JP4453556B2 - Manufacturing method of continuous cast slab - Google Patents

Manufacturing method of continuous cast slab Download PDF

Info

Publication number
JP4453556B2
JP4453556B2 JP2005011581A JP2005011581A JP4453556B2 JP 4453556 B2 JP4453556 B2 JP 4453556B2 JP 2005011581 A JP2005011581 A JP 2005011581A JP 2005011581 A JP2005011581 A JP 2005011581A JP 4453556 B2 JP4453556 B2 JP 4453556B2
Authority
JP
Japan
Prior art keywords
wave
completion position
slab
ultrasonic sensor
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005011581A
Other languages
Japanese (ja)
Other versions
JP2006198643A (en
Inventor
健史 鈴木
淳 久保田
幸理 飯塚
康一 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005011581A priority Critical patent/JP4453556B2/en
Publication of JP2006198643A publication Critical patent/JP2006198643A/en
Application granted granted Critical
Publication of JP4453556B2 publication Critical patent/JP4453556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、連続鋳造鋳片の製造方法に関し、詳しくは、鋳造中に鋳片の凝固完了位置を検出し、検出した凝固完了位置が所定の位置になるように制御しながら連続鋳造鋳片を製造する方法に関するものである。   The present invention relates to a method for producing a continuous cast slab, and more specifically, detects a solidification completion position of the slab during casting, and controls the continuous cast slab while controlling the detected solidification completion position to be a predetermined position. It relates to a method of manufacturing.

鋼の連続鋳造においては、連続鋳造鋳片の凝固完了位置(「クレータエンド位置」ともいう)が鋳片のどの位置にあるかを判定することが極めて重要である。凝固完了位置を検出することが、鋳片の生産性や品質の向上に大きく貢献するためである。   In continuous casting of steel, it is extremely important to determine at which position of the slab the solidification completion position (also referred to as “crater end position”) of the continuous cast slab. This is because detecting the solidification completion position greatly contributes to the improvement of the productivity and quality of the slab.

例えば、生産性を向上させるために鋳造速度(=鋳片引き抜き速度)を増やすと、凝固完了位置は鋳片の鋳造方向下流側に移動する。凝固完了位置が鋳片支持ロールの範囲を超えてしまうと鋳片が静鉄圧により膨らみ(「バルジング」という)、内質の悪化や巨大バルジングの場合には鋳造停止といった問題が発生する。それ故、凝固完了位置が明確に分からない場合には、鋳造速度を無闇に増速できない。また、鋳片の中心偏析を低減して高品質化を図るための軽圧下操業では、凝固完了位置を軽圧下帯に位置させるように鋳造速度や二次冷却水量を制御する必要がある。これらの要求に応えるためには、鋳片の凝固状態を連続的に計測する必要がある。   For example, when the casting speed (= slab drawing speed) is increased in order to improve productivity, the solidification completion position moves to the downstream side in the casting direction of the slab. If the solidification completion position exceeds the range of the slab support roll, the slab swells due to the static iron pressure (referred to as “bulging”), and in the case of deterioration of the internal quality or huge bulging, there arises a problem that the casting is stopped. Therefore, if the solidification completion position is not clearly known, it is impossible to increase the casting speed. Further, in the light reduction operation for improving the quality by reducing the center segregation of the slab, it is necessary to control the casting speed and the amount of secondary cooling water so that the solidification completion position is located in the light reduction zone. In order to meet these requirements, it is necessary to continuously measure the solidification state of the slab.

従って、鋳片内部の凝固状態を判定するために、今までに種々の方法が提案されており、そのなかでも、超音波を利用した方法が多数提案されている。例えば、特許文献1には、縦波超音波及び横波超音波を鋳片幅方向に走査しながら鋳片を透過させ、鋳片幅方向中央部における縦波超音波の伝播時間と、鋳片幅方向での凝固部と未凝固部との境界位置における横波超音波伝播時間/縦波超音波伝播時間の比と、固相中及び液相中における縦波超音波の伝播速度とから、鋳片幅方向中央位置における未凝固層の厚みを求める方法が提案されている。   Therefore, various methods have been proposed so far in order to determine the solidified state inside the slab, and among them, many methods using ultrasonic waves have been proposed. For example, Patent Document 1 discloses that a longitudinal wave ultrasonic wave and a transverse wave ultrasonic wave are transmitted in the width direction of the slab while allowing the slab to pass therethrough, the propagation time of the longitudinal wave ultrasonic wave in the center portion of the slab width direction, and the slab width. From the ratio of the transverse wave ultrasonic wave propagation time / longitudinal wave ultrasonic wave propagation time at the boundary position between the solidified part and the non-solidified part in the direction and the propagation speed of the longitudinal wave ultrasonic wave in the solid phase and liquid phase A method for obtaining the thickness of the unsolidified layer at the center in the width direction has been proposed.

また、特許文献2には、縦波超音波と横波超音波とを同時に鋳片を透過させ、横波超音波の透過波の振幅と縦波超音波の透過波の振幅との比を求め、求めた比に基づいて超音波センサーの設置位置における未凝固層の存在を判定する方法が提案されている。尚、横波超音波は固相のみを透過して液相を透過しないという性質があり、特許文献1及び特許文献2は、横波のこの特性を利用している。
特開昭54−115636号公報 特開昭62−148850号公報
In Patent Document 2, longitudinal ultrasonic waves and transverse ultrasonic waves are simultaneously transmitted through the slab, and a ratio between the amplitude of the transmitted wave of the transverse ultrasonic wave and the amplitude of the transmitted wave of the longitudinal ultrasonic wave is obtained and obtained. A method for determining the presence of an unsolidified layer at the installation position of the ultrasonic sensor based on the ratio is proposed. Incidentally, the transverse wave ultrasonic wave has a property of transmitting only the solid phase and not the liquid phase, and Patent Literature 1 and Patent Literature 2 utilize this characteristic of the transverse wave.
JP 54-115636 A Japanese Patent Laid-Open No. 62-148850

しかしながら、これらの方法では次のような問題が残されている。   However, these methods still have the following problems.

特許文献1では、固相及び液相における縦波の伝播速度を用いて液相厚みを算出しているが、この伝播速度が鋼種によって異なっている。この伝播速度は全ての鋼種で知られている訳ではないため、伝播時間から得られた測定値を校正するために、例えば、鋳造中の鋳片に金属製の鋲を打ち込み、冷却後に鋲の打ち込み部分を切断・研磨し、鋲がどの程度溶融したかを測定することによって固相厚みを把握し、この結果と照らし合わせて伝播時間から求めた計算値の合わせ込みを実施する必要がある。この作業は、手間やコストを費やし、従って、全ての鋼種について校正を行うことは現実的には不可能である。また、測定箇所における鋳片の厚みを把握する必要があるが、未凝固層を有する鋳片はバルジングするため、鋳造中の鋳片の厚みを精度良く安定して測定することも難しく、測定精度を低下させる一因となっている。   In Patent Document 1, the liquid phase thickness is calculated using the propagation velocity of the longitudinal wave in the solid phase and the liquid phase, but this propagation velocity differs depending on the steel type. This propagation speed is not known for all steel types, so in order to calibrate the measured value obtained from the propagation time, for example, a metal rod is placed in the slab during casting, It is necessary to grasp the solid phase thickness by measuring the extent to which the wrinkles have been melted by cutting and polishing the implanted portion, and to adjust the calculated value obtained from the propagation time against this result. This work is laborious and costly, and therefore it is practically impossible to calibrate all steel types. In addition, it is necessary to grasp the thickness of the slab at the measurement location, but since the slab having an unsolidified layer bulges, it is difficult to accurately and stably measure the thickness of the slab during casting. This is one of the causes of lowering.

特許文献2では、横波超音波の透過波の振幅と縦波超音波の透過波の振幅との比から未凝固層の存在を判定するだけであるので、一対の送信器及び受信器を設置しただけでは凝固完了位置を知ることができず、凝固完了位置を知るためには鋳造方向に多数の送信器及び受信器を設置しなければならない。   In Patent Document 2, since only the presence of the uncoagulated layer is determined from the ratio of the amplitude of the transmitted wave of the transverse ultrasonic wave and the amplitude of the transmitted wave of the longitudinal wave ultrasonic wave, a pair of transmitters and receivers are installed. Only the solidification completion position cannot be known, and in order to know the solidification completion position, a large number of transmitters and receivers must be installed in the casting direction.

本発明は上記の問題点を解決するためになされたものであり、その目的とするところは、鋳片への鋲の打ち込みによる校正を必要とせず、センサーによる計測値のみから凝固完了位置を精度良く検知することの可能な凝固完了位置検知装置を利用して連続鋳造鋳片の凝固完了位置を正確に検出し、凝固完了位置を予め設定された基準位置に制御しながら鋳造することで、生産性または鋳片品質を高めることを可能とする、連続鋳造鋳片の製造方法を提供することである。   The present invention has been made in order to solve the above-described problems, and the object of the present invention is to eliminate the need for calibration by staking a slab into the slab, and to accurately determine the solidification completion position from only the measured value by the sensor. Production is performed by accurately detecting the solidification completion position of a continuous cast slab using a solidification completion position detection device that can detect well, and casting while controlling the solidification completion position to a preset reference position. It is providing the manufacturing method of a continuous casting slab which makes it possible to improve property or slab quality.

本発明者等は、上記課題を解決すべく鋭意検討・研究を行った。以下に検討・研究結果を説明する。   The inventors of the present invention diligently studied and studied to solve the above problems. The examination and research results are explained below.

連続鋳造鋳片における縦波超音波の伝播時間から固相厚みを推定する方法に関して伝播時間のシミュレーションを重ねた結果、従来の方法においては、縦波超音波の伝播速度の鋼種による依存性や鋳片厚みの影響が大きく、これらの校正を行わないと精度良く測定することはできないことが分かった。但し、凝固完了位置が縦波超音波センサーよりも鋳造方向の下流側に存在して超音波の伝播経路に液相が含まれる場合には、液相における伝播速度が固相における伝播速度に比べて遅いため、縦波超音波センサーによって測定される伝播時間は固相厚みに応じて感度良く変化し、固相厚みの測定値及びこの固相厚みから導かれる凝固完了位置の相対的な測定精度は極めて高いことが分かった。   As a result of repeated simulation of propagation time for the method of estimating the solid phase thickness from the propagation time of longitudinal wave ultrasonic waves in continuous cast slabs, in the conventional method, the dependence of the propagation speed of longitudinal wave ultrasound on the steel type and the casting It was found that the influence of the thickness of the piece was large, and it was impossible to measure with high accuracy unless these calibrations were performed. However, if the solidification completion position is downstream of the longitudinal wave ultrasonic sensor in the casting direction and the liquid phase is included in the propagation path of the ultrasonic wave, the propagation speed in the liquid phase is compared with the propagation speed in the solid phase. Therefore, the propagation time measured by the longitudinal wave ultrasonic sensor changes with high sensitivity according to the solid phase thickness, and the measured value of the solid phase thickness and the relative measurement accuracy of the solidification completion position derived from this solid phase thickness Was found to be extremely expensive.

そこで、縦波超音波の伝播時間から固相厚みを推定する際に用いる物性値をオンラインで校正する方法として、横波が液相を透過しないことにより求められる凝固完了位置を利用して校正することを検討した。   Therefore, as a method for calibrating the physical property values used when estimating the thickness of the solid phase from the propagation time of longitudinal ultrasonic waves, calibrating using the solidification completion position required when the transverse wave does not penetrate the liquid phase. It was investigated.

内部がまだ未凝固の状態の小型鋼塊を用い、それを冷却しながら鋼塊に横波超音波を透過させると同時に鋼塊軸心部を熱電対で測温する試験を行った。その結果、鋼塊内部に未凝固相が存在する場合には、即ち鋼塊軸心部の固相率が1未満の場合には、横波超音波は鋼塊を透過できず、鋼塊が軸心まで凝固した時点即ち鋼塊軸心部の固相率が1になった時点で初めて横波超音波が鋼塊を透過することが分かった。更に、この性質は鋼種に依存せず生じることも明らかとなった。この性質に基づくことで、横波超音波センサーによる透過信号が、消失状態から出現した時点、或いは、検出状態から消失した時点は、鋼種や鋳造条件に拘わらず、凝固完了位置と横波超音波センサーの配置位置とが一致するという絶対値計測ができるとの知見が得られた。   Using a small steel ingot that was still unsolidified inside, a transverse wave ultrasonic wave was transmitted through the steel ingot while cooling it, and at the same time, the temperature of the steel ingot shaft was measured with a thermocouple. As a result, when an unsolidified phase is present inside the steel ingot, that is, when the solid phase ratio of the steel ingot axis is less than 1, the transverse wave ultrasonic wave cannot penetrate the steel ingot, and the steel ingot is in the axial direction. It was found that the transverse wave ultrasonic wave was transmitted through the steel ingot only when it solidified to the center, that is, when the solid phase ratio of the steel ingot axis became 1. Furthermore, it became clear that this property occurs independently of the steel type. Based on this property, the time when the transmission signal by the transverse wave ultrasonic sensor appears from the disappearance state or the point at which it disappears from the detection state is the solidification completion position and the transverse wave ultrasonic sensor's position regardless of the steel type and casting conditions. The knowledge that the absolute value measurement that the arrangement position matches can be obtained.

従って、凝固完了位置を横波超音波センサーの配置位置とした条件下において、縦波超音波の伝播時間から凝固完了位置を算出する計算式を校正することにより、相対的な測定精度に優れている、縦波超音波の伝播時間を用いた凝固完了位置の推定方法を、絶対的な精度にも優れた検知手段として使用可能であるとの知見が得られた。   Therefore, the relative measurement accuracy is excellent by calibrating the calculation formula for calculating the coagulation completion position from the propagation time of the longitudinal wave ultrasonic wave under the condition that the coagulation completion position is the arrangement position of the transverse wave ultrasonic sensor. It was found that the method for estimating the coagulation completion position using the propagation time of longitudinal ultrasonic waves can be used as a detection means excellent in absolute accuracy.

