JPS6324789B2 - - Google Patents

Info

Publication number
JPS6324789B2
JPS6324789B2 JP54062508A JP6250879A JPS6324789B2 JP S6324789 B2 JPS6324789 B2 JP S6324789B2 JP 54062508 A JP54062508 A JP 54062508A JP 6250879 A JP6250879 A JP 6250879A JP S6324789 B2 JPS6324789 B2 JP S6324789B2
Authority
JP
Japan
Prior art keywords
frequency
stirring
voltage
thrust
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54062508A
Other languages
Japanese (ja)
Other versions
JPS55153655A (en
Inventor
Mitsunori Nagata
Tooru Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6250879A priority Critical patent/JPS55153655A/en
Publication of JPS55153655A publication Critical patent/JPS55153655A/en
Publication of JPS6324789B2 publication Critical patent/JPS6324789B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鋼の連続鋳造の過程において電磁撹
拌を行うに際し定常的に最適撹拌推力を確保する
ための電磁撹拌制御方法に関するものである。 鋼の連続鋳造においては、鋳造中の鋳片未凝固
部に対し電磁撹拌推力を付与して該未凝固部を撹
拌することにより鋳造組織を改善する方法が行わ
れている。 従来、特公昭53−25533に見られるように鋳片
の表面温度および引抜き速度を検出し、この検出
値に基づき撹拌位置における凝固殻厚みを求め、
また該凝固殻厚みに基づき撹拌装置の電流および
周波数を調整して、最適撹拌推力を溶融金属に与
えることを特徴とする方法が提案されている。 しかし、撹拌推力の低下は単に凝固殻の厚みだ
けに起因しない。電磁撹拌装置から出た磁束は凝
固殻が存在してもそれが非磁性であれば溶融金属
まで到達する。しかし、凝固殻に磁性部分が存在
すると電磁撹拌装置から出た磁束は凝固殻の磁性
部分に集中し、溶融金属まで到達する割合が少な
くなり、撹拌推力の低下をもたらす。 また従来技術における周波数の決定方法は凝固
殻の厚みのみの関数として与えられ、周波数算出
式の係数の精度が適切でなければ設定撹拌推力を
与える周波数となつておらず電磁撹拌装置のもつ
ている能力を最大限に生かしきつていない。 本発明は前記撹拌推力の変動原因の1つが鋳片
凝固殻における磁性の変化に原因していることを
解明し、該磁性の変化によつて撹拌推力を制御す
ることにより前記問題を解決するものである。以
下に本発明の詳細を説明する。 普通鋼及びフエライト系ステンレス鋼において
は鋼の温度がキユーリ点以下になると非磁性体か
ら強い磁性体になる。従つて電磁撹拌装置の設置
領域内の鋳片温度がキユーリ点以下になると、鋳
片内部の溶鋼に対する撹拌推力は著しく低下す
る。第1図はフエライト系ステンレス鋼の場合に
おける磁性凝固殻の厚さと溶鋼中心における撹拌
推力の関係を示す。同図において推力は磁性凝固
殻の厚さが0の場合、すなわち凝固殻の全てが非
磁性の場合の溶鋼中心における撹拌推力を100%
とする比率で示した。第1図から撹拌推力を最適
値に保持するためには磁性凝固殻厚さの変化に伴
い与える撹拌推力を変化させる必要があることが
わかる。該撹拌推力を変化させるためには電源周
波数、電源電圧を変化させればよい。 フエライト系ステンレス鋼の場合における溶鋼
中心部の撹拌推力と電源周波数との関係を第2図
に、同じく電源電圧との関係を第3図に示す。各
図における撹拌推力は第1図におけると同様の比
率で示した。電源周波数を変化さると、溶鋼中心
部の撹拌推力は第2図のように変化し最大撹拌推
力を与える周波数(fmax)が存在する。磁性凝
固殻厚さが増すと撹拌推力が低下しfmaxが低周
波数側にシフトする。又電源電圧を変化させると
中心部の撹拌推力は第3図のように電圧上昇に伴
なつて急激に増大し、磁性凝固殻厚さが増すと低
下する。 以上のことから撹拌推力を最適値に保持するに
は磁性凝固殻厚さを測定し該凝固殻厚さに適応す
る撹拌推力になるように電源周波数又は電源電圧
を制御すればよいことになる。磁性凝固殻の厚さ
は一般に次式で表わされる。 D=k1√・g ……(1) D:磁性凝固殻の厚さ L:モールド湯面位置から電磁撹拌装置設定場所
までの距離 v:鋳造速度 g:鋳片の表面温度T〔℃〕又はインピーダンス
R〔Ω〕に依存する関数 k1:凝固係数 k1、gは鋼種、モールド内での冷却条件、スプレ
イ帯での冷却条件等により異なり、本発明者がフ
エライト系ステンレス鋼について実験した結果に
よれば、k1は24.5〜27.5、gは0〜1の間の値で
あつた。 磁性凝固殻の厚さDを求めるにはまず、電磁撹
拌装置の設置場所からモールド内の湯面までの距
離L〔m〕を実測し、逐次ピンチロールの回転数
から鋳造速度v〔m/sec〕を計算してL/vを求
める。このL/vは電磁撹拌装置の設置場所まで
の凝固時間〔sec〕を意味する。また電磁撹拌装
置付近の鋳片表面温度変化又はインピーダンンス
変化から関数gの値を計算する。鋼種冷却条件の
違いによりあらかじめ実験により求められた凝固
係数k1を選定すると、(1)式より磁性凝固殻の厚さ
D〔mm〕が求まる。 前記(1)式における関数gを求める方法として
は、(1)一定巻線を施したコイルを鋳片表面に一定
距離を置いて設置し、定電圧電源で励磁してこの
ときのインピーダンスの変化から求める方法、(2)
鋳片の表面温度を適当な温度計により測定し、公
知の数式又は換算表より内部温度等を算出して求
める方法、(3)使用する電磁撹拌装置に流れる電
流、電力、力率の変化から求める方法等がある。
また(1)により求める方法を示す。鋳片の磁性の変
化は、鋳片を2次回路としたときの、励磁コイル
のインピーダンスの変化になつて表われる。これ
は、鋳片の透磁率、電気伝導度の値が温度により
変化するためである。従つて、励磁コイルの電
圧、電流から逐次、インピーダンスを計算すれ
ば、凝固殻の磁性の変化の程度を知ることができ
る。 g=Z−Z0/Z1−Z0 Z1:凝固殻が全て磁性凝固殻のときのインピーダ
ンス Z0:凝固殻が全て非磁性凝固殻のときのインピー
