistant detection coil has high insulation characteristics, and can be installed in high-temperature atmospheres, and the excitation current can be made constant. , by optimizing the detection coil that is less susceptible to impedance fluctuations due to temperature and the circuit constants including the detection coil and amplifier, it eliminates the need for correction information and circuitry for temperature compensation. By adding a self-correction function that corrects the influence of molten metal, highly reliable molten metal level detection can be performed.

本発明を図示の実施例にもとづきさらに詳しく
説明する。
The present invention will be explained in more detail based on illustrated embodiments.

第2図は本発明の実施例装置の全体構成を示す
ブロツク図である。図においてBは鋳型、Mは溶
融金属、Sは溶融浮遊物(スラグあるいはパウダ
ー)でこの場合非検出物である。
FIG. 2 is a block diagram showing the overall configuration of an apparatus according to an embodiment of the present invention. In the figure, B is a mold, M is a molten metal, and S is a molten suspended substance (slag or powder), which in this case is a non-detectable substance.

2は1対の検出コイルで、2Tは送波コイル、
2Rは受波コイルである。この場合、送,受波コ
イル2T,2Rは同一構造のもので1対を検出コ
イル2として構成する。
2 is a pair of detection coils, 2T is a transmitter coil,
2R is a receiving coil. In this case, the transmitting and receiving coils 2T and 2R have the same structure, and a pair constitutes the detection coil 2.

1はあらかじめ定められた高周波信号を発振す
る高周波電源で送波コイル2Tに定電流を通電す
るためのものである。
Reference numeral 1 denotes a high-frequency power source that oscillates a predetermined high-frequency signal and supplies a constant current to the transmitting coil 2T.

3は受波コイル2Rからの誘起電圧を増幅する
ための増幅器、4は増幅器3からの高周波信号を
直流信号に変換するための検波平滑器、5−1は
直流バイヤス電圧設定器、5は加算増幅器で前記
検波平滑器4からの信号と電圧設定器5−1の電
圧を加算増幅する。6は演算処理器で、その作用
については後述する。PBはプツシユボタンスイ
ツチ、7は演算処理器6からの直流信号の線形化
処理をおこなうためのリニヤライザである。
3 is an amplifier for amplifying the induced voltage from the receiving coil 2R, 4 is a detection smoother for converting the high frequency signal from the amplifier 3 into a DC signal, 5-1 is a DC bias voltage setting device, and 5 is an adder. An amplifier adds and amplifies the signal from the detection smoother 4 and the voltage from the voltage setting device 5-1. 6 is an arithmetic processor, the operation of which will be described later. PB is a push button switch, and 7 is a linearizer for linearizing the DC signal from the arithmetic processor 6.

第3図は第2図の演算処理器6の回路詳細を示
す図である。この回路は前述した自己補正機能に
関する回路である。第3図において6−1は差動
増幅器である。6−2はデジタルサーボモジユー
ル(以下DISMOという)であり、内部には比較
回路,可逆カウンタおよびD/A・A/D変換回
路等を含む複合回路で構成され、前記差動増幅器
6−1と閉ループを形成することにより、例え
ば、プツシユボタンPBが押されるとDISMO6−
2はトラツキング状態となり、a1点の入力電圧と
逆位相の同電圧を出力し、次にプツシユボタン
PBを開にするとホールド状態となり、前記の電
圧を記憶する。これにより、差動増幅器6−1の
出力はプツシユボタンPBを開閉することにより
自動零調整される。6−3は前記DISMO6−2
で記憶された電圧を非線形変換するための対数増
幅器で該対数増幅器6−3の出力は補正のための
基準電圧として流用する。VRは可変抵抗器、6
−4は乗算器、6−5は線形増幅器で前記乗算器
6−4の出力を所要の電圧レベルまで増幅するた
めのものである。この第3図の回路構成により、
前述した容器Bの影響度を自から検出し、その量
をもとにリアルタイム演算処理によつて容器Bの
影響を自己補正(補償)する。
FIG. 3 is a diagram showing circuit details of the arithmetic processor 6 of FIG. 2. This circuit is related to the self-correction function described above. In FIG. 3, 6-1 is a differential amplifier. 6-2 is a digital servo module (hereinafter referred to as DISMO), which is internally composed of a composite circuit including a comparator circuit, a reversible counter, a D/A/A/D conversion circuit, etc., and is connected to the differential amplifier 6-1. By forming a closed loop with, for example, when pushbutton PB is pressed, DISMO6-
2 enters the tracking state, outputs the same voltage with the opposite phase to the input voltage at point a , and then presses the push button.
When PB is opened, it becomes a hold state and the voltage mentioned above is memorized. Thereby, the output of the differential amplifier 6-1 is automatically adjusted to zero by opening and closing the push button PB. 6-3 is the above DISMO6-2
The output of the logarithmic amplifier 6-3 is used as a reference voltage for correction. VR is a variable resistor, 6
-4 is a multiplier, and 6-5 is a linear amplifier for amplifying the output of the multiplier 6-4 to a required voltage level. With the circuit configuration shown in Figure 3,
The degree of influence of the container B mentioned above is detected by itself, and based on the detected amount, the influence of the container B is self-corrected (compensated) through real-time calculation processing.