具体的には、縦波超音波センサーで測定された伝播時間から算出される凝固完了位置が横波超音波センサーの配置位置になるように物性値を決めてやれば、伝播時間により凝固完了位置を求める計算式は校正されることになる。以後、このようにして校正された伝播時間から凝固完了位置を求める計算式を用いることで、例えば鋳造速度を更に高くするなど、鋳造条件を変更したときの凝固完了位置を精度良く求めることができることが分かった。   Specifically, if the physical property value is determined so that the coagulation completion position calculated from the propagation time measured by the longitudinal wave ultrasonic sensor becomes the arrangement position of the transverse wave ultrasonic sensor, the coagulation completion position is determined by the propagation time. The calculated formula will be calibrated. Thereafter, by using a calculation formula for obtaining the solidification completion position from the calibrated propagation time in this way, the solidification completion position when the casting conditions are changed can be obtained with high accuracy, for example, by further increasing the casting speed. I understood.

ここで、第1の校正点となる横波超音波センサーの鋳造方向の下流側に第2の横波超音波センサーを配置し、第2の横波超音波センサーの位置を凝固完了位置とした鋳造条件下においても、凝固完了位置を算出する計算式を校正することにより、凝固完了位置の測定精度が大幅に向上することが分かった。   Here, the second transverse wave ultrasonic sensor is disposed downstream of the transverse wave ultrasonic sensor serving as the first calibration point in the casting direction, and the casting condition is such that the position of the second transverse wave ultrasonic sensor is the solidification completion position. The calibration accuracy of the solidification completion position was greatly improved by calibrating the calculation formula for calculating the solidification completion position.

このようにして凝固完了位置を的確に且つ安定して検出することが可能になると、鋳片に対して圧下が可能な軽圧下帯に鋳片の凝固完了位置を常に位置させることが可能となり、鋳造の初期や末期などの非定常部を含めて鋳片の大部分を適切に軽圧下することができるのみならず、連続鋳造機の機端に凝固完了位置を安定して位置させることが可能となり、連続鋳造機の機長を十分に活用した高速鋳造を安定して行うことが可能になるとの知見を得た。   When the solidification completion position can be accurately and stably detected in this way, the solidification completion position of the slab can always be positioned in a light reduction belt that can be reduced with respect to the slab, Not only can the most part of the slab be appropriately lightly reduced, including unsteady parts such as the initial and final stages of casting, but the solidification completion position can be stably positioned at the end of the continuous casting machine. As a result, we have obtained knowledge that high-speed casting can be performed stably by making full use of the continuous casting machine.

本発明は、上記検討結果に基づいてなされたものであり、第1の発明に係る連続鋳造鋳片の製造方法は、連続鋳造鋳片に対して横波超音波を送信し且つ送信した横波超音波を受信する横波超音波センサーと、該横波超音波センサーの配置位置と連続鋳造機の鋳造方向上流側に離れた鋳片幅方向の同一位置に設置された、連続鋳造鋳片に対して縦波超音波を送信し且つ送信した縦波超音波を受信する縦波超音波センサーと、該縦波超音波センサーで受信した受信信号に基づき下記の(1)式に示す計算式を用いて鋳片の凝固完了位置を求める凝固完了位置演算部と、を備え、前記横波超音波センサーの受信信号の強度の変化によって横波超音波センサーの配置位置と鋳片の凝固完了位置とが一致したことが確認された時点での前記縦波超音波センサーからの信号に基づいて前記(1)式により算出される凝固完了位置が横波超音波センサーの配置位置と合致するように、前記(1)式が下記の(2)式によって校正される凝固完了位置検知装置を用いて、連続鋳造鋳片の凝固完了位置を検出し、検出した凝固完了位置が予め設定されている基準位置となるように鋳造速度または二次冷却水量を変化させながら鋳造することを特徴とするものである。
CE=a 1 ・Δt+a 0 …(1)
但し、(1)式において、CEは鋳型内の溶鋼湯面から凝固完了位置までの距離、Δtは縦波超音波の伝播時間、a 1 及びa 0 は多項式の係数である。
0 =CE 1 −a 1 ・Δt 1 …(2)
但し、(2)式において、CE 1 は鋳型内の溶鋼湯面から横波超音波センサーの配置位置までの距離、Δt 1 は凝固完了位置が横波超音波センサーの配置位置を通過したと判定した時点の縦波超音波の伝播時間である。
The present invention has been made based on the above examination results, and the method for producing a continuous cast slab according to the first aspect of the present invention transmits a transverse wave ultrasonic wave to the continuous cast slab and transmits the transmitted transverse wave ultrasonic wave. A longitudinal wave with respect to a continuous cast slab installed at the same position in the width direction of the slab away from the upstream position in the casting direction of the continuous casting machine. A longitudinal wave ultrasonic sensor that transmits ultrasonic waves and receives the transmitted longitudinal wave ultrasonic waves, and a slab using a calculation formula shown in the following equation (1) based on a reception signal received by the longitudinal wave ultrasonic sensor A solidification completion position calculating unit for obtaining a solidification completion position of the horizontal wave ultrasonic sensor, and confirming that the arrangement position of the transverse wave ultrasonic sensor coincides with the solidification completion position of the slab by a change in the intensity of the received signal of the transverse wave ultrasonic sensor the longitudinal wave ultrasonic cell at the time it was As on the basis of the signal from the server (1) clotting completion position calculated by equation matches the position of the transverse ultrasonic wave sensors, coagulation, wherein (1) is calibrated by the following formula (2) Using the completion position detection device, the solidification completion position of the continuous cast slab is detected, and casting is performed while changing the casting speed or the amount of secondary cooling water so that the detected solidification completion position becomes a preset reference position. It is characterized by this.
CE = a 1 · Δt + a 0 (1)
In Equation (1), CE is the distance from the molten steel surface in the mold to the solidification completion position, Δt is the propagation time of longitudinal ultrasonic waves, and a 1 and a 0 are polynomial coefficients.
a 0 = CE 1 −a 1 · Δt 1 (2)
However, in the formula (2), CE 1 is the distance from the molten steel surface in the mold to the position where the transverse ultrasonic sensor is arranged , and Δt 1 is the time when it is determined that the solidification completion position has passed the arrangement position of the transverse wave ultrasonic sensor. Is the propagation time of longitudinal ultrasonic waves.

第2の発明に係る連続鋳造鋳片の製造方法は、連続鋳造鋳片に対して横波超音波を送信し且つ送信した横波超音波を受信する第1の横波超音波センサーと、第1の横波超音波センサーの配置位置と連続鋳造機の鋳造方向上流側に離れた鋳片幅方向の同一位置に設置された、連続鋳造鋳片に対して縦波超音波を送信し且つ送信した縦波超音波を受信する縦波超音波センサーと、第1の横波超音波センサーの鋳造方向下流側の鋳片幅方向の同一位置に設置された、連続鋳造鋳片に対して横波超音波を送信し且つ送信した横波超音波を受信する第2の横波超音波センサーと、前記縦波超音波センサーで受信した受信信号に基づき下記の(1)式に示す計算式を用いて鋳片の凝固完了位置を求める凝固完了位置演算部と、を備え、第1の横波超音波センサーの受信信号の強度の変化によって第1の横波超音波センサーの配置位置と鋳片の凝固完了位置とが一致したことが確認された時点での前記縦波超音波センサーからの信号に基づいて前記(1)式により算出される凝固完了位置が第1の横波超音波センサーの配置位置と合致し、且つ、第2の横波超音波センサーの受信信号の強度の変化によって第2の横波超音波センサーの配置位置と鋳片の凝固完了位置とが一致したことが確認された時点での前記縦波超音波センサーからの信号に基づいて前記(1)式により算出される凝固完了位置が第2の横波超音波センサーの配置位置と合致するように、前記(1)式が下記の(3)式及び下記の(4)式によって校正される凝固完了位置検知装置を用いて、連続鋳造鋳片の凝固完了位置を検出し、検出した凝固完了位置が予め設定されている基準位置となるように鋳造速度または二次冷却水量を変化させながら鋳造することを特徴とするものである。
CE=a 1 ・Δt+a 0 …(1)
但し、(1)式において、CEは鋳型内の溶鋼湯面から凝固完了位置までの距離、Δtは縦波超音波の伝播時間、a 1 及びa 0 は多項式の係数である。
CE 1 =a 1 ・Δt 1 +a 0 …(3)
CE 2 =a 1 ・Δt 2 +a 0 …(4)
但し、(3)式及び(4)式において、CE 1 は鋳型内の溶鋼湯面から第1の横波超音波センサーの配置位置までの距離、Δt 1 は凝固完了位置が第1の横波超音波センサーの配置位置を通過したと判定した時点の縦波超音波の伝播時間、CE 2 は鋳型内の溶鋼湯面から第2の横波超音波センサーの配置位置までの距離、Δt 2 は凝固完了位置が第2の横波超音波センサーの配置位置を通過したと判定した時点の縦波超音波の伝播時間である。
According to a second aspect of the present invention, there is provided a method for producing a continuous cast slab, wherein the first transverse wave ultrasonic sensor transmits a transverse wave ultrasonic wave to the continuous cast slab and receives the transmitted transverse wave ultrasonic wave, and the first transverse wave. Longitudinal wave ultrasonic waves transmitted and transmitted to continuous cast slabs installed at the same position in the slab width direction, which is located upstream of the casting direction of the continuous casting machine and in the casting direction of the continuous casting machine A transverse wave ultrasonic wave is transmitted to a continuous cast slab installed at the same position in the slab width direction downstream of the first transverse wave ultrasonic sensor in the casting direction of the longitudinal wave ultrasonic sensor that receives the sound wave; and Based on the second transverse wave ultrasonic sensor that receives the transmitted transverse wave ultrasonic wave and the received signal received by the longitudinal wave ultrasonic sensor, the solidification completion position of the slab is determined using the calculation formula shown in the following expression (1). A first coagulation completion position calculation unit, and a first transverse ultrasonic sensor. Based on a signal from the longitudinal wave ultrasonic sensor at the time when the solidification completion location of the position and the slab of the first transverse ultrasonic wave sensor by the change in the intensity of the received signal that matches were confirmed Sir The coagulation completion position calculated by the equation (1) matches the arrangement position of the first transverse wave ultrasonic sensor , and the second transverse wave ultrasonic wave is changed by the change in the intensity of the received signal of the second transverse wave ultrasonic sensor. The solidification completion position calculated by the equation (1) based on the signal from the longitudinal wave ultrasonic sensor at the time when it is confirmed that the sensor arrangement position and the solidification completion position of the slab coincide with each other is the second solidification position. Continuous casting slab by using a solidification completion position detecting device in which the equation (1) is calibrated by the following equation (3) and the following equation (4) so as to match the arrangement position of the transverse wave ultrasonic sensor: Detects solidification completion position , It is characterized in that the detected solidification completion position is cast while varying the casting speed or the secondary cooling water so that the reference position set in advance.
CE = a 1 · Δt + a 0 (1)
In Equation (1), CE is the distance from the molten steel surface in the mold to the solidification completion position, Δt is the propagation time of longitudinal ultrasonic waves, and a 1 and a 0 are polynomial coefficients.
CE 1 = a 1 · Δt 1 + a 0 (3)
CE 2 = a 1 · Δt 2 + a 0 (4)
In the equations (3) and (4), CE 1 is the distance from the molten steel surface in the mold to the position of the first transverse wave ultrasonic sensor, and Δt 1 is the first transverse wave ultrasonic wave at the solidification completion position. Longitudinal wave ultrasonic wave propagation time when it is determined that the sensor has passed the placement position, CE 2 is the distance from the molten steel surface in the mold to the second transverse wave ultrasonic sensor placement position, and Δt 2 is the solidification completion position Is the propagation time of longitudinal ultrasonic waves at the time when it is determined that has passed the arrangement position of the second transverse wave ultrasonic sensor.

第3の発明に係る連続鋳造鋳片の製造方法は、第1または第2の発明において、前記凝固完了位置の基準位置を、鋳片に対して軽圧下が可能な軽圧下帯の範囲内に設定することを特徴とするものである。   According to a third aspect of the present invention, there is provided a method for producing a continuous cast slab according to the first or second invention, wherein the reference position of the solidification completion position is within a range of a light pressure lowering zone capable of light pressure reduction with respect to the slab. It is characterized by setting.

第4の発明に係る連続鋳造鋳片の製造方法は、第1または第2の発明において、前記凝固完了位置の基準位置を、連続鋳造機の機端から5m以内の範囲に設定することを特徴とするものである。   According to a fourth aspect of the present invention, there is provided the method for producing a continuous cast slab according to the first or second aspect, wherein the reference position of the solidification completion position is set within a range of 5 m from the end of the continuous caster. It is what.

尚、本発明における鋳片幅方向の同一位置とは、凝固完了位置の鋳造方向の変化がほとんど無いと見なせる範囲内を意味するものとする。スラブ連続鋳造機では、凝固完了位置が鋳片の幅方向で異なる場合もあるので、横波超音波センサーと縦波超音波センサーとで検出する凝固完了位置が同一であるか、或いは、凝固完了位置に鋳造方向の変化が生じたとしても変化の差がほとんど無いと見なせる幅方向の範囲内に横波超音波センサー及び縦波超音波センサーを配置する必要がある。具体的には、凝固完了位置の鋳片幅方向の形状を平坦と見なせる場合には、数100mm離れていてもよく、逆に、凝固完了位置の鋳片幅方向の形状が大きく変化している場合には、数10mm以内とする必要がある。これは、この目的に用いられる超音波の波長が数10mmであり、且つセンサーの大きさが数10mm程度であることから、回折の影響も考慮すると、数10mm以内であれば同一位置と見なすことができるからである。また、連続鋳造機の同一位置とは、鋳片幅方向が同一位置であるのみならず、鋳造方向にも同一位置であるという意味である。鋳造方向に同一位置とは、センサーを配置する鋳片支持ロール間隙の位置が同一であるという意味である。   In the present invention, the same position in the slab width direction means a range in which it can be considered that there is almost no change in the casting direction at the solidification completion position. In slab continuous casting machines, the solidification completion position may differ in the width direction of the slab, so the solidification completion position detected by the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor is the same, or the solidification completion position Even if there is a change in the casting direction, it is necessary to arrange the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor within a range in the width direction where it can be considered that there is almost no difference in change. Specifically, when the shape in the slab width direction at the solidification completion position can be regarded as flat, it may be several hundred mm away, and conversely, the shape in the slab width direction at the solidification completion position is greatly changed. In some cases, it is necessary to make it within several tens of mm. This is because the wavelength of the ultrasonic wave used for this purpose is several tens of millimeters and the size of the sensor is about several tens of millimeters. Therefore, if the influence of diffraction is taken into consideration, it is regarded as the same position within several tens of millimeters. Because you can. Moreover, the same position of the continuous casting machine means that not only the slab width direction is the same position but also the same position in the casting direction. The same position in the casting direction means that the positions of the slab support roll gaps where the sensors are arranged are the same.