ダンス Z:測定時のインピーダンス 前記(2)により求める場合は(2)式により求める。 g=η(θc−θ2)/θ1−θ2 ……(2) ここでθ2≦θcのときη=1 θ2>θcのときη=0 θ1:凝固殻内溶鋼温度 θ2:凝固殻表面温度 θc:キユーリ点 (3)により求める方法は、(1)とほぼ同様で、インピ
ーダンスの計算手段を電磁撹拌装置そのものの電
圧、電流から求めるものである。 次に磁性凝固殻の厚さDにおける撹拌推力と電
源周波数、電源電圧の関係は次の如くである。 Fx=k2φ(f)・V2 ……(3) Fx:撹拌推力 k2:D及びfmaxによつて決まる定数 φ(f):周波数f〔Hz〕の関数 V:電源電圧 (3)式中の関数φ(f)には周波数の変化に対して最大
撹拌推力を与える周波数fmaxが存在する。fmax
は次式を満足する周波数から求められる。 ∂φ(f)/∂f=0 ……(4) φ(f)を解析的に求めることは不可能であり、実験
的に周波数を0から順次変化させ、撹拌推力の変
化を測定して求められる。従つて(4)式の解も実験
的に求めることができる。 また定数K2も実験から求められるものであり、
フエライト系ステンレス鋼について実験により求
めた結果を第1表に示す。
The present invention relates to an electromagnetic stirring control method for constantly ensuring an optimum stirring thrust when performing electromagnetic stirring in the process of continuous casting of steel. In continuous casting of steel, a method is used to improve the casting structure by applying an electromagnetic stirring thrust to the unsolidified part of the slab during casting to stir the unsolidified part. Conventionally, as seen in Japanese Patent Publication No. 53-25533, the surface temperature and drawing speed of the slab were detected, and the solidified shell thickness at the stirring position was determined based on the detected values.
Furthermore, a method has been proposed in which the current and frequency of a stirring device are adjusted based on the thickness of the solidified shell to apply an optimum stirring thrust to the molten metal. However, the decrease in stirring thrust is not simply caused by the thickness of the solidified shell. Even if a solidified shell exists, the magnetic flux emitted from the electromagnetic stirring device will reach the molten metal if it is non-magnetic. However, if a magnetic part is present in the solidified shell, the magnetic flux emitted from the electromagnetic stirring device will concentrate on the magnetic part of the solidified shell, and the proportion of the magnetic flux reaching the molten metal will decrease, resulting in a decrease in stirring thrust. In addition, the frequency determination method in the conventional technology is given as a function only of the thickness of the solidified shell, and if the accuracy of the coefficient of the frequency calculation formula is not appropriate, the frequency will not provide the set stirring thrust, and the electromagnetic stirring device will not have the same frequency. I am not making the most of my abilities. The present invention solves the problem by elucidating that one of the causes of fluctuations in the stirring thrust is due to changes in magnetism in the solidified slab shell, and controlling the stirring thrust based on the changes in magnetism. It is. The details of the present invention will be explained below. In ordinary steel and ferritic stainless steel, when the temperature of the steel falls below the Kyuri point, it changes from a non-magnetic material to a strongly magnetic material. Therefore, when the temperature of the slab in the installation area of the electromagnetic stirring device falls below the Curie point, the stirring thrust for the molten steel inside the slab decreases significantly. Figure 1 shows the relationship between the thickness of the magnetic solidified shell and the stirring thrust at the center of the molten steel in the case of ferritic stainless steel. In the figure, the thrust is 100% of the stirring thrust at the center of the molten steel when the thickness of the magnetic solidified shell is 0, that is, when all the solidified shell is non-magnetic.