第4図は、外界の影響すなわち金属容器Bによ
る影響の1例を示す特性図である。ここではスラ
ブ用連続鋳造の鋳型の短辺の寸法(図中MSで表
示)パラメータとする出力特性の例を示す。鋳型
短辺の寸法が大きくなるに従つて、曲線a,bお
よびcで示すように出力特性が変化する。曲線d
は鋳型寸法を実質的に無限遠に設定したとき、つ
まり鋳型による影響のないときの出力特性であ
る。曲線bの尾端部にVMSOと記しているが、こ
れはMS=140mmにおいて被検出物を実質的に無
限遠に設定したときの出力電圧である。同様に各
MSに対して異なる出力電圧が得られる。
FIG. 4 is a characteristic diagram showing an example of the influence of the outside world, that is, the influence of the metal container B. Here we show an example of the output characteristics used as parameters for the short side dimension (indicated by MS in the figure) of the mold for continuous slab casting. As the dimension of the short side of the mold increases, the output characteristics change as shown by curves a, b, and c. curve d
is the output characteristic when the mold dimensions are set to substantially infinity, that is, when there is no influence from the mold. V MSO is written at the tail end of curve b, and this is the output voltage when MS = 140 mm and the object to be detected is set at substantially infinity. Similarly each
Different output voltages are obtained for the MS.

第5図は前記の演算処理器6による鋳型の影響
に対する補正効果の1例を示す図である。ここで
は鋳型短辺寸法MS=140mmの場合の例を示し、
横軸は第4図の曲線d(MS=∞)に対応する電
圧を示し、縦軸は第4図の曲線b(MS=140mm)
に対応する電圧を示す。図中の直線eは演算処理
器6の入力電圧すなわち補正前の電圧を示し、直
線fは演算処理器6の出力電圧すなわち補正後の
電圧を示す。図からわかるように、補正前の電圧
はバイアス分を含みかつ傾角が小さいが、補正後
の電圧は鋳型の影響が除かれたものとなつてい
る。
FIG. 5 is a diagram showing an example of the correction effect of the arithmetic processing unit 6 on the influence of the mold. Here, we show an example where the short side dimension of the mold is MS = 140 mm.
The horizontal axis shows the voltage corresponding to curve d (MS=∞) in Fig. 4, and the vertical axis shows the voltage corresponding to curve b (MS=140 mm) in Fig. 4.
Indicates the corresponding voltage. The straight line e in the figure shows the input voltage of the arithmetic processor 6, that is, the voltage before correction, and the straight line f shows the output voltage of the arithmetic processor 6, that is, the voltage after correction. As can be seen from the figure, the voltage before correction includes a bias component and has a small tilt angle, but the voltage after correction has the effect of the mold removed.