本発明によれば、鋳片の凝固完了位置を横波超音波センサーによって検出した時点で、縦波超音波センサーで測定された縦波超音波の伝播時間から求められる凝固完了位置を校正するので、鋳片への鋲打ち込みなどの手間のかかる校正作業を施すことなく、横波超音波センサー及び縦波超音波センサーの測定値のみから鋳片の凝固完了位置を精度良く検知することが可能となる。これにより、全ての鋼種の様々な鋳造条件において凝固完了位置を鋳造中に精度良く把握すると同時にその位置を制御することが可能となり、鋳片の中心偏析の低減、並びに、鋳造速度上限値までの増速による生産性の向上などが可能となり、工業上有益な効果がもたらされる。   According to the present invention, when the solidification completion position of the slab is detected by the transverse wave ultrasonic sensor, the solidification completion position obtained from the propagation time of the longitudinal ultrasonic wave measured by the longitudinal wave ultrasonic sensor is calibrated. It is possible to accurately detect the solidification completion position of the slab from only the measurement values of the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor, without performing laborious calibration work such as hammering into the slab. This makes it possible to accurately grasp the solidification completion position during casting under various casting conditions for all steel types, and at the same time to control the position, reducing the center segregation of the slab and reducing the casting speed to the upper limit. Productivity can be improved by increasing the speed, resulting in industrially beneficial effects.

以下、添付図面を参照して本発明を具体的に説明する。先ず、凝固完了位置検知装置を構成する横波超音波センサーと縦波超音波センサーとが同一位置に配置されたスラブ連続鋳造機における第1の実施の形態について説明する。図1は、本発明の第1の実施の形態例を示す図であって、本発明を実施したスラブ連続鋳造機の概略図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. First, a first embodiment of a slab continuous casting machine in which a transverse wave ultrasonic sensor and a longitudinal wave ultrasonic sensor constituting a solidification completion position detection device are arranged at the same position will be described. FIG. 1 is a diagram showing a first embodiment of the present invention, and is a schematic view of a slab continuous casting machine in which the present invention is implemented.

図1において、1は鋳片、2は固相部、3は液相部、4は凝固完了位置であり、連続鋳造機の鋳型101に注入された溶鋼は、鋳型101によって冷却されて鋳型101と接触する部位に固相部2を形成し、周囲を固相部2とし、内部を未凝固の液相部3とする鋳片1は、鋳型101の下方に対抗して配置された複数対の鋳片支持ロール102に支持されつつ鋳型101の下方に引き抜かれる。鋳造方向に隣り合う鋳片支持ロール102の間隙には、鋳片1の表面に向けて冷却水を吹き付けるエアーミストスプレーノズルや水スプレーノズルなどからなる二次冷却帯(図示せず)が設置されており、鋳片1は鋳造方向下流側に引き抜かれながら二次冷却帯で冷却され、中心部まで完全に凝固する。この中心部まで完全に凝固した位置が凝固完了位置4である。凝固が完了した鋳片1は、鋳片支持ロール102の下流側に設置された鋳片切断機104で所定の長さに切断され、鋳片1Aとして搬送用ロール103によって搬出される。   In FIG. 1, 1 is a slab, 2 is a solid phase part, 3 is a liquid phase part, and 4 is a solidification completion position. The molten steel injected into the mold 101 of the continuous casting machine is cooled by the mold 101 and is cast into the mold 101. The slab 1 having a solid phase part 2 formed in a part in contact with the solid part, the solid part 2 as a periphery, and an unsolidified liquid phase part 3 as an inside is formed of a plurality of pairs arranged opposite to the lower side of the mold 101. It is pulled out below the mold 101 while being supported by the slab support roll 102. In the gap between the slab support rolls 102 adjacent to each other in the casting direction, a secondary cooling zone (not shown) including an air mist spray nozzle and a water spray nozzle that sprays cooling water toward the surface of the slab 1 is installed. The slab 1 is cooled in the secondary cooling zone while being drawn out downstream in the casting direction, and is completely solidified to the center. The solidified position 4 is a position where the solidified portion is completely solidified. The slab 1 that has been solidified is cut to a predetermined length by a slab cutting machine 104 installed on the downstream side of the slab support roll 102, and is carried out as a slab 1A by a transport roll 103.

鋳片支持ロール102のうちの一部には、対向するロール間の間隔(「ロール間隔」という)が鋳片1の鋳造方向下流側に向かって徐々に狭くなるように設定され、鋳片1に対して圧下力を付与することの可能な支持ロール102の群、即ち、軽圧下帯105が設置されている。凝固末期の鋳片1を圧下することにより、凝固収縮に基づく濃化溶鋼の流動を抑えて、中心偏析を改善することができる。この軽圧下帯105におけるロール間隔の勾配は、鋳片1の圧下速度が0.6〜1.5mm/minの範囲になる程度に設定すればよい。圧下速度が0.6mm/min未満では、偏析を軽減する効果が少なく、一方、圧下速度が1.5mm/minを越えると、濃化溶鋼が鋳造方向とは逆方向に絞り出され、鋳片中心部には負偏析が生成される虞があるからである。また、総圧下量は2〜6mmで十分である。   A part of the slab support roll 102 is set such that a gap between opposing rolls (referred to as “roll interval”) is gradually narrowed toward the downstream side in the casting direction of the slab 1. A group of support rolls 102 that can apply a reduction force to the surface, that is, a light reduction belt 105 is installed. By reducing the slab 1 at the end of solidification, the flow of the concentrated molten steel based on the solidification shrinkage can be suppressed and the center segregation can be improved. What is necessary is just to set the gradient of the roll space | interval in this light reduction belt 105 to the grade from which the reduction speed of the slab 1 becomes the range of 0.6-1.5 mm / min. When the rolling speed is less than 0.6 mm / min, the effect of reducing segregation is small. On the other hand, when the rolling speed exceeds 1.5 mm / min, the concentrated molten steel is squeezed in the direction opposite to the casting direction, and the slab This is because negative segregation may be generated at the center. Moreover, 2-6 mm is sufficient for the total amount of rolling reduction.

このような構成のスラブ連続鋳造機において、鋳片1の凝固完了位置4を検出するための凝固完了位置検知装置が配置されている。凝固完了位置検知装置は、鋳片1を挟んで対向配置させた横波超音波送信器6及び横波超音波受信器8からなる横波超音波センサーと、鋳片1を挟んで対向配置させた縦波超音波送信器7及び縦波超音波受信器9からなる縦波超音波センサーと、横波超音波送信器6及び縦波超音波送信器7へ電気信号を与えて鋳片1に超音波を送出するための電気回路である超音波送信部5と、横波超音波受信器8及び縦波超音波受信器9にて受信した受信信号を処理するための横波透過強度検出部10、凝固完了位置到達検出部11、縦波伝播時間検出部12及び凝固完了位置演算部13と、を備えている。横波超音波送信器6及び縦波超音波送信器7にて送出された超音波は鋳片1を透過し、横波超音波受信器8及び縦波超音波受信器9でそれぞれ受信され、電気信号に変換される。   In the slab continuous casting machine having such a configuration, a solidification completion position detecting device for detecting the solidification completion position 4 of the slab 1 is arranged. The solidification completion position detecting device includes a transverse wave ultrasonic sensor composed of a transverse wave ultrasonic transmitter 6 and a transverse wave ultrasonic receiver 8 disposed opposite to each other with the slab 1 interposed therebetween, and a longitudinal wave disposed oppositely across the slab 1. An ultrasonic wave is sent to the slab 1 by supplying an electrical signal to the longitudinal wave ultrasonic sensor including the ultrasonic transmitter 7 and the longitudinal wave ultrasonic receiver 9, and the transverse wave ultrasonic transmitter 6 and the longitudinal wave ultrasonic transmitter 7. An ultrasonic transmission unit 5 that is an electric circuit for performing the processing, a transverse wave transmission intensity detection unit 10 for processing reception signals received by the transverse wave ultrasonic receiver 8 and the longitudinal wave ultrasonic receiver 9, and arrival of a coagulation completion position A detection unit 11, a longitudinal wave propagation time detection unit 12, and a coagulation completion position calculation unit 13 are provided. The ultrasonic waves transmitted by the transverse wave ultrasonic transmitter 6 and the longitudinal wave ultrasonic transmitter 7 are transmitted through the slab 1 and received by the transverse wave ultrasonic receiver 8 and the longitudinal wave ultrasonic receiver 9, respectively. Is converted to

横波透過強度検出部10は、横波超音波受信器8により受信された横波超音波信号の強度を検出する装置で、凝固完了位置到達検出部11は、横波透過強度検出部10にて検出された横波超音波の透過信号の変化から、凝固完了位置4が横波超音波送信器6及び横波超音波受信器8の配置位置よりも鋳造方向の上流側か、或いは下流側かを判定する装置である。また、縦波伝播時間検出部12は、縦波超音波受信器9にて受信した受信信号から鋳片1を透過する縦波超音波の伝播時間を検出する装置であり、凝固完了位置演算部13は、縦波伝播時間検出部12で検出された縦波超音波の伝播時間から凝固完了位置4を演算して求める装置である。ここで、横波透過強度検出部10、凝固完了位置到達検出部11、縦波伝播時間検出部12及び凝固完了位置演算部13は、計算機にて演算される。尚、横波超音波受信器8及び縦波超音波受信器9とこの計算機との間には、超音波信号増幅器や波形を計算機に取り込むためのA/D変換器などが必要であるが、図中では省略している。また、図1に示す凝固完了位置検知装置においては、横波超音波送信器6と縦波超音波送信器7とが一体的に構成され、同様に、横波超音波受信器8と縦波超音波受信器9とが一体的に構成されている。   The transverse wave transmission intensity detection unit 10 is an apparatus for detecting the intensity of the transverse wave ultrasonic signal received by the transverse wave ultrasonic receiver 8, and the coagulation completion position arrival detection unit 11 is detected by the transverse wave transmission intensity detection unit 10. It is an apparatus for determining whether the coagulation completion position 4 is upstream or downstream in the casting direction with respect to the arrangement position of the transverse wave ultrasonic transmitter 6 and the transverse wave ultrasonic receiver 8 from the change in the transmission signal of the transverse wave ultrasonic wave. . The longitudinal wave propagation time detection unit 12 is a device that detects the propagation time of longitudinal wave ultrasonic waves that pass through the slab 1 from the reception signal received by the longitudinal wave ultrasonic receiver 9, and is a coagulation completion position calculation unit. Reference numeral 13 denotes an apparatus for calculating and determining the coagulation completion position 4 from the propagation time of the longitudinal wave ultrasonic wave detected by the longitudinal wave propagation time detection unit 12. Here, the transverse wave transmission intensity detection unit 10, the coagulation completion position arrival detection unit 11, the longitudinal wave propagation time detection unit 12, and the coagulation completion position calculation unit 13 are calculated by a computer. Note that an ultrasonic signal amplifier and an A / D converter for taking a waveform into the computer are required between the transverse wave ultrasonic receiver 8 and the longitudinal wave ultrasonic receiver 9 and the computer. It is omitted inside. Moreover, in the coagulation completion position detection apparatus shown in FIG. 1, the transverse wave ultrasonic transmitter 6 and the longitudinal wave ultrasonic transmitter 7 are integrally configured, and similarly, the transverse wave ultrasonic receiver 8 and the longitudinal wave ultrasonic wave are formed. The receiver 9 is integrally formed.

横波超音波送信器6と縦波超音波送信器7、並びに、横波超音波受信器8と縦波超音波受信器9とが一体的に構成される例を、図2を参照して説明する。図2は、縦波超音波と横波超音波とを同一位置で発生・検出するための電磁超音波センサーの構成と動作について説明する図である。   An example in which the transverse wave ultrasonic transmitter 6 and the longitudinal wave ultrasonic transmitter 7 and the transverse wave ultrasonic receiver 8 and the longitudinal wave ultrasonic receiver 9 are integrally configured will be described with reference to FIG. . FIG. 2 is a diagram illustrating the configuration and operation of an electromagnetic ultrasonic sensor for generating and detecting longitudinal and transverse ultrasonic waves at the same position.

図2において31は磁石である。これは永久磁石でも電磁石でもどちらでも構わないが、永久磁石の方が電磁超音波センサーを小型化することができることから好ましい。32は、縦波用コイルであり、内側の磁極の周囲を巻くように配置したパンケーキコイルである。一方、33は、横波用コイルであり、磁極面と重なるように配置したパンケーキコイルである。34は、磁石31からの磁力線を示したものである。35及び36は、それぞれ縦波用コイル32及び横波用コイル33から鋳片1に生ずる渦電流を示したものであり、渦電流35及び渦電流36は、超音波送信部5から縦波用コイル32及び横波用コイル33に高周波電流が流されることによって発生する。   In FIG. 2, 31 is a magnet. This may be either a permanent magnet or an electromagnet, but a permanent magnet is preferred because the electromagnetic ultrasonic sensor can be miniaturized. Reference numeral 32 denotes a longitudinal wave coil, which is a pancake coil arranged so as to wind around the inner magnetic pole. On the other hand, 33 is a coil for transverse waves, which is a pancake coil arranged so as to overlap the magnetic pole surface. Reference numeral 34 denotes magnetic lines of force from the magnet 31. Reference numerals 35 and 36 denote eddy currents generated in the slab 1 from the longitudinal wave coil 32 and the transverse wave coil 33, respectively. The eddy current 35 and the eddy current 36 are transmitted from the ultrasonic transmission unit 5 to the longitudinal wave coil. It is generated when a high frequency current is passed through the coil 32 and the transverse wave coil 33.