It is expressed as a ratio. From FIG. 1, it can be seen that in order to maintain the stirring thrust at an optimum value, it is necessary to change the stirring thrust applied as the thickness of the magnetic solidified shell changes. In order to change the stirring thrust, the power supply frequency and power supply voltage may be changed. FIG. 2 shows the relationship between the stirring thrust at the center of the molten steel and the power supply frequency in the case of ferritic stainless steel, and FIG. 3 shows the relationship with the power supply voltage. The stirring thrust in each figure is shown in the same ratio as in FIG. When the power supply frequency is changed, the stirring thrust at the center of the molten steel changes as shown in Figure 2, and there is a frequency (fmax) that provides the maximum stirring thrust. As the magnetic solidification shell thickness increases, the stirring thrust decreases and fmax shifts to the lower frequency side. When the power supply voltage is changed, the stirring thrust at the center increases rapidly as the voltage increases, as shown in FIG. 3, and decreases as the thickness of the magnetic solidified shell increases. From the above, in order to maintain the stirring thrust at an optimum value, it is sufficient to measure the thickness of the magnetic solidified shell and control the power supply frequency or power supply voltage so that the stirring thrust corresponds to the thickness of the solidified magnetic shell. The thickness of the magnetic solidified shell is generally expressed by the following formula. D=k 1 √・g...(1) D: Thickness of the magnetic solidified shell L: Distance from the mold surface position to the setting location of the electromagnetic stirring device v: Casting speed g: Surface temperature of the slab T [℃] or a function k 1 that depends on the impedance R [Ω]: solidification coefficient k 1 , g varies depending on the steel type, cooling conditions in the mold, cooling conditions in the spray zone, etc., and the present inventor conducted an experiment on ferritic stainless steel. According to the results, k 1 was between 24.5 and 27.5, and g between 0 and 1. To find the thickness D of the magnetic solidified shell, first measure the distance L [m] from the installation location of the electromagnetic stirring device to the molten metal surface in the mold, and then calculate the casting speed v [m/sec] from the number of rotations of the pinch rolls. ] to find L/v. This L/v means the solidification time [sec] to the installation location of the electromagnetic stirring