第6a図および第6b図は、この発明で用いる
検出コイルおよび保持具の構造例を示す正面図
(一部断面図)および平面図である。図において
2−1は耐熱、高絶縁性のセラミツク製のコイル
ボビンでその外周面には溝がついている。これは
高純度のアルミナなどの絶縁特性のよい材料を用
い、焼成形したものである。2−2はコイルボビ
ン2−1の外周面に例えば白金、あるいはクロメ
ル線等の非磁性耐熱素線を20〜30回巻設したコイ
ルで、コイルボビン2−1の外周面の溝内に素線
が納められ容易に相間短絡を生じないようになつ
ている。さらにボビン2−1はコイル収納容器本
体2−4の台座2−3に耐熱セメント等で接着固
定されている。
FIGS. 6a and 6b are a front view (partially sectional view) and a plan view showing a structural example of a detection coil and a holder used in the present invention. In the figure, 2-1 is a coil bobbin made of heat-resistant and highly insulating ceramic and has grooves on its outer circumferential surface. This is made of a material with good insulation properties, such as high-purity alumina, and is baked and molded. 2-2 is a coil in which a non-magnetic heat-resistant wire such as platinum or chromel wire is wound 20 to 30 times around the outer circumferential surface of the coil bobbin 2-1. It is designed to prevent short circuits between phases. Furthermore, the bobbin 2-1 is adhesively fixed to the pedestal 2-3 of the coil storage container main body 2-4 with heat-resistant cement or the like.

コイル収納容器本体2−4の材質はコイルボビ
ンと同等のものを用いるが、特に台座2−3のみ
は非磁性金属のたとえば、ステンレス、銅等を適
用してもよい。台座2−3の容器本体との嵌合部
にはネジを切つてあり、互いに着脱可能な構造と
なつている。2−3a,2−3bは、コイル両端
のリード線を通すための穴、2−5a,2−5b
はセラミツクチユーブで被覆したリード線でコイ
ル素線と同質のものである。2−6は耐熱セラミ
ツクあるいはステンレス製の支持棒である。
The coil storage container body 2-4 is made of the same material as the coil bobbin, but the base 2-3 may be made of non-magnetic metal such as stainless steel or copper. The fitting portion of the pedestal 2-3 with the container body is threaded so that they can be attached to and detached from each other. 2-3a, 2-3b are holes for passing the lead wires at both ends of the coil, 2-5a, 2-5b
The lead wire is covered with a ceramic tube and is of the same quality as the coil wire. 2-6 is a support rod made of heat-resistant ceramic or stainless steel.

本発明装置の機能を実施例図面と共に詳述すれ
ば以下の通りである。
The functions of the device of the present invention will be explained in detail below with reference to the drawings of the embodiments.

検出コイルは第2図に示すように、送波コイル
2Tと受波コイル2Rを一定間隔Laと傾きθを
もたせて構成される。
As shown in FIG. 2, the detection coil is composed of a transmitting coil 2T and a receiving coil 2R with a constant interval La and an inclination θ.

送波コイル2Tには高周波電源1から定電流化
した高周波信号を通電する。これにより送波コイ
ル2T周辺に高周波磁界が生成される。一方、受
波コイル2Rは前記送波コイル2Tに近接しかつ
湯面の垂線に対して対称に設けられているので、
受波コイル2Rには、電磁誘導作用により誘起電
圧が発生する。この誘起電圧を増幅器3で増幅し
次段の検波平滑器4で直流信号に変換する。
A constant current high frequency signal is supplied from the high frequency power source 1 to the transmitting coil 2T. As a result, a high frequency magnetic field is generated around the transmitting coil 2T. On the other hand, since the receiving coil 2R is provided close to the transmitting coil 2T and symmetrically with respect to the perpendicular to the hot water surface,
An induced voltage is generated in the receiving coil 2R due to electromagnetic induction. This induced voltage is amplified by an amplifier 3 and converted into a DC signal by a detection smoother 4 at the next stage.

該直流信号は、検出コイル2から溶融金属Mと
鋳型Bとの距離が実質的に無限遠に位置すると
き、主として送波コイル2Tの通電々流と送・受
波コイル間隔Laと傾角度θとによつて定まる最
小の直流信号が出力される。
When the distance between the detection coil 2, the molten metal M, and the mold B is substantially infinite, the DC signal is mainly generated by the energizing current of the transmitting coil 2T, the distance between the transmitting and receiving coils La, and the inclination angle θ. The minimum DC signal determined by is output.