鋳片1に生じた渦電流35及び渦電流36は、磁力線34で示される磁石31からの静磁場との間にローレンツ力を発生させ、これによって縦波超音波37及び横波超音波38が発生する。超音波の受信については送信の逆作用であり、静磁場中の鋳片1が超音波によって振動することにより、鋳片1に渦電流が生じることを縦波用コイル32及び横波用コイル33で検知するものであり、送信と全く同じ構成を用いることができる。   The eddy current 35 and the eddy current 36 generated in the slab 1 generate a Lorentz force between the eddy current 35 and the static magnetic field from the magnet 31 indicated by the lines of magnetic force 34, thereby generating a longitudinal wave ultrasonic wave 37 and a transverse wave ultrasonic wave 38. To do. The reception of ultrasonic waves is the reverse action of transmission, and the fact that the slab 1 in a static magnetic field vibrates due to ultrasonic waves, and that an eddy current is generated in the slab 1 by the longitudinal wave coil 32 and the transverse wave coil 33. It is to be detected, and the same configuration as the transmission can be used.

連続鋳造機の隣り合う鋳片支持ロール間の間隙で、同一位置に縦波と横波とを発生・検出するためには、狭いロール間の間隙(一般に40〜75mm)に挿入可能な小型の電磁超音波センサーが必要である。電磁超音波センサーはよく知られているが、従来、この目的に見合った、縦波超音波と横波超音波とを同一箇所で発生・検出できる小型の電磁超音波センサーは提案されていない。本発明では、図2に示すように、鋳片1の幅方向に磁石31を並べる構成としたことで、磁極を3つまたは3つ以上設けることが可能となり、鋳片支持ロール102の狭い間隙に電磁超音波センサーを挿入することが可能となった上に、縦波超音波と横波超音波とを同一箇所で発生・検出することが可能となった。また、センサーの設置数が減ることにより、設置コストの削減のみならず保守点検のコストも削減することができる。   In order to generate and detect longitudinal and transverse waves at the same position in the gap between adjacent slab support rolls of a continuous casting machine, a small electromagnetic that can be inserted into the gap between narrow rolls (generally 40 to 75 mm) An ultrasonic sensor is required. Electromagnetic ultrasonic sensors are well known, but no small electromagnetic ultrasonic sensor that can generate and detect longitudinal and transverse ultrasonic waves at the same location has been proposed. In the present invention, as shown in FIG. 2, by arranging the magnets 31 in the width direction of the slab 1, it is possible to provide three or more magnetic poles, and a narrow gap between the slab support rolls 102. In addition to inserting an electromagnetic ultrasonic sensor, longitudinal and transverse ultrasonic waves can be generated and detected at the same location. Further, by reducing the number of sensors installed, it is possible to reduce not only the installation cost but also the maintenance inspection cost.

この電磁超音波センサーの具体的な形状としては、磁極の面積は10mm×10mm〜30mm×30mm程度の範囲が望ましく、磁極の間隔は5mm〜30mm程度の範囲が適当であり、磁極間の水平磁場が0.1T以上となる磁力を有することが適当である。磁石31として永久磁石を用いる場合には、希土類系磁石を用いることが望ましく、高さは20mm〜100mm程度あればよい。コイルの巻き数は10ターン〜100ターン程度の範囲が適当である。また、鋳造方向でコイルが磁極からはみ出る部分については、コイルを折り曲げることによって鋳造方向のセンサー幅を狭くすることができるが、磁極から直ちに折り曲げると、鋳造方向へ向かう水平磁場を有効に活用することができなくなり、感度が低下するため、磁極から5mm程度はみ出してから折り曲げるとよい。はみ出す幅は、3mm程度では感度低下を防止する効果が少なく、10mm以上ではセンサーの鋳造方向の幅を狭くする上では余り意味がないため、従って、3mm〜10mm程度が適当である。   As a specific shape of this electromagnetic ultrasonic sensor, the area of the magnetic pole is preferably in the range of about 10 mm × 10 mm to 30 mm × 30 mm, and the interval of the magnetic pole is suitably in the range of about 5 mm to 30 mm. It is appropriate to have a magnetic force of 0.1 T or more. When a permanent magnet is used as the magnet 31, it is desirable to use a rare earth magnet, and the height may be about 20 mm to 100 mm. The number of turns of the coil is suitably in the range of about 10 to 100 turns. In addition, for the part where the coil protrudes from the magnetic pole in the casting direction, the sensor width in the casting direction can be narrowed by bending the coil. Therefore, it may be bent after protruding about 5 mm from the magnetic pole. The protruding width is about 3 mm, and the effect of preventing the sensitivity from being lowered is small, and if it is 10 mm or more, there is not much meaning in narrowing the width in the casting direction of the sensor, so about 3 mm to 10 mm is appropriate.

このような電磁超音波センサーを用いる場合、電気回路に要求される仕様としては、送信信号の電圧はおよそ1kV以上(電流では20A以上)、受信アンプのゲインは60dB〜80dB以上あれば発生・検出が可能であり、送信信号の周波数は、横波用は50kHz〜150kHz、縦波用は100kHz〜400kHz程度の範囲が適当である。送信信号波形としては、正弦波を短時間発生させたトーンバースト波や、所定時間幅内で振幅や位相を変化させたチャープ波などの変調信号の何れでも構わない。   When such an electromagnetic ultrasonic sensor is used, the specifications required for an electric circuit are generated and detected if the voltage of the transmission signal is about 1 kV or more (current is 20 A or more) and the gain of the receiving amplifier is 60 dB to 80 dB or more. The frequency of the transmission signal is suitably in the range of about 50 kHz to 150 kHz for the transverse wave and about 100 kHz to 400 kHz for the longitudinal wave. The transmission signal waveform may be a tone burst wave in which a sine wave is generated for a short time, or a modulation signal such as a chirp wave in which the amplitude or phase is changed within a predetermined time width.

尚、横波超音波センサーと縦波超音波センサーとを連続鋳造機の同一位置に配置する場合、必ずしも縦波超音波と横波超音波とを同一位置で発生・検出させる電磁超音波センサーを使用する必要はなく、横波超音波センサーと縦波超音波センサーとの配置間隔が、凝固完了位置4の鋳造方向の変化がほとんど無いと見なせる範囲内であるならば、具体的には数10mm以内であるならば、横波超音波センサーと縦波超音波センサーとを別々に配置してもよい。   In addition, when the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor are arranged at the same position of the continuous casting machine, the electromagnetic ultrasonic sensor that always generates and detects the longitudinal wave ultrasonic wave and the transverse wave ultrasonic wave is used. There is no need, and if the arrangement interval between the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor is within a range in which it is considered that there is almost no change in the casting direction of the solidification completion position 4, it is specifically within several tens of mm. If so, the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor may be arranged separately.

以下、受信した信号の処理方法について説明する。先ず、横波透過強度検出部10の動作について図3を参照して説明する。   Hereinafter, a method for processing the received signal will be described. First, the operation of the transverse wave transmission intensity detector 10 will be described with reference to FIG.

図3は、横波透過強度検出部10の動作を示す図で、送信信号の1発分に対応した受信信号波形を示している。図3中の最初の波は、送信信号が電気的に横波超音波受信器8に漏れ込んだものであり、2番目の波が横波超音波の透過信号である。ここで、横波超音波の透過信号が現れる時間位置は、鋳片1の厚み、鋳片1のおよその温度、及び横波超音波の伝播速度から、大まかに既知であるので、その位置の信号だけを取り出すゲートを設け、そのゲート内の信号の最大値を求めるようにする。この処理は、受信信号の波形をA/D変換で計算機内に取り込むことにより、計算処理で容易に実現することができる。信号の最大値の取り方としては、0Vを基準にした絶対値でも、また、ピークトゥーピーク値でも何れでもよい。尚、実際には、送信信号は数10Hz〜数100Hzの周期で繰り返されるので、その一つ一つの波形を平均化してから横波超音波の透過強度を求めたり、一つ一つの波形の透過強度を平均化したりして、ノイズによる揺らぎの影響を少なくすることが有効である。   FIG. 3 is a diagram showing the operation of the transverse wave transmission intensity detection unit 10 and shows a received signal waveform corresponding to one transmission signal. The first wave in FIG. 3 is a signal in which the transmission signal leaks into the transverse wave ultrasonic receiver 8 electrically, and the second wave is a transmission signal of the transverse wave ultrasonic wave. Here, the time position at which the transmission signal of the transverse wave ultrasonic wave appears is roughly known from the thickness of the slab 1, the approximate temperature of the slab 1, and the propagation velocity of the transverse wave ultrasonic wave. Is provided, and the maximum value of the signal in the gate is obtained. This processing can be easily realized by calculation processing by taking the waveform of the received signal into the computer by A / D conversion. As a method of taking the maximum value of the signal, either an absolute value based on 0 V or a peak-to-peak value may be used. Actually, since the transmission signal is repeated with a period of several tens of Hz to several hundreds of Hz, the transmission intensity of the transverse ultrasonic wave is obtained after averaging each waveform, or the transmission intensity of each waveform. It is effective to reduce the influence of fluctuation caused by noise.

次いで、凝固完了位置到達検出部11の動作について図4を参照して説明する。図4は、凝固完了位置到達検出部11の動作の1例を示す図で、連続鋳造操業の数10分間にわたって鋳造条件を変化させながら、横波透過強度検出部10から送られてくる横波超音波の透過信号の強度を検出したチャート図である。   Next, the operation of the solidification completion position arrival detection unit 11 will be described with reference to FIG. FIG. 4 is a diagram showing an example of the operation of the solidification completion position arrival detection unit 11. The transverse wave ultrasonic wave sent from the transverse wave transmission intensity detection unit 10 while changing the casting conditions over several tens of minutes of continuous casting operation. It is the chart which detected the intensity | strength of the transmitted signal of.

図4に示すように、連続鋳造操業の鋳造条件の変化に応じて横波超音波の透過信号の強度は変化する。図4中のA及びBの範囲では透過信号の強度は非常に小さくなっており、凝固完了位置4が横波超音波送信器6及び横波超音波受信器8の配置位置よりも鋳造方向の下流側に存在する状態を表している。凝固完了位置到達検出部11では、透過信号の強度が所定の判定しきい値を横切った時点で、凝固完了位置4が横波超音波センサーの配置位置を通過したと判定する。この判定しきい値は、予め定めた固定値でも、或いは横波超音波の透過信号が現れない時間領域の信号レベルからノイズレベルを求め、その値を用いた変動しきい値でも、どちらでも構わない。凝固完了位置到達検出部11は、このようにして凝固完了位置4が横波超音波センサーの配置位置を通過したと判定すると、凝固完了位置演算部13へタイミング信号を送出する。   As shown in FIG. 4, the intensity of the transmitted signal of the transverse ultrasonic wave changes according to the change in the casting conditions of the continuous casting operation. In the range of A and B in FIG. 4, the intensity of the transmission signal is very small, and the coagulation completion position 4 is downstream in the casting direction from the arrangement position of the transverse wave ultrasonic transmitter 6 and the transverse wave ultrasonic receiver 8. Represents the state that exists. The coagulation completion position arrival detection unit 11 determines that the coagulation completion position 4 has passed the arrangement position of the transverse wave ultrasonic sensor when the intensity of the transmission signal crosses a predetermined determination threshold value. This determination threshold value may be either a predetermined fixed value or a fluctuation threshold value obtained by obtaining a noise level from a signal level in a time domain where a transmission signal of a transverse wave ultrasonic wave does not appear. . When the coagulation completion position arrival detection unit 11 determines that the coagulation completion position 4 has passed the arrangement position of the transverse wave ultrasonic sensor in this way, the coagulation completion position arrival detection unit 11 sends a timing signal to the coagulation completion position calculation unit 13.

次ぎに、縦波伝播時間検出部12の動作について図5を参照して説明する。図5は、縦波伝播時間検出部12の動作を示す図で、送信信号の1発分に対応した受信信号の波形を示す図である。図5中の最初の波は、送信信号が電気的に縦波超音波受信器9に漏れ込んだものであり、2番目の波が縦波超音波の透過信号である。ここで、縦波伝播時間検出部12は、送信信号の送出タイミングから縦波超音波の透過信号の出現タイミングまでの時間を検出する。縦波超音波の透過信号の検出方法としては、図5に示すように、しきい値以上になる時点としても、或いはゲート内の最大値となる時点としても、どちらでもよい。この処理は、横波透過強度検出部10と同様に、受信信号の波形をA/D変換で計算機内に取り込むことにより、計算処理で容易に実現することができる。また、実際には、送信信号は数10Hz〜数100Hzの周期で繰り返されるので、その一つ一つの波形を平均化してから縦波超音波の伝播時間を求めたり、一つ一つの波形の伝播時間を平均化したりして、ノイズによる揺らぎの影響を少なくすることが有効である。   Next, the operation of the longitudinal wave propagation time detector 12 will be described with reference to FIG. FIG. 5 is a diagram illustrating the operation of the longitudinal wave propagation time detection unit 12, and is a diagram illustrating a waveform of a reception signal corresponding to one transmission signal. The first wave in FIG. 5 is a transmission signal that has leaked into the longitudinal wave ultrasonic receiver 9 electrically, and the second wave is a transmission signal of the longitudinal wave ultrasonic wave. Here, the longitudinal wave propagation time detector 12 detects the time from the transmission timing of the transmission signal to the appearance timing of the transmission signal of the longitudinal ultrasonic wave. As a method for detecting a transmission signal of longitudinal ultrasonic waves, as shown in FIG. 5, either the time when the threshold value is exceeded or the time when the maximum value in the gate is reached may be used. Similar to the transverse wave transmission intensity detection unit 10, this processing can be easily realized by calculation processing by taking the waveform of the received signal into the computer by A / D conversion. In practice, the transmission signal is repeated with a period of several tens of Hz to several hundreds of Hz, so that each waveform is averaged and then the propagation time of longitudinal ultrasonic waves is obtained, and the propagation of each waveform is performed. It is effective to reduce the influence of fluctuation due to noise by averaging time.