device. Further, the value of the function g is calculated from the change in surface temperature or impedance of the slab near the electromagnetic stirring device. By selecting the solidification coefficient k 1 determined in advance through experiments based on the difference in steel type cooling conditions, the thickness D [mm] of the magnetic solidified shell can be determined from equation (1). The method for determining the function g in equation (1) is as follows: (1) A coil with a constant winding is placed on the surface of the slab at a constant distance, and the impedance changes at this time by exciting it with a constant voltage power supply. How to find from (2)
A method of measuring the surface temperature of the slab with an appropriate thermometer and calculating the internal temperature etc. using a known formula or conversion table; (3) From changes in the current, electric power, and power factor flowing through the electromagnetic stirring device used. There are ways to find out.
We also show how to obtain it using (1). Changes in the magnetism of the slab appear as changes in the impedance of the excitation coil when the slab is used as a secondary circuit. This is because the values of magnetic permeability and electrical conductivity of the slab change depending on the temperature. Therefore, by successively calculating the impedance from the voltage and current of the exciting coil, it is possible to know the degree of change in the magnetism of the solidified shell. g=Z- Z0 / Z1 - Z0 Z1 : Impedance when all solidified shells are magnetic solidified shells Z0 : Impedance when all solidified shells are non-magnetic solidified shells Z: Impedance at the time of measurement (2) ), use equation (2). g = η (θ c - θ 2 ) / θ 1 - θ 2 ...(2) Here, when θ 2 ≦ θ c , η = 1 When θ 2 > θ c , η = 0 θ 1 : Molten steel in solidified shell Temperature θ 2 : Solidified shell surface temperature θ c : The method of determining from the Kyuri point (3) is almost the same as (1), and the impedance is calculated from the voltage and current of the electromagnetic stirring device itself. Next, the relationship between the stirring thrust, the power supply frequency, and the power supply voltage at the thickness D of the magnetic solidified shell is as follows. Fx=k 2 φ(f)・V 2 ...(3) Fx: Stirring thrust k 2 : Constant determined by D and fmax φ(f): Function of frequency f [Hz] V: Power supply voltage (3) The function φ(f) in the equation has a frequency fmax that provides the maximum stirring thrust with respect to frequency changes. fmax
is determined from the frequency that satisfies the following equation. ∂φ(f)/∂ f = 0 ...(4) It is impossible to find φ(f) analytically, so we experimentally varied the frequency sequentially from 0 and measured the change in stirring thrust. Desired. Therefore, the solution to equation (4) can also be obtained experimentally. In addition, the constant K 2 can also be obtained from experiments,
Table 1 shows the experimental results for ferritic stainless steel.