この直流信号は所定の増幅度を有する加算増幅
器5に入力されるが、このとき、次段演算処理器
6の初期設定条件を満すために、直流バイアス電
圧設定器5−1を操作して加算増幅器5の出力が
零となるように調整する。
This DC signal is input to the summing amplifier 5 having a predetermined amplification degree, but at this time, in order to satisfy the initial setting conditions of the next stage arithmetic processor 6, the DC bias voltage setting device 5-1 is operated. Adjustment is made so that the output of the summing amplifier 5 becomes zero.

次に検出コイル2を鋳型Bの上方の所定の位置
に設置固定する。鋳型B内に溶融金属が存在しな
いときの加算増幅器5の出力を演算処理器6に入
力する。この加算増幅器5の出力は、例えば第4
図の曲線bの尾端部に記したVMSO相当の電圧、
すなわち鋳型の影響に相当する電圧である。プツ
シユボタンPBを閉にすると、DISMO6−2はト
ラツキング状態となり、その結果DISMO6−2
からVMSO相当の電圧が出力され同時に差動増幅
器6−1の一方の入力端に入力される。次にプツ
シユボタンPBを開にするとDISMO6−2はホー
ルド状態に移り、VMSO相当の電圧が記憶される
とともに、差動AMP6−1の出力は零となる。
またDISMO6−2に記憶された電圧は対数増幅
器6−3に入力され非線形変換され、その出力は
可変抵抗VRで分圧され乗算器6−4に入力され
る。すなわちこれが鋳型の影響を補正する電圧に
相当するものである。乗算器6−4の他の一方の
入力電圧は、差動増幅器6−1の出力、つまり零
電圧であるので乗算器6−4の出力は零である。
すなわち鋳型B内に溶融金属が存在しないときの
演算処理器6の出力は零である。以上で初期操作
を完了する。
Next, the detection coil 2 is installed and fixed at a predetermined position above the mold B. The output of the summing amplifier 5 when there is no molten metal in the mold B is input to the arithmetic processor 6. The output of this summing amplifier 5 is, for example, the fourth
The voltage corresponding to V MSO is shown at the tail end of curve b in the figure.
That is, the voltage corresponds to the influence of the mold. When pushbutton PB is closed, DISMO6-2 enters the tracking state, and as a result, DISMO6-2
A voltage equivalent to V MSO is outputted from the output terminal and simultaneously inputted to one input terminal of the differential amplifier 6-1. Next, when the push button PB is opened, the DISMO 6-2 goes into a hold state, the voltage corresponding to V MSO is stored, and the output of the differential AMP 6-1 becomes zero.
Further, the voltage stored in the DISMO 6-2 is input to a logarithmic amplifier 6-3 and subjected to nonlinear conversion, and its output is divided by a variable resistor VR and input to a multiplier 6-4. That is, this corresponds to the voltage that corrects the influence of the mold. The other input voltage of the multiplier 6-4 is the output of the differential amplifier 6-1, that is, zero voltage, so the output of the multiplier 6-4 is zero.
That is, when there is no molten metal in the mold B, the output of the processor 6 is zero. This completes the initial operation.

つぎに実際の計測において、鋳型B内の溶融金
属Mの湯面の上昇に従つて例えば第4図の曲線b
の特性が得られるが、前述の初期操作により曲線
bからバイアス成分つまりVMSOを差分した電圧
が乗算器6−4に入力され、該乗算器6−4の他
の一方の入力である鋳型影響補正用の電圧との積
が出力され、線形増幅器6−5で増幅され出力さ
れる。すなわち、可変抵抗VRの分圧比つまり補
正係数を適正に設定することで、第4図の曲線d
と同等な出力が得られる。また本発明者等は曲線
a,cについても曲線dと同等な出力曲線が得ら
れることを確認している。上述の補正法を演算式
で示すと下式となる。
Next, in actual measurement, as the level of the molten metal M in the mold B rises, for example, curve b in FIG.
However, by the initial operation described above, the voltage obtained by subtracting the bias component, that is, V MSO , from curve b is input to the multiplier 6-4, and the mold influence, which is the other input of the multiplier 6-4, is input to the multiplier 6-4. The product with the correction voltage is output, amplified by a linear amplifier 6-5, and output. In other words, by appropriately setting the voltage division ratio of the variable resistor VR, that is, the correction coefficient, the curve d in Fig. 4 can be adjusted.
You can get output equivalent to . The present inventors have also confirmed that output curves equivalent to curve d can be obtained for curves a and c. The above-mentioned correction method can be expressed as the following formula.