最後に、凝固完了位置演算部13の動作について図6を参照して説明する。図6は、第1の実施の形態例における凝固完了位置演算部13の動作を示す図で、縦波超音波の伝播時間から凝固完了位置4を算出する近似式を図示したものである。凝固完了位置4が縦波超音波送信器7及び縦波超音波受信器9の配置位置よりも鋳造方向の下流側になるほど、液相部3の厚みが増大するため、伝播時間は長くなる。従って、伝播時間と、鋳型101内の溶鋼湯面14から凝固完了位置4までの距離とはおよそ比例関係になり、図6のような関係を示す。そこで、伝播時間から凝固完了位置4を求めるには、多項式の近似式、例えば下記の(1)式に示す一次式などを用いればよい。但し、(1)式において、CEは鋳型内の溶鋼湯面14から凝固完了位置4までの距離、Δtは縦波超音波の伝播時間、a1 及びa0 は多項式の係数である。 Finally, the operation of the coagulation completion position calculation unit 13 will be described with reference to FIG. FIG. 6 is a diagram illustrating the operation of the coagulation completion position calculation unit 13 in the first embodiment, and illustrates an approximate expression for calculating the coagulation completion position 4 from the propagation time of longitudinal wave ultrasonic waves. As the solidification completion position 4 is further downstream in the casting direction than the arrangement position of the longitudinal wave ultrasonic transmitter 7 and the longitudinal wave ultrasonic receiver 9, the thickness of the liquid phase portion 3 increases, and the propagation time becomes longer. Therefore, the propagation time and the distance from the molten steel surface 14 in the mold 101 to the solidification completion position 4 are approximately proportional to each other, and the relationship shown in FIG. 6 is shown. Accordingly, in order to obtain the solidification completion position 4 from the propagation time, an approximate expression of a polynomial, for example, a linear expression shown in the following expression (1) may be used. In Equation (1), CE is the distance from the molten steel surface 14 in the mold to the solidification completion position 4, Δt is the propagation time of longitudinal ultrasonic waves, and a 1 and a 0 are polynomial coefficients.

Figure 0004453556
Figure 0004453556

図6中、Aで示す線は校正前の近似式を表している。ここで、凝固完了位置到達検出部11から凝固完了位置4の通過判定のタイミング信号が凝固完了位置演算部13に送出されると、凝固完了位置演算部13では、その時点における縦波超音波の伝播時間(Δt1 )を求め、更に、鋳型内の溶鋼湯面14から凝固完了位置4までの距離(CE)が、横波超音波センサーの配置位置と合致するように、下記の(2)式を用いて(1)式の係数(a0 )を修正する。但し、(2)式において、CE1 は鋳型内の溶鋼湯面14から横波超音波センサーの配置位置までの距離、Δt1 は凝固完了位置4が横波超音波センサーの配置位置を通過したと判定した時点の縦波超音波の伝播時間である。 In FIG. 6, a line indicated by A represents an approximate expression before calibration. Here, when the timing signal for determining the passage of the coagulation completion position 4 is sent from the coagulation completion position arrival detection unit 11 to the coagulation completion position calculation unit 13, the coagulation completion position calculation unit 13 transmits the longitudinal wave ultrasonic wave at that time. The propagation time (Δt 1 ) is obtained, and further, the following equation (2) is established so that the distance (CE) from the molten steel surface 14 in the mold to the solidification completion position 4 matches the position of the transverse ultrasonic sensor. Is used to correct the coefficient (a 0 ) in equation (1). However, in the formula (2), CE 1 is the distance from the molten steel surface 14 in the mold to the position where the transverse ultrasonic sensor is arranged, and Δt 1 is determined that the solidification completion position 4 has passed the arrangement position of the transverse wave ultrasonic sensor. It is the propagation time of the longitudinal ultrasonic wave at the time.

Figure 0004453556
Figure 0004453556

これによって、凝固完了位置4を求める近似式は校正され、例えば図6中にBで示す校正後となる。校正後は、Bで示す校正後の近似式を用いて、縦波超音波の伝播時間に基づいて精度良く凝固完了位置4を鋳造中にオンラインで検知することが可能となる。   As a result, the approximate expression for determining the solidification completion position 4 is calibrated, for example, after calibration indicated by B in FIG. After calibration, the solidification completion position 4 can be detected on-line during casting with high accuracy based on the propagation time of longitudinal ultrasonic waves using the approximate expression after calibration indicated by B.

校正する時点は、新たな鋼種を鋳造する毎の1回だけでも、また、連続鋳造の操業中に横波超音波センサーの配置位置を凝固完了位置4が横切る毎に、或いは、操作員の判断による適当な時期の何れでもよい。   The calibration is performed only once every time a new steel type is cast, every time the solidification completion position 4 crosses the position of the transverse ultrasonic sensor during continuous casting operation, or at the discretion of the operator. Any suitable time may be used.

尚、縦波超音波と横波超音波とを同一位置で発生・検出するための電磁超音波センサーとして、前述した図2に示す電磁超音波センサーは磁極が3つであったが、磁極を4以上とすることもできる。図7は、縦波超音波と横波超音波とを同一位置で発生・検出するための電磁超音波センサーの磁極を4つとした例の構成を示す図である。図7では、実際には重なって配置される縦波用コイル32と横波用コイル33とを、磁極に対する配置が分かりやすくなるように、別々に描いており、図面の向かって左側が縦波用コイル32の配置図で、右側が横波用コイル33の配置図である。図2に示す電磁超音波センサーと同様に、縦波用コイル32は内側の磁極の周囲を巻くように配置され、横波用コイル33は磁極面と重なるように配置されている。磁極の数は4に限るものではなく、更に多くても実施可能である。このようにすると、縦波用コイル32に対する水平磁場の強度が高くなるため、縦波超音波の感度が高くなる上に、横波超音波と縦波超音波の発生・検出位置がほぼ等しくなるという効果がある。   As an electromagnetic ultrasonic sensor for generating and detecting longitudinal wave ultrasonic waves and transverse wave ultrasonic waves at the same position, the electromagnetic ultrasonic sensor shown in FIG. 2 has three magnetic poles. It can also be set as above. FIG. 7 is a diagram showing a configuration of an example in which four magnetic poles of an electromagnetic ultrasonic sensor for generating and detecting longitudinal wave ultrasonic waves and transverse wave ultrasonic waves at the same position are used. In FIG. 7, the longitudinal wave coil 32 and the transverse wave coil 33 that are actually arranged in an overlapping manner are drawn separately so that the arrangement with respect to the magnetic poles can be easily understood, and the left side of the drawing is for longitudinal waves. In the layout diagram of the coil 32, the right side is a layout diagram of the coil 33 for transverse waves. Similar to the electromagnetic ultrasonic sensor shown in FIG. 2, the longitudinal wave coil 32 is disposed so as to wrap around the inner magnetic pole, and the transverse wave coil 33 is disposed so as to overlap the magnetic pole surface. The number of magnetic poles is not limited to four and can be implemented even more. In this case, since the strength of the horizontal magnetic field with respect to the longitudinal wave coil 32 is increased, the sensitivity of longitudinal ultrasonic waves is increased and the generation / detection positions of the transverse ultrasonic waves and longitudinal ultrasonic waves are substantially equal. effective.

ところで、凝固完了位置4が縦波超音波センサーの配置位置よりも上流側の場合には、縦波超音波は全て固相部2を透過する。また、横波超音波も、縦波超音波と同一位置で発生・検出するため全て固相部2を透過する。この場合の伝播時間は固相部2における超音波の伝播速度に依存することになる。超音波の伝播速度は固相部2の温度に依存することから、縦波超音波及び横波超音波の伝播時間は鋳片1の温度によって変化することになる。一方、凝固完了位置4から電磁超音波センサーの配置位置までの距離が異なると電磁超音波センサーの配置位置における鋳片の温度は変化する。即ち、凝固完了位置4が電磁超音波センサーの配置位置から上流側に遠くなるほど電磁超音波センサーの配置位置における鋳片の温度は低下する。鋳片の温度が低いほど超音波の伝播速度は増加するため、伝播時間は短くなる。   By the way, when the coagulation completion position 4 is upstream of the position where the longitudinal wave ultrasonic sensor is disposed, all the longitudinal wave ultrasonic waves pass through the solid phase part 2. In addition, since the transverse wave ultrasonic waves are generated and detected at the same position as the longitudinal wave ultrasonic waves, they all pass through the solid phase part 2. The propagation time in this case depends on the propagation speed of the ultrasonic wave in the solid phase part 2. Since the propagation speed of the ultrasonic wave depends on the temperature of the solid phase part 2, the propagation time of the longitudinal wave ultrasonic wave and the transverse wave ultrasonic wave changes depending on the temperature of the slab 1. On the other hand, if the distance from the solidification completion position 4 to the electromagnetic ultrasonic sensor arrangement position is different, the temperature of the slab at the electromagnetic ultrasonic sensor arrangement position changes. That is, as the solidification completion position 4 becomes farther upstream from the position where the electromagnetic ultrasonic sensor is disposed, the temperature of the slab at the position where the electromagnetic ultrasonic sensor is disposed decreases. As the temperature of the slab is lower, the propagation speed of the ultrasonic wave increases, so the propagation time becomes shorter.

従って、凝固完了位置4が縦波超音波センサーの配置位置よりも上流側の場合においても、伝播時間と、溶鋼湯面14から凝固完了位置4までの距離との関係は、前述した図6に示すものと同様の傾向になる。しかしながら、凝固完了位置4が縦波超音波センサーの下流側に存在して伝播経路に液相部3が含まれる場合に較べると、固相部2に比べて伝播速度の遅い液相部3の影響がないため、凝固完了位置4が鋳造方向で変動しても、この変動の伝播時間に及ぼす影響は小さく、検出される伝播時間の変動率は小さい。   Accordingly, even in the case where the solidification completion position 4 is upstream of the arrangement position of the longitudinal wave ultrasonic sensor, the relationship between the propagation time and the distance from the molten steel surface 14 to the solidification completion position 4 is shown in FIG. The trend is similar to that shown. However, compared with the case where the solidification completion position 4 is present downstream of the longitudinal wave ultrasonic sensor and the liquid phase part 3 is included in the propagation path, the liquid phase part 3 having a slower propagation speed than the solid phase part 2 is present. Since there is no influence, even if the solidification completion position 4 fluctuates in the casting direction, the influence of this fluctuation on the propagation time is small, and the fluctuation rate of the detected propagation time is small.

そのため、凝固完了位置4が縦波超音波センサーの上流側に存在する場合と下流側に存在する場合とで、伝播時間から凝固完了位置4を求める際に使用する計算式を異なる式とすることが好ましい。   Therefore, the calculation formula used when obtaining the coagulation completion position 4 from the propagation time is different depending on whether the coagulation completion position 4 exists on the upstream side of the longitudinal wave ultrasonic sensor or on the downstream side. Is preferred.

具体的には、凝固完了位置4が縦波超音波センサーよりも上流側の場合には、伝播時間と凝固完了位置とを直接結び付けた実験式(図6に示すような式)を用いる方法、或いは、伝播時間から鋳片の内部温度または軸心温度を推定し、その値から凝固完了位置を推定する方法の何れでもよい。一方、凝固完了位置4が縦波超音波センサーよりも下流側の場合には、伝播時間と凝固完了位置とを直接結び付けた実験式(図6に示すような式)を用いる方法、或いは、伝播時間から固相部2の厚みまたは液相部3の厚みを推定し、その値から凝固完了位置を推定する方法の何れでもよい。図6に示すような実験式を用いる場合でも、凝固完了位置4が縦波超音波センサーよりも上流側の場合と下流側の場合とで、自ずと係数は異なってくる。   Specifically, when the coagulation completion position 4 is upstream of the longitudinal wave ultrasonic sensor, a method using an empirical formula (formula as shown in FIG. 6) that directly links the propagation time and the coagulation completion position. Alternatively, any method of estimating the internal temperature or axial temperature of the slab from the propagation time and estimating the solidification completion position from the value may be used. On the other hand, when the coagulation completion position 4 is on the downstream side of the longitudinal wave ultrasonic sensor, a method using an empirical formula (expression as shown in FIG. 6) in which the propagation time and the coagulation completion position are directly linked, or propagation Any method of estimating the thickness of the solid phase portion 2 or the thickness of the liquid phase portion 3 from the time and estimating the solidification completion position from the value may be used. Even when an empirical formula as shown in FIG. 6 is used, the coefficients are different depending on whether the coagulation completion position 4 is upstream or downstream of the longitudinal wave ultrasonic sensor.

これを実施するためには、凝固完了位置4が縦波超音波センサーの配置位置よりも上流側であるか下流側であるかを判別する必要があり、従って、この場合には、凝固完了位置到達検出部11では次の判定も実施する。即ち、横波超音波の透過強度が判定しきい値よりも大きければ凝固完了位置4は上流側と判定し、逆に、判定しきい値以下であれば凝固完了位置4は下流側と判定し、その信号を凝固完了位置演算部13に送出する。凝固完了位置演算部13では、その結果に基づき凝固完了位置4を計算するための計算式を選択し、選択した計算式を用いて凝固完了位置4を算出する。   In order to perform this, it is necessary to determine whether the coagulation completion position 4 is upstream or downstream of the arrangement position of the longitudinal wave ultrasonic sensor. Therefore, in this case, the coagulation completion position is determined. The arrival detection unit 11 also performs the following determination. That is, if the transmission intensity of the transverse wave ultrasonic wave is larger than the determination threshold value, the coagulation completion position 4 is determined to be upstream, and conversely if it is equal to or less than the determination threshold value, the coagulation completion position 4 is determined to be downstream. The signal is sent to the coagulation completion position calculation unit 13. The solidification completion position calculation unit 13 selects a calculation formula for calculating the solidification completion position 4 based on the result, and calculates the solidification completion position 4 using the selected calculation formula.

このようにして構成される連続鋳造機において、本発明による連続鋳造鋳片の製造方法を以下のようにして実施する。   In the continuous casting machine constructed as described above, the method for producing a continuous cast slab according to the present invention is carried out as follows.

浸漬ノズル(図示せず)を介して鋳型101に溶鋼を鋳造する。鋳型101に鋳造された溶鋼は鋳型101で冷却されて固相部2を形成し、内部に液相部3を有する鋳片1として、鋳片支持ロール102に支持されつつ下方に連続的に引き抜かれる。鋳片1は鋳片支持ロール102を通過する間、二次冷却帯で冷却され、固相部2の厚みを増大して、やがて中心部までの凝固を完了する。その際に、凝固完了位置検知装置により凝固完了位置4の位置を検出する。   Molten steel is cast on the mold 101 through an immersion nozzle (not shown). The molten steel cast in the mold 101 is cooled by the mold 101 to form the solid phase portion 2, and is continuously drawn downward while being supported by the slab support roll 102 as the slab 1 having the liquid phase portion 3 therein. It is. While the slab 1 passes through the slab support roll 102, it is cooled in the secondary cooling zone, the thickness of the solid phase part 2 is increased, and solidification to the center part is completed eventually. At that time, the position of the solidification completion position 4 is detected by the solidification completion position detection device.