【表】 従つて本発明による制御方法は前記(1)式により磁
性凝固殻の厚さDを求め、第1表から該凝固殻の
厚さ、鋼種に応じて定数k2を選定し、(4)式により
最大推力を与える周波数fmaxを求める。周波数
fmaxのときの値φ(fmax)及び鋳片サイズ、モ
ールドオシレーシヨン周波数、パウダーの種類等
により適正な設定撹拌推力Fx〔Kg/m3〕を(3)式に
代入し、電圧Vを求める。 電圧を一定にして周波数を変化させる場合は、
(1)設定撹拌推力Fxと電圧Vを(3)式に代入し、関
数φ(f)の周波数fを求める。又、周波数を一定に
して電圧を変化させる場合も前記と同様に、(2)設
定撹拌推力Fxと周波数fを(3)式に代入し、電圧
Vを求める。なお周波数と電圧と両方を制御する
場合は前記(1)、(2)の順番で各々を求めればよい。 以上の演算を鋳片の表面温度、インピーダンス
即ち磁性凝固殻の厚さが時々刻々変化する毎に行
い鋳造過程を通して電源の周波数及び又は電圧を
制御すれば常に最適の撹拌推力を得ることが可能
である。本発明において推力の制御因子である周
波数、電圧は各々単独採用しても制御可能である
が、両方を用いると両者の長所が同時に得られて
好都合である。 次に本発明の最も好ましい実施例を図面をもつ
て説明する。第4図において、1は連続鋳造にお
ける金属の溶融部、2は凝固殻、3はピンチロー
ル、4は電磁撹拌装置、5は磁性凝固殻の厚さを
求めるための温度検出器又はサーチコイル、6は
鋳造速度検出用のパルス発信器、7は温度検出器
又はサーチコイル5の検出信号をデイジタル信号
に変換し、またパルス発信器6からのパルス信号
を演算可能な信号に変換する信号処理装置、8は
前記変換された信号を入力され前記(1)式〜(4)式を
演算するコンピユータ等の演算処理装置、9は可
変電圧、可変周波数装置である。第4図に示す装
置例において、温度検出器又はサーチコイル5に
より鋳片表面の温度変化又はインピーダンスの変
化を検出するか又は電磁撹拌装置4の電流、電
力、力率の変化を検出することにより凝固殻の透
磁率の変化を求め、更にパルス発信機6から鋳造
速度を求め、信号処理装置7でA/D変換を行
い、演算処理装置8において(1)式、(2)式を用いて
磁性凝固殻の厚さを求める。同じく演算装置8に
おいて設定撹拌推力Fxとなる周波数、電圧を(3)、
(4)式を用いて求め、可変電圧可変周波数装置9に
指令を与える。可変電圧可変周波数装置9によつ
て電磁撹拌装置4に適正な周波数及び又は電圧を
与え、撹拌推力を制御する。 本装置を使用することにより鋳片温度が変化し
ても常に適正な電磁撹拌力が得られ、良質の鋳片
が得られた。
[Table] Therefore, in the control method according to the present invention, the thickness D of the magnetic solidified shell is determined by the above equation (1), the constant k 2 is selected from Table 1 according to the thickness of the solidified shell and the steel type, and ( Find the frequency fmax that gives the maximum thrust using equation 4). frequency
Substitute the appropriate setting stirring thrust Fx [Kg/m 3 ] according to the value φ (fmax) at fmax, slab size, mold oscillation frequency, powder type, etc. into equation (3) to find the voltage V. . When changing the frequency while keeping the voltage constant,
(1) Substitute the set stirring thrust Fx and voltage V into equation (3) to find the frequency f of the function φ(f). Also, when changing the voltage while keeping the frequency constant, the voltage V is obtained by substituting (2) the set stirring thrust force Fx and the frequency f into the equation (3) in the same manner as described above. Note that when controlling both frequency and voltage, each may be obtained in the order of (1) and (2) above. If the above calculation is performed every time the surface temperature of the slab, impedance, or thickness of the magnetic solidified shell changes, and the frequency and/or voltage of the power source is controlled throughout the casting process, it is possible to always obtain the optimum stirring thrust. be. In the present invention, the frequency and voltage, which are thrust control factors, can be controlled by using each alone, but it is advantageous to use both because the advantages of both can be obtained at the same time. Next, the most preferred embodiment of the present invention will be described with reference to the drawings. In FIG. 4, 1 is a molten part of metal in continuous casting, 2 is a solidified shell, 3 is a pinch roll, 4 is an electromagnetic stirring device, 5 is a temperature detector or search coil for determining the thickness of the magnetic solidified shell, 6 is a pulse transmitter for detecting the casting speed, and 7 is a signal processing device that converts the detection signal of the temperature detector or search coil 5 into a digital signal, and also converts the pulse signal from the pulse transmitter 6 into a computable signal. , 8 is an arithmetic processing device such as a computer which receives the converted signal and calculates the equations (1) to (4), and 9 is a variable voltage, variable frequency device. In the device example shown in FIG. 4, by detecting temperature changes or impedance changes on the surface of the slab using a temperature detector or search coil 5, or by detecting changes in current, power, or power factor of the electromagnetic stirring device 4. The change in magnetic permeability of the solidified shell is determined, the casting speed is determined from the pulse transmitter 6, the signal processing device 7 performs A/D conversion, and the arithmetic processing device 8 uses equations (1) and (2). Find the thickness of the magnetic solidified shell. Similarly, in the calculation device 8, the frequency and voltage that will become the set stirring thrust Fx are (3),
(4) and gives a command to the variable voltage variable frequency device 9. The variable voltage variable frequency device 9 applies a suitable frequency and/or voltage to the electromagnetic stirring device 4 to control the stirring thrust. By using this device, an appropriate electromagnetic stirring force was always obtained even when the temperature of the slab changed, and slabs of good quality were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁性凝固殻の厚さと撹拌推力との関係
を示すグラフ、第2図は周波数と撹拌推力との関
係を示すグラフ、第3図は電圧と撹拌推力との関
係を示すグラフ、第4図は本発明の実施例を示す
ブロツク図である。 図面で、1は溶融部、2は凝固殻、3はピンチ
ロール、4は電磁撹拌装置、5は温度検出器又は
サーチコイル、6はパルス発信器、7は信号処理
装置、8は演算処理装置、9は可変電圧、可変周
波数装置である。
Figure 1 is a graph showing the relationship between the thickness of the magnetic coagulation shell and stirring thrust, Figure 2 is a graph showing the relationship between frequency and stirring thrust, Figure 3 is a graph showing the relationship between voltage and stirring thrust, and Figure 2 is a graph showing the relationship between frequency and stirring thrust. FIG. 4 is a block diagram showing an embodiment of the present invention. In the drawings, 1 is a melting section, 2 is a solidified shell, 3 is a pinch roll, 4 is an electromagnetic stirring device, 5 is a temperature detector or search coil, 6 is a pulse generator, 7 is a signal processing device, and 8 is an arithmetic processing device. , 9 is a variable voltage, variable frequency device.