Vc=(Vi−VMSO)・K(log k VMSO) …(1) 但し Vc :補正後の検出出力 Vi :湯面位置から得られる補正前の検出出
力 VMSO:湯面位置が実質的に無限遠にあるとき
の検出出力 K,k:補正定数 なお上述の演算手段としてマイクロコンピユー
ターを用いることもできる。
Vc=(Vi-V MSO )・K(log k V MSO )...(1) However, Vc: Detection output after correction Vi: Detection output before correction obtained from the hot water level position V MSO : The actual hot water level position Detection output K when the distance is at infinity, k: correction constant Note that a microcomputer can also be used as the above-mentioned calculation means.

演算処理器6で処理された出力は、次段のリニ
ヤライザ7に入り、線形化出力とし湯面モニター
用あるいは湯面レベル制御用信号として用いられ
る。
The output processed by the arithmetic processor 6 is input to the next stage linearizer 7, and is used as a linearized output for monitoring the hot water level or as a signal for controlling the hot water level.

従来の電磁的方法による湯面検出の場合は、外
界の影響の補償手段として、 夫々の容器に対する補正テープをあらかじめ
用意する、 温度ノイズに対しては検出コイルを強制冷却
する、 等がおこなわれていた。
In the case of conventional electromagnetic method of hot water level detection, measures such as preparing compensation tape for each container in advance and forcibly cooling the detection coil to prevent temperature noise are used to compensate for the influence of the outside world. Ta.

しかし、外界の影響因子、例えば容器の経時変
化、検出コイルの設置再現精度の問題あるいは周
辺温度の変化などに対する速応性がなく、従つて
信頼性を高くするためには、頻繁にキヤリブレー
シヨンあるいは補正テーブルの改修をしなければ
ならないなどの欠点があつた。これに対し本発明
によれば、外界の状況変化に対し、その都度しか
も短時間でその影響度を検出器自身で検出して自
己補正を行うことによつて、信頼性の高い装置を
実現することができた。
However, it does not respond quickly to external factors, such as changes in the container over time, problems with the installation repeatability of the detection coil, or changes in ambient temperature. Therefore, in order to increase reliability, frequent calibration or There were drawbacks such as the need to modify the correction table. On the other hand, according to the present invention, a highly reliable device is realized by detecting the degree of influence of changes in the outside world each time and in a short time on the detector itself and performing self-correction. I was able to do that.

さらに本発明の他の特徴として次の点を挙げる
ことができる。
Furthermore, the following points can be mentioned as other features of the present invention.

(1) 検出コイルの巻数を数十ターンとし、かつ非
磁性材で構成しているので温度変動による検出
コイルのインピーダンス変化は極めて少なく、
検出信号の温度補償を必要としない。
(1) Since the number of turns of the detection coil is several tens of turns and it is made of non-magnetic material, the impedance change of the detection coil due to temperature fluctuation is extremely small.
Does not require temperature compensation of the detection signal.

(2) 小型、軽量かつ耐熱・高絶縁特性を有する検
出コイルを実現した。
(2) We have created a detection coil that is small, lightweight, and has heat resistance and high insulation properties.

上記(1)については、送波コイルの励振電源は定
電流源を用いて送波コイルにより生成される周辺
の磁界強度を一定とし、さらに電源側からみたケ
ーブルを含む負荷回路の共振周波数に対して大巾
に異なる励振周波数を使用、あるいはその周調指
数Q(=ωL/R)を極力小さくする回路構成とする。
Regarding (1) above, the excitation power source for the transmitter coil uses a constant current source to keep the strength of the surrounding magnetic field generated by the transmitter coil constant, and furthermore, A circuit configuration is used in which widely different excitation frequencies are used, or the harmonic index Q (=ωL/R) is made as small as possible.