鋳片1の中心偏析を低減するために鋳片1に対して軽圧下を施す場合には、以下の方法で対処する。即ち、凝固完了位置4を軽圧下帯105の範囲内に制御する必要があり、従って、凝固完了位置4の基準位置を軽圧下帯105の範囲内に設定し、凝固完了位置検知装置を用いて凝固完了位置4を軽圧下帯105の範囲内に制御する。   In order to reduce the center segregation of the slab 1, when the slab 1 is subjected to light reduction, the following method is used. That is, it is necessary to control the solidification completion position 4 within the range of the light pressure lower belt 105. Therefore, the reference position of the solidification completion position 4 is set within the range of the light pressure lower belt 105, and the solidification completion position detection device is used. The solidification completion position 4 is controlled within the range of the light pressure lower belt 105.

具体的には、凝固完了位置4が軽圧下帯105よりも上流側である場合には、鋳造速度を上昇させる若しくは二次冷却水量を減少させて、凝固完了位置4を鋳造方向下流側に延ばし、一方、凝固完了位置4が軽圧下帯105よりも下流側である場合には、鋳造速度を低下させる若しくは二次冷却水量を増加させて、凝固完了位置4を鋳造方向上流側に向かわせる。このように鋳造速度または二次冷却水量を調整することで、凝固完了位置4は軽圧下帯105の範囲内に制御され、中心偏析の少ない鋳片1Aを得ることができる。   Specifically, when the solidification completion position 4 is upstream of the light pressure lower belt 105, the casting speed is increased or the amount of secondary cooling water is decreased to extend the solidification completion position 4 downstream in the casting direction. On the other hand, when the solidification completion position 4 is downstream of the light pressure lower belt 105, the casting speed is decreased or the amount of secondary cooling water is increased so that the solidification completion position 4 is directed upstream in the casting direction. By adjusting the casting speed or the amount of secondary cooling water in this way, the solidification completion position 4 is controlled within the range of the light pressure lower belt 105, and a slab 1A with little center segregation can be obtained.

また、連続鋳造機の生産性を最大限発揮させる場合には、凝固完了位置4を連続鋳造機の機端即ち出側に位置させる必要があり、従って、凝固完了位置4の基準位置を、例えば機端から5m以内の範囲に設定し、検出される凝固完了位置4に応じて、凝固完了位置を鋳造方向下流側に延ばす場合には、鋳造速度を上昇させる若しくは二次冷却水量を減少させ、逆に、凝固完了位置4を鋳造方向上流側に向かわせる場合には、鋳造速度を低下させる若しくは二次冷却水量を増加させる。このように鋳造速度または二次冷却水量を調整することで、凝固完了位置4位置は連続鋳造機の出側に制御され、連続鋳造機の生産性を高めることができる。   Further, in order to maximize the productivity of the continuous casting machine, the solidification completion position 4 needs to be positioned at the machine end of the continuous casting machine, that is, the exit side. When the solidification completion position is extended to the downstream side in the casting direction according to the detected solidification completion position 4 within a range of 5 m from the machine end, the casting speed is increased or the amount of secondary cooling water is decreased, Conversely, when the solidification completion position 4 is directed upstream in the casting direction, the casting speed is reduced or the amount of secondary cooling water is increased. By adjusting the casting speed or the amount of secondary cooling water in this way, the solidification completion position 4 is controlled to the outlet side of the continuous casting machine, and the productivity of the continuous casting machine can be enhanced.

次いで、凝固完了位置検知装置を構成する横波超音波センサーと縦波超音波センサーとが連続鋳造機の鋳造方向に離れた2箇所の鋳片幅方向の同一位置に配置されたスラブ連続鋳造機における第2の実施の形態について説明する。図8は、本発明の第2の実施の形態例を示す図であって、本発明を実施したスラブ連続鋳造機の概略図である。   Next, in the slab continuous casting machine in which the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor constituting the solidification completion position detection device are arranged at the same position in the slab width direction at two locations separated in the casting direction of the continuous casting machine. A second embodiment will be described. FIG. 8 is a diagram showing a second embodiment of the present invention, and is a schematic view of a slab continuous casting machine in which the present invention is implemented.

第2の実施の形態では、図8に示すように、横波超音波送信器6及び横波超音波受信器8からなる横波超音波センサーと、縦波超音波送信器7及び縦波超音波受信器9からなる縦波超音波センサーとが鋳造方向の2箇所に別々に配置されている。この場合、横波超音波センサー及び縦波超音波センサーは、前述した図2に示すような縦波超音波と横波超音波とを同一位置で発生・検出するセンサーである必要はなく、通常の電磁超音波センサーを用いることができる。勿論、図2に示す電磁超音波センサーも用いることができる。   In the second embodiment, as shown in FIG. 8, a transverse wave ultrasonic sensor comprising a transverse wave ultrasonic transmitter 6 and a transverse wave ultrasonic receiver 8, a longitudinal wave ultrasonic transmitter 7 and a longitudinal wave ultrasonic receiver. 9 longitudinal wave ultrasonic sensors are separately arranged at two locations in the casting direction. In this case, the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor need not be sensors that generate and detect longitudinal wave ultrasonic waves and transverse wave ultrasonic waves at the same position as shown in FIG. An ultrasonic sensor can be used. Of course, the electromagnetic ultrasonic sensor shown in FIG. 2 can also be used.

但し、スラブ連続鋳造機では、凝固完了位置4が鋳片1の幅方向で異なる場合もあるので、横波超音波センサーと縦波超音波センサーとで検出する凝固完了位置4の鋳造方向の変化がほとんど無いと見なせる幅方向の範囲内に横波超音波センサー及び縦波超音波センサーを配置する必要がある。具体的には、前述したように、二次冷却が適切で凝固完了位置4の幅方向の形状を平坦と見なせる場合には、数100mm離れていてもよく、逆に、凝固完了位置4の幅方向の形状が大きく変化している場合には、数10mm以内とする必要があり、従って、何れにも対応するためには、数10mm以内とする必要がある。   However, in the slab continuous casting machine, the solidification completion position 4 may be different in the width direction of the slab 1, so the change in the casting direction of the solidification completion position 4 detected by the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor is different. It is necessary to arrange a transverse wave ultrasonic sensor and a longitudinal wave ultrasonic sensor within a range in the width direction that can be regarded as almost absent. Specifically, as described above, when the secondary cooling is appropriate and the shape in the width direction of the solidification completion position 4 can be regarded as flat, the width of the solidification completion position 4 may be several hundred mm apart. When the shape of the direction is greatly changed, it is necessary to be within several tens of mm. Therefore, in order to cope with any of them, it is necessary to be within several tens of mm.

また、横波超音波センサーの配置位置と縦波超音波センサーの配置位置との間隔は狭いほど検出精度が良く、配置間隔が広くなるほど精度が悪化するので、配置間隔はおよそ5m以内とすることが好ましい。また、縦波超音波センサーの検出する縦波超音波の伝播時間は、前述したように、液相部3が含まれていると敏感に変化するため、凝固完了位置4が縦波超音波センサーの下流側に存在する状態の方が精度は良く、従って、縦波超音波センサーを横波超音波センサーの鋳造方向の上流側に配置することが好ましい。   In addition, since the detection accuracy is better as the distance between the arrangement position of the transverse wave ultrasonic sensor and the arrangement position of the longitudinal wave ultrasonic sensor is smaller, and the accuracy is worsened as the arrangement interval is wider, the arrangement interval may be within about 5 m. preferable. Further, as described above, the propagation time of the longitudinal wave ultrasonic wave detected by the longitudinal wave ultrasonic sensor changes sensitively when the liquid phase part 3 is included, so that the coagulation completion position 4 is at the longitudinal wave ultrasonic sensor. Therefore, the longitudinal wave ultrasonic sensor is preferably arranged upstream of the transverse wave ultrasonic sensor in the casting direction.

その他の構成は、図1に示す第1の実施の形態例と同一構成であり、同一の部分は同一符号により示し、その説明は省略する。   Other configurations are the same as those of the first embodiment shown in FIG. 1, and the same portions are denoted by the same reference numerals, and the description thereof is omitted.

横波透過強度検出部10、凝固完了位置到達検出部11、縦波伝播時間検出部12及び凝固完了位置演算部13の動作も第1の実施の形態例と同様であり、凝固完了位置到達検出部11から凝固完了位置4の通過判定のタイミング信号が凝固完了位置演算部13に送出されると、凝固完了位置演算部13ではその時点における縦波超音波の伝播時間(Δt1 )を求め、更に、溶鋼湯面14から凝固完了位置4までの距離(CE)が横波超音波センサーの配置位置となるように、前述した(2)式によって係数(a0 )を修正する。凝固完了位置4を求める多項式の校正後は校正後の近似式を用いることで、縦波超音波の伝播時間に基づいて精度良く凝固完了位置4を鋳造中にオンラインで検知することが可能となる。校正の時期、並びに、凝固完了位置4が縦波超音波センサーの上流側であるか否かによって凝固完了位置4を算出するための計算式を変更することは、前述した第1の実施の形態での説明に沿って行うこととする。 The operations of the transverse wave transmission intensity detection unit 10, the coagulation completion position arrival detection unit 11, the longitudinal wave propagation time detection unit 12, and the coagulation completion position calculation unit 13 are the same as those in the first embodiment, and the coagulation completion position arrival detection unit. When the timing signal of passage determination of the coagulation completion position 4 is sent from 11 to the coagulation completion position calculation unit 13, the coagulation completion position calculation unit 13 obtains the propagation time (Δt 1 ) of the longitudinal ultrasonic wave at that time, and further The coefficient (a 0 ) is corrected by the above-described equation (2) so that the distance (CE) from the molten steel surface 14 to the solidification completion position 4 becomes the arrangement position of the transverse ultrasonic sensor. After calibrating the polynomial for obtaining the solidification completion position 4, it is possible to accurately detect the solidification completion position 4 on-line during casting based on the propagation time of longitudinal ultrasonic waves by using the approximate expression after calibration. . Changing the calculation formula for calculating the coagulation completion position 4 according to the time of calibration and whether the coagulation completion position 4 is upstream of the longitudinal wave ultrasonic sensor is the first embodiment described above. We will follow the explanation in.

そして、第1の実施の形態で説明したと同様に、鋳片1の中心偏析を軽減する場合には、鋳造速度または二次冷却水量を調整して凝固完了位置4を軽圧下帯105の範囲内に制御し、連続鋳造機の生産性を高める場合には、鋳造速度または二次冷却水量を調整して凝固完了位置4を連続鋳造機の機端から5m以内の範囲に制御する。   Then, as described in the first embodiment, when reducing the center segregation of the slab 1, the casting speed or the amount of secondary cooling water is adjusted so that the solidification completion position 4 is within the range of the light pressure lower belt 105. In order to increase the productivity of the continuous casting machine, the solidification completion position 4 is controlled within a range of 5 m from the end of the continuous casting machine by adjusting the casting speed or the amount of secondary cooling water.

尚、図8では、横波超音波センサーの配置位置を縦波超音波センサーの配置位置より下流側としているが、逆の上流側としてもよい。但し、この場合、縦波超音波センサーよりも上流側の凝固完了位置4を縦波超音波センサーによって検知する精度は余り高くないので、横波超音波センサーで凝固完了位置4の到達を検知した後、鋳造速度を考慮し、凝固完了位置4が縦波超音波センサーの配置位置に到達したと予想される時点で、多項式を校正することが望ましい。このようにすることで、高い精度を得ることができる。   In FIG. 8, the arrangement position of the transverse wave ultrasonic sensor is on the downstream side of the arrangement position of the longitudinal wave ultrasonic sensor, but may be on the opposite upstream side. However, in this case, since the accuracy of detecting the coagulation completion position 4 upstream of the longitudinal wave ultrasonic sensor by the longitudinal wave ultrasonic sensor is not so high, after the arrival of the coagulation completion position 4 is detected by the transverse wave ultrasonic sensor. Considering the casting speed, it is desirable to calibrate the polynomial when it is expected that the solidification completion position 4 has reached the position where the longitudinal ultrasonic sensor is disposed. By doing so, high accuracy can be obtained.

最後に、凝固完了位置検知装置を構成する第2の横波超音波センサーが、第1の横波超音波センサーに対して鋳造方向の下流側に離れた鋳片幅方向の同一位置に配置されたスラブ連続鋳造機における第3の実施の形態について説明する。図9は、本発明の第3の実施の形態例を示す図であって、本発明を実施したスラブ連続鋳造機の概略図である。   Finally, the second transverse wave ultrasonic sensor constituting the solidification completion position detecting device is arranged at the same position in the slab width direction, which is separated from the first transverse wave ultrasonic sensor on the downstream side in the casting direction. A third embodiment of the continuous casting machine will be described. FIG. 9 is a diagram showing a third embodiment of the present invention, and is a schematic view of a slab continuous casting machine in which the present invention is implemented.