Claims (1)

【特許請求の範囲】[Claims] 1 電磁撹拌を行う連続鋳造において、鋳片の表
面温度又は電磁撹拌装置の電圧、電流から計算さ
れるインピーダンス又は、励磁コイルの電圧電流
から計算されるインピーダンス及び鋳造速度を検
出し、この検出値に基づき、撹拌位置における磁
性凝固殻厚さを求め、該凝固殻厚さにおける撹拌
推力、電源周波数、電源電圧の関係から設定撹拌
推力を与える周波数及び電圧を求め、該周波数及
び該電圧となるように電磁撹拌装置の周波数及び
電圧を制御することを特徴とする連続鋳造におけ
る電磁撹拌推力の制御方法。
1 In continuous casting using electromagnetic stirring, detect the impedance calculated from the surface temperature of the slab or the voltage and current of the electromagnetic stirring device, or the impedance and casting speed calculated from the voltage and current of the exciting coil, and Based on this, find the thickness of the magnetic solidified shell at the stirring position, find the frequency and voltage that gives the set stirring thrust from the relationship between the stirring thrust, power frequency, and power supply voltage at the solidified shell thickness, and set the frequency and voltage so that the set stirring thrust is achieved. A method for controlling electromagnetic stirring thrust in continuous casting, characterized by controlling the frequency and voltage of an electromagnetic stirring device.
JP6250879A 1979-05-21 1979-05-21 Controlling method of electromagnetic rabbling thrust in continuous casting Granted JPS55153655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6250879A JPS55153655A (en) 1979-05-21 1979-05-21 Controlling method of electromagnetic rabbling thrust in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6250879A JPS55153655A (en) 1979-05-21 1979-05-21 Controlling method of electromagnetic rabbling thrust in continuous casting