また、受波コイルもその同調指数Qを小さくする
など送波コイル側と同様の考慮をし、さらに、低
入力インピーダンス特性を有する高周波増幅器3
を用いることにより実現している。
In addition, the receiving coil also takes the same considerations as the transmitting coil, such as reducing its tuning index Q, and furthermore, a high-frequency amplifier 3 with low input impedance characteristics is used.
This is achieved by using .

上記(2)については、耐熱、高絶縁特性を有する
検出コイルにより1000℃程度の高温雰囲気におい
ても強制冷却不要で、かつ電気的、機械的に安定
した構造であるので、溶融金属湯面に近接して設
置可能である。また検出部が小型,軽量であるの
で小断面の鋳型内の湯面検出にも容易に適用でき
る。
Regarding (2) above, the detection coil has heat resistance and high insulation characteristics, so there is no need for forced cooling even in high temperature atmospheres of around 1000℃, and the structure is electrically and mechanically stable, so it is close to the molten metal surface. It can be installed by Furthermore, since the detection part is small and lightweight, it can be easily applied to detecting the level of molten metal in molds with small cross-sections.

また本発明装置は可動部分がないので調整・保
守が容易である。本発明装置は取鍋や鋳型内の湯
面検出のほかに前述したように、高温雰囲気の悪
環境下に適用できるので、トピードカー・タンデ
シユなどの容器に対しても、適用できまた溶融金
属としては鉄のほか亜鉛・錫など非鉄金属類に対
しても広く適用できる有効な装置である。
Furthermore, since the device of the present invention has no moving parts, it is easy to adjust and maintain. In addition to detecting the level of molten metal in ladles and molds, the device of the present invention can also be applied to containers such as torpedo cars and tundishes, since it can be applied in adverse environments with high temperature atmospheres as described above. It is an effective device that can be widely applied to non-ferrous metals such as zinc and tin in addition to iron.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の湯面検出装置の一例を示すブロ
ツク図である。第2図は本発明の実施例装置の構
成を示すブロツク図、第3図は第2図の演算処理
器の詳細を示すブロツク図、第4図は容器の影響
の一例を示す出力特性図、第5図は本発明の実施
例における検出出力の補正効果の一例を示す図、
第6a図および第6b図は本発明の実施例におけ
る検出コイルの構成を示す正面図および平面図で
ある。 M…溶融金属、B…容器(鋳型)、1…高周波
定電流電源、2…検出コイル、2T…送波コイ
ル、2R…受波コイル、3…高周波増幅器、4…
検波平滑器、5…加算増幅器、6…演算処理器、
7…リニヤライザ。
FIG. 1 is a block diagram showing an example of a conventional hot water level detection device. FIG. 2 is a block diagram showing the configuration of an embodiment of the device of the present invention, FIG. 3 is a block diagram showing details of the arithmetic processor in FIG. 2, and FIG. 4 is an output characteristic diagram showing an example of the influence of the container. FIG. 5 is a diagram showing an example of the correction effect of the detection output in the embodiment of the present invention,
Figures 6a and 6b are a front view and a plan view showing the configuration of a detection coil in an embodiment of the present invention. M... Molten metal, B... Container (mold), 1... High frequency constant current power supply, 2... Detection coil, 2T... Transmitting coil, 2R... Receiving coil, 3... High frequency amplifier, 4...
Detection smoother, 5... Addition amplifier, 6... Arithmetic processor,
7...Linearizer.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融金属面上に近接して、非磁性質でかつ耐
熱性を有する1対のコイルを1定の間隔をあけて
溶融金属面の垂線を軸とする対称な位置に並設し
た検出部と、前記1対のコイルの一方のコイルに
交流電圧を印加し、これにより生成される電磁界
内に設けた他方のコイルの誘起電圧を直流電圧信
号とする検波平滑部と、前記溶融金属の容器の作
用により定まり前記検出部と溶融金属間の距離に
対応しない電圧値をあらかじめ記憶する記憶手段
と、記憶電圧により前記検波平滑部出力電圧の補
正をおこなう補正機能部とを備えたことを特徴と
する溶融金属湯面検出装置。
1. A detection unit in which a pair of non-magnetic and heat-resistant coils are arranged in parallel on the molten metal surface at symmetrical positions with a constant interval as the axis. , a detection smoothing section that applies an AC voltage to one of the pair of coils and uses the induced voltage of the other coil in the electromagnetic field generated thereby as a DC voltage signal; and a container for the molten metal. and a correction function section that corrects the output voltage of the detection smoothing section using the stored voltage. Molten metal level detection device.
JP15496082A 1982-09-06 1982-09-06 Apparatus for detecting level of molten metal bath Granted JPS5943316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15496082A JPS5943316A (en) 1982-09-06 1982-09-06 Apparatus for detecting level of molten metal bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15496082A JPS5943316A (en) 1982-09-06 1982-09-06 Apparatus for detecting level of molten metal bath