第3の実施の形態では、図9に示すように、第1の実施の形態例における横波超音波送信器6、横波超音波受信器8、縦波超音波送信器7、縦波超音波受信器9からなる縦波超音波及び横波超音波を発生・検出可能な電磁超音波センサーの配置位置の下流側に、横波超音波送信器6A及び横波超音波受信器8Aからなる第2の横波超音波センサーが設置されている。この場合、第2の横波超音波センサーは、前述した図2に示すような縦波超音波と横波超音波とを同一位置で発生・検出するセンサーである必要はなく、通常の電磁超音波センサーを用いることができる。勿論、図2に示す電磁超音波センサーも用いることができる。また、凝固完了位置4の鋳片幅方向での変化の影響を避けるために、第2の横波超音波センサーは、横波超音波送信器6及び横波超音波受信器8からなる横波超音波センサー(以下、「第1の横波超音波センサー」と称す)と鋳片幅方向の同一位置に設置されている。そして、横波超音波受信器8Aの受信信号は、横波透過強度検出部10Aに送出され、横波透過強度検出部10Aの信号は凝固完了位置到達検出部11Aに送出されている。横波透過強度検出部10A及び凝固完了位置到達検出部11Aは、それぞれ、前述した第1の実施の形態例における横波透過強度検出部10及び凝固完了位置到達検出部11と同一機能を有しており、第2の横波超音波センサーの配置位置を凝固完了位置4が通過することで、凝固完了位置到達検出部11Aは、凝固完了位置演算部13へタイミング信号を送出するようになっている。   In the third embodiment, as shown in FIG. 9, the transverse wave ultrasonic transmitter 6, the transverse wave ultrasonic receiver 8, the longitudinal wave ultrasonic transmitter 7, and the longitudinal wave ultrasonic reception in the first embodiment example. The second transverse wave ultrasonic wave comprising a transverse wave ultrasonic transmitter 6A and a transverse wave ultrasonic receiver 8A downstream of the arrangement position of the electromagnetic ultrasonic sensor capable of generating and detecting the longitudinal wave ultrasonic wave and the transverse wave ultrasonic wave comprising the detector 9. A sonic sensor is installed. In this case, the second transverse wave ultrasonic sensor does not need to be a sensor that generates and detects the longitudinal wave ultrasonic wave and the transverse wave ultrasonic wave at the same position as shown in FIG. Can be used. Of course, the electromagnetic ultrasonic sensor shown in FIG. 2 can also be used. In order to avoid the influence of the change in the slab width direction of the solidification completion position 4, the second transverse wave ultrasonic sensor is a transverse wave ultrasonic sensor comprising a transverse wave ultrasonic transmitter 6 and a transverse wave ultrasonic receiver 8 ( (Hereinafter referred to as “first transverse wave ultrasonic sensor”) and the same position in the slab width direction. The received signal of the transverse wave ultrasonic receiver 8A is sent to the transverse wave transmission intensity detector 10A, and the signal of the transverse wave transmission intensity detector 10A is sent to the coagulation completion position arrival detector 11A. The transverse wave transmission intensity detection unit 10A and the coagulation completion position arrival detection unit 11A have the same functions as the transverse wave transmission intensity detection unit 10 and the coagulation completion position arrival detection unit 11 in the first embodiment described above, respectively. When the coagulation completion position 4 passes through the arrangement position of the second transverse wave ultrasonic sensor, the coagulation completion position arrival detection unit 11A sends a timing signal to the coagulation completion position calculation unit 13.

また、第2の横波超音波センサーの配置位置と第1の横波超音波センサーの配置位置との間隔が余りに狭いと校正精度を高めることができないので、校正精度を高める観点から、両者の配置間隔は2m〜10m程度の範囲が適当である。その他の構成は、図1に示す第1の実施の形態例と同一構成であり、同一の部分は同一符号により示し、その説明は省略する。   In addition, if the distance between the second transverse wave ultrasonic sensor and the first transverse ultrasonic sensor is too small, the calibration accuracy cannot be improved. The range of about 2 m to 10 m is appropriate. Other configurations are the same as those of the first embodiment shown in FIG. 1, and the same portions are denoted by the same reference numerals, and the description thereof is omitted.

横波透過強度検出部10、凝固完了位置到達検出部11及び縦波伝播時間検出部12の動作は第1の実施の形態例と同様であるが、凝固完了位置演算部13の動作は異なるので、以下、凝固完了位置演算部13の動作について図10を参照して説明する。   The operations of the transverse wave transmission intensity detection unit 10, the coagulation completion position arrival detection unit 11, and the longitudinal wave propagation time detection unit 12 are the same as those in the first embodiment, but the operation of the coagulation completion position calculation unit 13 is different. Hereinafter, the operation of the coagulation completion position calculation unit 13 will be described with reference to FIG.

図10は、第3の実施の形態例における凝固完了位置演算部13の動作を示す図で、縦波超音波の伝播時間から凝固完了位置4を算出する近似式を図示したものである。ここでは、第1の実施の形態例と同様に(1)式を用いて縦波超音波の伝播時間から凝固完了位置4を算出するものとする。図10中、Aで示す線は校正前の近似式を表している。   FIG. 10 is a diagram illustrating the operation of the coagulation completion position calculation unit 13 in the third embodiment, and illustrates an approximate expression for calculating the coagulation completion position 4 from the propagation time of longitudinal wave ultrasonic waves. Here, it is assumed that the coagulation completion position 4 is calculated from the propagation time of the longitudinal wave ultrasonic wave using the equation (1) as in the first embodiment. In FIG. 10, a line indicated by A represents an approximate expression before calibration.

ここで、凝固完了位置到達検出部11から、第1の横波超音波センサー位置における凝固完了位置4の通過判定のタイミング信号が凝固完了位置演算部13に送出されると、凝固完了位置演算部13では、その時点における縦波超音波の伝播時間(Δt1 )を記憶する。次ぎに、鋳造速度や二次冷却強度などを変更させて凝固完了位置4を鋳造方向の下流側に延ばして凝固完了位置4が第2の横波超音波センサーの配置位置を通過すると、凝固完了位置到達検出部11Aから凝固完了位置4の通過判定のタイミング信号が凝固完了位置演算部13に送出される。凝固完了位置演算部13では、その時点における縦波超音波の伝播時間(Δt2 )を求める。そして、下記に示す(3)式及び(4)式の連立方程式を解き、(1)式の定数(a1 )及び定数(a0 )を修正する。但し、(3)式及び(4)式において、CE1 は鋳型内の溶鋼湯面14から第1の横波超音波センサーの配置位置までの距離、Δt1 は凝固完了位置4が第1の横波超音波センサーの配置位置を通過したと判定した時点の縦波超音波の伝播時間、CE2 は鋳型内の溶鋼湯面14から第2の横波超音波センサーの配置位置までの距離、Δt2 は凝固完了位置4が第2の横波超音波センサーの配置位置を通過したと判定した時点の縦波超音波の伝播時間である。 Here, when the coagulation completion position arrival detection unit 11 sends a timing signal for determining the passage of the coagulation completion position 4 at the first transverse wave ultrasonic sensor position to the coagulation completion position calculation unit 13, the coagulation completion position calculation unit 13. Then, the propagation time (Δt 1 ) of the longitudinal ultrasonic wave at that time is stored. Next, when the casting speed and the secondary cooling strength are changed to extend the solidification completion position 4 to the downstream side in the casting direction and the solidification completion position 4 passes the arrangement position of the second transverse wave ultrasonic sensor, the solidification completion position A timing signal for determining the passage of the coagulation completion position 4 is sent from the arrival detection unit 11A to the coagulation completion position calculation unit 13. The coagulation completion position calculation unit 13 obtains the propagation time (Δt 2 ) of longitudinal ultrasonic waves at that time. Then, simultaneous equations of the following equations (3) and (4) are solved, and the constant (a 1 ) and the constant (a 0 ) of equation (1) are corrected. However, in the formulas (3) and (4), CE 1 is the distance from the molten steel surface 14 in the mold to the position of the first transverse wave ultrasonic sensor, and Δt 1 is the first transverse wave at the solidification completion position 4. Longitudinal ultrasonic wave propagation time when it is determined that the ultrasonic sensor has passed the arrangement position, CE 2 is the distance from the molten steel surface 14 in the mold to the arrangement position of the second transverse ultrasonic sensor, Δt 2 is This is the propagation time of longitudinal ultrasonic waves when it is determined that the coagulation completion position 4 has passed the arrangement position of the second transverse wave ultrasonic sensor.

Figure 0004453556
Figure 0004453556

Figure 0004453556
Figure 0004453556

これによって、凝固完了位置4を求める近似式は校正され、例えば図10中にBで示す線となる。校正後は、Bで示す校正後の近似式を用いて、縦波超音波の伝播時間に基づいて精度良く凝固完了位置4を鋳造中にオンラインで検知することが可能となる。この場合には第1の実施の形態よりも更に高い精度で凝固完了位置4を検知することができる。校正の時期、並びに、凝固完了位置4が縦波超音波センサーの上流側であるか否かによって凝固完了位置4を算出するための計算式を変更することは、前述した第1の実施の形態での説明に沿って行うこととする。   As a result, the approximate expression for obtaining the solidification completion position 4 is calibrated, for example, a line indicated by B in FIG. After calibration, the solidification completion position 4 can be detected on-line during casting with high accuracy based on the propagation time of longitudinal ultrasonic waves using the approximate expression after calibration indicated by B. In this case, the coagulation completion position 4 can be detected with higher accuracy than in the first embodiment. Changing the calculation formula for calculating the coagulation completion position 4 according to the time of calibration and whether the coagulation completion position 4 is upstream of the longitudinal wave ultrasonic sensor is the first embodiment described above. We will follow the explanation in.

そして、第1の実施の形態で説明したと同様に、鋳片1の中心偏析を軽減する場合には、鋳造速度または二次冷却水量を調整して凝固完了位置4を軽圧下帯105の範囲内に制御し、連続鋳造機の生産性を高める場合には、鋳造速度または二次冷却水量を調整して凝固完了位置4を連続鋳造機の機端から5m以内の範囲に制御する。   Then, as described in the first embodiment, when reducing the center segregation of the slab 1, the casting speed or the amount of secondary cooling water is adjusted so that the solidification completion position 4 is within the range of the light pressure lower belt 105. In order to increase the productivity of the continuous casting machine, the solidification completion position 4 is controlled within a range of 5 m from the end of the continuous casting machine by adjusting the casting speed or the amount of secondary cooling water.

尚、本発明は上記に説明した範囲に限定されるものではなく、その要旨を逸脱しない範囲で種々に変更することができる。例えば、上記説明では電磁超音波センサーを用いた場合について説明したが、縦波超音波の送信及び受信には、圧電振動子を水と接触させる方法や、レーザー超音波法を用いてもよい。また、レーザー超音波法で送信し、電磁超音波法で受信することも計測感度を高めることから有用である。   In addition, this invention is not limited to the range demonstrated above, In the range which does not deviate from the summary, it can be variously changed. For example, although the case where an electromagnetic ultrasonic sensor is used has been described in the above description, a method of bringing a piezoelectric vibrator into contact with water or a laser ultrasonic method may be used for transmission and reception of longitudinal ultrasonic waves. Also, it is useful to transmit by laser ultrasonic method and receive by electromagnetic ultrasonic method because the measurement sensitivity is increased.

更に、上記実施の形態においては、横波超音波送信器6と横波超音波受信器8とを、或いは、縦波超音波送信器7と縦波超音波受信器9とを、鋳片1を挟んで透過法で計測する配置としているが、送信器と受信器とを鋳片1の同一面上に配置し、鋳片1の反対面でのエコーを利用して反射法で計測するようにしてもよい。本発明にいう超音波センサーは、これらの何れの形態も含むものである。また、本発明においては、伝播時間から凝固完了位置を求める計算式の校正は、鋳片幅方向の任意の複数位置で行ってもよい。このように、鋳片幅方向の任意の複数位置において、それぞれ別の計算式を用いるようにすると、鋳片幅方向における冷却ムラや厚み変動の影響を少なくして、各位置それぞれで測定精度を向上させることができる。   Furthermore, in the above embodiment, the transverse wave ultrasonic transmitter 6 and the transverse wave ultrasonic receiver 8 or the longitudinal wave ultrasonic transmitter 7 and the longitudinal wave ultrasonic receiver 9 are sandwiched between the slab 1. However, the transmitter and the receiver are arranged on the same surface of the slab 1 and are measured by the reflection method using echoes on the opposite surface of the slab 1. Also good. The ultrasonic sensor referred to in the present invention includes any of these forms. In the present invention, the calculation formula for obtaining the solidification completion position from the propagation time may be calibrated at a plurality of arbitrary positions in the slab width direction. In this way, if different calculation formulas are used at arbitrary multiple positions in the slab width direction, the influence of cooling unevenness and thickness fluctuation in the slab width direction is reduced, and the measurement accuracy is improved at each position. Can be improved.

また、縦波超音波の伝播時間から一次式を用いて凝固完了位置4を直接求める場合について説明したが、二次式或いは三次式などの多項式を用いてもよく、また、縦波超音波の伝播時間から固相部2の厚みを求め、求めた固相部2の厚みと鋳造速度とから凝固完了位置を求めてもよい。   Moreover, although the case where the coagulation completion position 4 is directly obtained from the propagation time of the longitudinal wave ultrasonic wave using a linear equation has been described, a polynomial such as a quadratic equation or a cubic equation may be used. The thickness of the solid phase portion 2 may be obtained from the propagation time, and the solidification completion position may be obtained from the obtained thickness of the solid phase portion 2 and the casting speed.

更に、縦波超音波と横波超音波とを同一位置で発生・検出するための電磁超音波センサーについては、縦波用コイルと横波用コイルとを別々に配置せず、センサーの磁極の極性を交互に変えることによって縦波用のコイルと横波用のコイルとを同一のコイルで兼用することもできる。   Furthermore, for electromagnetic ultrasonic sensors for generating and detecting longitudinal and transverse ultrasonic waves at the same position, the polarity of the magnetic pole of the sensor is not set up separately from the longitudinal and transverse wave coils. By alternately changing the longitudinal coil and the transverse coil, the same coil can be used.

本発明の第1の実施の形態例を示す図である。It is a figure which shows the 1st Example of this invention. 縦波超音波と横波超音波とを同一位置で発生・検出するための電磁超音波センサーの構成と動作を示す図である。It is a figure which shows the structure and operation | movement of an electromagnetic ultrasonic sensor for generating and detecting a longitudinal wave ultrasonic wave and a transverse wave ultrasonic wave in the same position. 横波透過強度検出部の動作を示す図である。It is a figure which shows operation | movement of a transverse wave transmission intensity detection part. 凝固完了位置到達検出部の動作の1例を示す図である。It is a figure which shows an example of operation | movement of the coagulation completion position arrival detection part. 縦波伝播時間検出部の動作を示す図である。It is a figure which shows operation | movement of a longitudinal wave propagation time detection part. 第1の実施の形態例における凝固完了位置演算部の動作を示す図である。It is a figure which shows operation | movement of the coagulation completion position calculating part in the example of 1st Embodiment. 縦波超音波と横波超音波とを同一位置で発生・検出するための電磁超音波センサーの磁極を4つとした構成を示す図である。It is a figure which shows the structure which used the magnetic pole of the electromagnetic ultrasonic sensor for generating and detecting a longitudinal wave ultrasonic wave and a transverse wave ultrasonic wave in the same position as four. 本発明の第2の実施の形態例を示す図である。It is a figure which shows the 2nd Example of this invention. 本発明の第3の実施の形態例を示す図である。It is a figure which shows the 3rd Embodiment of this invention. 第3の実施の形態例における凝固完了位置演算部の動作を示す図である。It is a figure which shows operation | movement of the coagulation completion position calculating part in the example of 3rd Embodiment.