Publications (2)

Publication Number Publication Date
JPS55153655A JPS55153655A (en) 1980-11-29
JPS6324789B2 true JPS6324789B2 (en) 1988-05-23

Family

ID=13202178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6250879A Granted JPS55153655A (en) 1979-05-21 1979-05-21 Controlling method of electromagnetic rabbling thrust in continuous casting

Country Status (1)

Country Link
JP (1) JPS55153655A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9003196D0 (en) * 1990-02-13 1990-04-11 Davy Mckee Sheffield Continuous casting
JP4989391B2 (en) * 2007-09-18 2012-08-01 一般財団法人電力中央研究所 Electromagnetic stirrer and method for solidifying conductive substance
CN114833325B (en) * 2022-05-12 2023-02-21 上海大学 Modification treatment system and modification treatment method for die casting metal solidification structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023335A (en) * 1973-07-04 1975-03-13
JPS5325533A (en) * 1976-08-21 1978-03-09 Hisamitsu Pharmaceut Co Inc Novel phenylacetic acid derivatives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023335A (en) * 1973-07-04 1975-03-13
JPS5325533A (en) * 1976-08-21 1978-03-09 Hisamitsu Pharmaceut Co Inc Novel phenylacetic acid derivatives

Also Published As

Publication number Publication date
JPS55153655A (en) 1980-11-29

Similar Documents

Publication Publication Date Title
JP5051204B2 (en) Method and device for detecting solidification completion position of continuous cast slab and method for producing continuous cast slab
GB2142729A (en) Method and apparatus for non-contact measurement of solidified shell of a metal casting having unsolidifed inner part
US4867226A (en) Method of oscillating continuous casting mold at high frequencies and mold oscillated by such method
JPS6324789B2 (en)
JP4453556B2 (en) Manufacturing method of continuous cast slab
US4796687A (en) Liquid/solid interface monitoring during direct chill casting
JPH08211084A (en) Flow velocity measuring device
JPH05223653A (en) Apparatus for measuring temperature of steel
JPH08211083A (en) Method and device for measuring flow velocity
JP4483538B2 (en) Method and device for detecting solidification completion position of continuous cast slab and method for producing continuous cast slab
JPS60127060A (en) Measuring device for level of molten metal surface
JPH08211085A (en) Flow velocity measuring device
JP2714437B2 (en) Method and apparatus for measuring meniscus flow velocity of molten metal
JPS60133955A (en) Method for electromagnetic stirring in continuous casting
JPH08211086A (en) Method and device for measuring flow velocity
JPH11183449A (en) Method and apparatus for measurement of center solid-phase rate of cast piece
JP4501236B2 (en) Continuous casting method
Yao et al. Development of an experimental system for the study of the effects of electromagnetic stirring on mold heat transfer
JPS603898B2 (en) Electromagnetic stirring method in continuous casting
KR100270114B1 (en) Method and apparatus for distortion of hot metal plate
JP3082828B2 (en) Method and apparatus for measuring cast solidification thickness
JPH05192753A (en) Instrument for measuring powder film thickness in continuous casting
JPH0348448B2 (en)
JPH11188465A (en) Method of and equipment for continuously casting molten metal
JPH02140621A (en) Vortex type mold level instrument