Publications (2)

Publication Number Publication Date
JPS5943316A JPS5943316A (en) 1984-03-10
JPH0348448B2 true JPH0348448B2 (en) 1991-07-24

Family

ID=15595662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15496082A Granted JPS5943316A (en) 1982-09-06 1982-09-06 Apparatus for detecting level of molten metal bath

Country Status (1)

Country Link
JP (1) JPS5943316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585709B2 (en) * 2001-05-02 2010-11-24 株式会社日鉄エレックス Simple calibration method for electromagnetic molten steel level detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021737A (en) * 1989-03-02 1991-06-04 Bently Nevada Corporation Proximity sensor resistant to axial and torsional forces

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142519A (en) * 1981-02-28 1982-09-03 Sumitomo Heavy Ind Ltd Calibrating method for electromagnetic level gauge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142519A (en) * 1981-02-28 1982-09-03 Sumitomo Heavy Ind Ltd Calibrating method for electromagnetic level gauge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585709B2 (en) * 2001-05-02 2010-11-24 株式会社日鉄エレックス Simple calibration method for electromagnetic molten steel level detector

Also Published As

Publication number Publication date
JPS5943316A (en) 1984-03-10

Similar Documents

Publication Publication Date Title
US3997835A (en) Method and apparatus for measuring distance
US3936734A (en) Method for contactless measurement of conductivity and/or temperature on metals by means of eddy currents
US4475083A (en) Method and apparatus for electromagnetically measuring parameters of electrically conductive high temperature materials
CA1120235A (en) Method and apparatus for regulating the bath level in a continuous casting mould by means of alternating electro-magnetic fields
US4647854A (en) Apparatus for measuring the level of the molten metal in the mold of a continuous casting machine
JPH0345325B2 (en)
GB1585211A (en) Electromagnetic measurement of at least one parameter of an electrically conducting liquid
JP2571330B2 (en) Method and apparatus for measuring dielectric at metal strip position
US4567435A (en) Method and apparatus for continuously measuring distance utilizing eddy current and having temperature difference influence elimination
JP3602096B2 (en) Apparatus and method for measuring molten metal level in electromagnetic continuous casting
GB2165653A (en) Non-contract inductive distance measuring system
JPH0348448B2 (en)
US5354130A (en) Method and apparatus for measuring the temperature of an electrically conductive material
JPS623881B2 (en)
JPH08211083A (en) Method and device for measuring flow velocity
JP2651003B2 (en) Eddy current displacement sensor
JPH05223653A (en) Apparatus for measuring temperature of steel
JPH05220553A (en) Molten steel level measuring instrument
JPH05280921A (en) Section measuring device of steel material
JPS6324789B2 (en)
JPS6230562B2 (en)
JPS5827001A (en) Device for detecting passing position of metal plate
SU813231A1 (en) Method and device for contact-free measuring of electric conduction of metal melt
JPS5512401A (en) Eddy current type range finder
JPH0236143Y2 (en)