符号の説明Explanation of symbols

1 鋳片
2 固相部
3 液相部
4 凝固完了位置
5 超音波送信部
6 横波超音波送信器
7 縦波超音波送信器
8 横波超音波受信器
9 縦波超音波受信器
10 横波透過強度検出部
11 凝固完了位置到達検出部
12 縦波伝播時間検出部
13 凝固完了位置演算部
14 溶鋼湯面
31 磁石
32 縦波用コイル
33 横波用コイル
34 磁力線
35 渦電流
36 渦電流
37 縦波超音波
38 横波超音波
101 鋳型
102 鋳片支持ロール
103 搬送用ロール
104 鋳片切断機
105 軽圧下帯
DESCRIPTION OF SYMBOLS 1 Cast piece 2 Solid phase part 3 Liquid phase part 4 Solidification completion position 5 Ultrasonic transmission part 6 Transverse wave ultrasonic transmitter 7 Longitudinal wave ultrasonic transmitter 8 Transverse wave ultrasonic receiver 9 Longitudinal wave ultrasonic receiver 10 Transverse wave transmission intensity Detection unit 11 Solidification completion position arrival detection unit 12 Longitudinal wave propagation time detection unit 13 Solidification completion position calculation unit 14 Molten steel surface 31 Magnet 32 Longitudinal wave coil 33 Transverse wave coil 34 Magnetic field line 35 Eddy current 36 Eddy current 37 Longitudinal wave ultrasonic wave 38 Transverse ultrasonic wave 101 Mold 102 Casting support roll 103 Conveying roll 104 Casting cutting machine 105 Light pressure lower belt

Claims (4)

連続鋳造鋳片に対して横波超音波を送信し且つ送信した横波超音波を受信する横波超音波センサーと、該横波超音波センサーの配置位置と連続鋳造機の鋳造方向上流側に離れた鋳片幅方向の同一位置に設置された、連続鋳造鋳片に対して縦波超音波を送信し且つ送信した縦波超音波を受信する縦波超音波センサーと、該縦波超音波センサーで受信した受信信号に基づき下記の(1)式に示す計算式を用いて鋳片の凝固完了位置を求める凝固完了位置演算部と、を備え、前記横波超音波センサーの受信信号の強度の変化によって横波超音波センサーの配置位置と鋳片の凝固完了位置とが一致したことが確認された時点での前記縦波超音波センサーからの信号に基づいて前記(1)式により算出される凝固完了位置が横波超音波センサーの配置位置と合致するように、前記(1)式が下記の(2)式によって校正される凝固完了位置検知装置を用いて、連続鋳造鋳片の凝固完了位置を検出し、検出した凝固完了位置が予め設定されている基準位置となるように鋳造速度または二次冷却水量を変化させながら鋳造することを特徴とする、連続鋳造鋳片の製造方法。
CE=a 1 ・Δt+a 0 …(1)
但し、(1)式において、CEは鋳型内の溶鋼湯面から凝固完了位置までの距離、Δtは縦波超音波の伝播時間、a 1 及びa 0 は多項式の係数である。
0 =CE 1 −a 1 ・Δt 1 …(2)
但し、(2)式において、CE 1 は鋳型内の溶鋼湯面から横波超音波センサーの配置位置までの距離、Δt 1 は凝固完了位置が横波超音波センサーの配置位置を通過したと判定した時点の縦波超音波の伝播時間である。
A transverse wave ultrasonic sensor that transmits a transverse wave ultrasonic wave to a continuous cast slab and receives the transmitted transverse wave ultrasonic wave , a slab separated from the arrangement position of the transverse wave ultrasonic sensor and the upstream side in the casting direction of the continuous casting machine A longitudinal wave ultrasonic sensor that transmits longitudinal wave ultrasonic waves to a continuous cast slab installed at the same position in the width direction and receives the transmitted longitudinal wave ultrasonic waves, and received by the longitudinal wave ultrasonic sensor A solidification completion position calculation unit that obtains the solidification completion position of the slab using the calculation formula shown in the following equation (1) based on the received signal, and the transverse wave supersonic wave is detected by a change in the intensity of the received signal of the transverse wave ultrasonic sensor. The solidification completion position calculated by the above equation (1) based on the signal from the longitudinal wave ultrasonic sensor at the time when it is confirmed that the arrangement position of the acoustic wave sensor and the solidification completion position of the slab coincide with each other is the transverse wave. Position of ultrasonic sensor To match the said equation (1) using a coagulation completion position sensing device is calibrated by the following formula (2), detects the solidification completion location of the continuous casting slab, it is detected clotting completion position in advance A method for producing a continuous cast slab, wherein casting is performed while changing a casting speed or an amount of secondary cooling water so as to be a set reference position.
CE = a 1 · Δt + a 0 (1)
In Equation (1), CE is the distance from the molten steel surface in the mold to the solidification completion position, Δt is the propagation time of longitudinal ultrasonic waves, and a 1 and a 0 are polynomial coefficients.
a 0 = CE 1 −a 1 · Δt 1 (2)
However, in the formula (2), CE 1 is the distance from the molten steel surface in the mold to the position where the transverse ultrasonic sensor is arranged , and Δt 1 is the time when it is determined that the solidification completion position has passed the arrangement position of the transverse wave ultrasonic sensor. Is the propagation time of longitudinal ultrasonic waves.
連続鋳造鋳片に対して横波超音波を送信し且つ送信した横波超音波を受信する第1の横波超音波センサーと、第1の横波超音波センサーの配置位置と連続鋳造機の鋳造方向上流側に離れた鋳片幅方向の同一位置に設置された、連続鋳造鋳片に対して縦波超音波を送信し且つ送信した縦波超音波を受信する縦波超音波センサーと、第1の横波超音波センサーの鋳造方向下流側の鋳片幅方向の同一位置に設置された、連続鋳造鋳片に対して横波超音波を送信し且つ送信した横波超音波を受信する第2の横波超音波センサーと、前記縦波超音波センサーで受信した受信信号に基づき下記の(1)式に示す計算式を用いて鋳片の凝固完了位置を求める凝固完了位置演算部と、を備え、第1の横波超音波センサーの受信信号の強度の変化によって第1の横波超音波センサーの配置位置と鋳片の凝固完了位置とが一致したことが確認された時点での前記縦波超音波センサーからの信号に基づいて前記(1)式により算出される凝固完了位置が第1の横波超音波センサーの配置位置と合致し、且つ、第2の横波超音波センサーの受信信号の強度の変化によって第2の横波超音波センサーの配置位置と鋳片の凝固完了位置とが一致したことが確認された時点での前記縦波超音波センサーからの信号に基づいて前記(1)式により算出される凝固完了位置が第2の横波超音波センサーの配置位置と合致するように、前記(1)式が下記の(3)式及び下記の(4)式によって校正される凝固完了位置検知装置を用いて、連続鋳造鋳片の凝固完了位置を検出し、検出した凝固完了位置が予め設定されている基準位置となるように鋳造速度または二次冷却水量を変化させながら鋳造することを特徴とする、連続鋳造鋳片の製造方法。
CE=a 1 ・Δt+a 0 …(1)
但し、(1)式において、CEは鋳型内の溶鋼湯面から凝固完了位置までの距離、Δtは縦波超音波の伝播時間、a 1 及びa 0 は多項式の係数である。
CE 1 =a 1 ・Δt 1 +a 0 …(3)
CE 2 =a 1 ・Δt 2 +a 0 …(4)
但し、(3)式及び(4)式において、CE 1 は鋳型内の溶鋼湯面から第1の横波超音波センサーの配置位置までの距離、Δt 1 は凝固完了位置が第1の横波超音波センサーの配置位置を通過したと判定した時点の縦波超音波の伝播時間、CE 2 は鋳型内の溶鋼湯面から第2の横波超音波センサーの配置位置までの距離、Δt 2 は凝固完了位置が第2の横波超音波センサーの配置位置を通過したと判定した時点の縦波超音波の伝播時間である。
A first transverse wave ultrasonic sensor that transmits transverse wave ultrasonic waves to the continuous cast slab and receives the transmitted transverse wave ultrasonic waves, an arrangement position of the first transverse wave ultrasonic sensor, and a casting direction upstream side of the continuous casting machine installed at the same position of the slab width direction spaced a longitudinal ultrasonic wave sensor for receiving the transmitted and transmitted longitudinal ultrasonic wave and longitudinal wave ultrasonic waves to continuously cast slabs, the first shear wave A second transverse wave ultrasonic sensor, which is installed at the same position in the slab width direction downstream of the ultrasonic sensor in the casting direction, transmits transverse wave ultrasonic waves to the continuous cast slab and receives the transmitted transverse wave ultrasonic waves. And a solidification completion position calculation unit for obtaining a solidification completion position of the slab using a calculation formula shown in the following equation (1) based on a reception signal received by the longitudinal wave ultrasonic sensor, the first transverse wave The first is determined by the change in the intensity of the received signal of the ultrasonic sensor. Solidification completion position calculated by the equation (1) based on a signal from the longitudinal wave ultrasonic sensor at the time of the waves and the solidification completion location of the position and the slab of the ultrasonic sensor matches were confirmed There was consistent with the arrangement position of the first transverse ultrasonic wave sensor, and a solidification completion position of the second transverse ultrasonic wave sensor position and the slab of the second transverse ultrasonic wave sensor by the change in the intensity of the received signals So that the coagulation completion position calculated by the equation (1) based on the signal from the longitudinal ultrasonic sensor at the time when it is confirmed that the two coincide with the arrangement position of the second transverse wave ultrasonic sensor. In addition, the solidification completion position of the continuously cast slab is detected by using the solidification completion position detection device in which the above-mentioned formula (1) is calibrated by the following formula (3) and the following formula (4). The position is preset Wherein the casting while changing the casting speed or the secondary cooling water so that the reference position, a manufacturing method of continuous casting slabs.
CE = a 1 · Δt + a 0 (1)
In Equation (1), CE is the distance from the molten steel surface in the mold to the solidification completion position, Δt is the propagation time of longitudinal ultrasonic waves, and a 1 and a 0 are polynomial coefficients.
CE 1 = a 1 · Δt 1 + a 0 (3)
CE 2 = a 1 · Δt 2 + a 0 (4)
However, in the equations (3) and (4), CE 1 is the distance from the molten steel surface in the mold to the position of the first transverse wave ultrasonic sensor, and Δt 1 is the first transverse wave ultrasonic wave at the solidification completion position. Longitudinal ultrasonic wave propagation time when it is determined that the sensor has passed the position of the sensor, CE 2 is the distance from the molten steel surface in the mold to the position of the second transverse wave ultrasonic sensor, and Δt 2 is the solidification completion position Is the propagation time of longitudinal ultrasonic waves at the time when it is determined that has passed the arrangement position of the second transverse wave ultrasonic sensor.
前記凝固完了位置の基準位置を、鋳片に対して軽圧下が可能な軽圧下帯の範囲内に設定することを特徴とする、請求項1または請求項2に記載の連続鋳造鋳片の製造方法。   3. The continuous cast slab manufacturing according to claim 1 or 2, wherein a reference position of the solidification completion position is set within a range of a light reduction belt that can be lightly reduced with respect to the slab. Method. 前記凝固完了位置の基準位置を、連続鋳造機の機端から5m以内の範囲に設定することを特徴とする、請求項1または請求項2に記載の連続鋳造鋳片の製造方法。   The method for producing a continuous cast slab according to claim 1 or 2, wherein a reference position of the solidification completion position is set within a range of 5 m from a machine end of the continuous casting machine.
JP2005011581A 2005-01-19 2005-01-19 Manufacturing method of continuous cast slab Active JP4453556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005011581A JP4453556B2 (en) 2005-01-19 2005-01-19 Manufacturing method of continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005011581A JP4453556B2 (en) 2005-01-19 2005-01-19 Manufacturing method of continuous cast slab

Publications (2)

Publication Number Publication Date
JP2006198643A JP2006198643A (en) 2006-08-03
JP4453556B2 true JP4453556B2 (en) 2010-04-21

Family

ID=36957080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011581A Active JP4453556B2 (en) 2005-01-19 2005-01-19 Manufacturing method of continuous cast slab

Country Status (1)

Country Link
JP (1) JP4453556B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098394B2 (en) * 2007-03-29 2012-12-12 Jfeスチール株式会社 Continuous casting slab manufacturing method, continuous casting machine
JP5110591B2 (en) * 2008-07-22 2012-12-26 独立行政法人日本原子力研究開発機構 Hybrid measurement apparatus using electromagnetic ultrasonic probe and inspection method using the same
JP5600929B2 (en) * 2008-12-10 2014-10-08 Jfeスチール株式会社 Manufacturing method of continuous cast slab
JP5954044B2 (en) * 2012-08-20 2016-07-20 Jfeスチール株式会社 Manufacturing method of continuous cast slab
CN114682750B (en) * 2022-04-01 2022-12-06 燕山大学 Method and device for casting pipe
CN114905022B (en) * 2022-04-28 2023-07-21 重庆钢铁股份有限公司 Two-cooling water distribution method for controlling internal crack of continuous casting slab

Also Published As

Publication number Publication date
JP2006198643A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP5051204B2 (en) Method and device for detecting solidification completion position of continuous cast slab and method for producing continuous cast slab
KR100610532B1 (en) Method of producing continuously cast pieces of steel and device for measuring solidified state thereof
JP4453556B2 (en) Manufacturing method of continuous cast slab
JP4453557B2 (en) Manufacturing method of continuous cast slab
JP5098394B2 (en) Continuous casting slab manufacturing method, continuous casting machine
JP4483538B2 (en) Method and device for detecting solidification completion position of continuous cast slab and method for producing continuous cast slab
JP2009125770A (en) Method for producing continuously cast slab and continuous caster
JP5145746B2 (en) Continuous casting slab manufacturing method, continuous casting machine
JP2009195937A (en) Method for producing continuously cast slab, and continuous casting machine
JP4453558B2 (en) Quality judgment method for continuous cast slabs
JP3252770B2 (en) Detecting method and control method of molten metal level in continuous casting
JPH08211084A (en) Flow velocity measuring device
JP2012215413A (en) Internal coagulation detection apparatus and internal coagulation detection method
JP2005211926A (en) Method and device for detecting fully solidified position of continuously cast slab
JPH04262842A (en) Method for measuring molten metal level in mold for continuous casting
JPH05192753A (en) Instrument for measuring powder film thickness in continuous casting

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250