JP2009195937A - Method for producing continuously cast slab, and continuous casting machine - Google Patents

Method for producing continuously cast slab, and continuous casting machine Download PDF

Info

Publication number
JP2009195937A
JP2009195937A JP2008039572A JP2008039572A JP2009195937A JP 2009195937 A JP2009195937 A JP 2009195937A JP 2008039572 A JP2008039572 A JP 2008039572A JP 2008039572 A JP2008039572 A JP 2008039572A JP 2009195937 A JP2009195937 A JP 2009195937A
Authority
JP
Japan
Prior art keywords
slab
completion position
solidification completion
magnetic field
static magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008039572A
Other languages
Japanese (ja)
Inventor
Tetsuo Mochida
哲男 持田
Makoto Suzuki
真 鈴木
Yukimichi Iizuka
幸理 飯塚
Yasuo Kishimoto
康夫 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008039572A priority Critical patent/JP2009195937A/en
Publication of JP2009195937A publication Critical patent/JP2009195937A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a continuously cast slab and a continuous casting machine with which, even in the case a wide difference is caused in the solidification completion positions in a slab width direction, the improvement of central segregation uniform in the slab width direction is made possible. <P>SOLUTION: In the method for producing a slab and a continuous casting machine, when, using a continuous casting machine 1 provided with a light rolling reduction zone 4 composed of two or more pairs of rolling reduction rolls, the rolling reduction of a slab 9 is started from when the solid phase ratio in the thickness central part of the slab 9 is ≤0.4 at the light rolling reduction zone, and, while applying rolling reduction force to the slab, the solidification is completed within the range of the light rolling reduction zone so as to produce a continuously cast slab, a solidification completion position 12 in the slab width direction is detected during the casting, and, on the basis of information on the detected solidification completion position, a static magnetic field in the slab thickness direction is applied to a part in which the solidification completion position is elongated to the casting direction from a static magnetic field application apparatus 14 installed in the light rolling reduction zone. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、中心偏析の軽微な鋼の連続鋳造鋳片を製造することのできる、連続鋳造鋳片の製造方法及び連続鋳造機に関するものである。   The present invention relates to a continuous casting slab manufacturing method and a continuous casting machine capable of manufacturing a continuous casting slab of light steel with a central segregation.

鋼の連続鋳造においては、鋳片中心部の凝固末期の未凝固相には十分な量の溶鋼が存在しないために、鋳片中心部に空隙が形成されたり或いは負圧が生じたりすると、最終凝固部であるデンドライト樹間の濃化溶鋼が流動し、それが鋳片中心部に集積して凝固し、所謂「中心偏析」を形成することが知られている。   In continuous casting of steel, since there is not a sufficient amount of molten steel in the unsolidified phase at the end of solidification at the center of the slab, if a void is formed in the center of the slab or negative pressure is generated, the final It is known that the concentrated molten steel between dendritic trees, which are solidified parts, flows and accumulates in the center of the slab and solidifies to form so-called “center segregation”.

この中心偏析は、鋼製品の品質を劣化させる。例えば、石油輸送用や天然ガス輸送用のラインパイプ材においては、サワーガスの作用により中心偏析を起点として水素誘起割れ(「HIC」ともいう)が発生し、また、飲料用の缶製品に用いられる深絞り材においては、成分の偏析により加工性に異方性が出現する。   This central segregation degrades the quality of the steel product. For example, in line pipe materials for oil transportation and natural gas transportation, hydrogen-induced cracking (also referred to as “HIC”) occurs from the center segregation due to the action of sour gas, and is also used in beverage can products. In deep drawn materials, anisotropy appears in workability due to segregation of components.

そのために、鋳造工程から圧延工程に至るまで、鋳片の中心偏析を低減する対策が多数提案されている。そのなかで、安価に且つ効果的に鋳片の中心偏析を低減する手段として、連続鋳造機内で、凝固末期の鋳片を鋳片の凝固収縮量に見合った圧下量で徐々に圧下する方法(以下、「軽圧下」と呼ぶ)が提案されている(例えば、特許文献1を参照)。   Therefore, many measures for reducing the center segregation of the slab have been proposed from the casting process to the rolling process. Among them, as a means to reduce the center segregation of the slab at low cost and effectively, a method of gradually reducing the slab at the end of solidification with a reduction amount corresponding to the solidification shrinkage amount of the slab in a continuous casting machine ( Hereinafter, it is called “under light pressure”) (see, for example, Patent Document 1).

この軽圧下技術は、凝固収縮量に見合った圧下量で鋳片を徐々に圧下して未凝固相の体積を減少させ、デンドライト樹間の濃化溶鋼の流動を起こさないようにして中心偏析を防止する技術である。従って、鋳片の凝固完了位置(「クレータエンド位置」ともいう)を、軽圧下を実施するためのロール群からなる軽圧下帯の範囲内に制御することが必要になる。   This light reduction technology gradually reduces the volume of the unsolidified phase by reducing the slab by a reduction amount commensurate with the amount of solidification shrinkage, and prevents central segregation by preventing the flow of concentrated molten steel between dendrites. It is a technology to prevent. Therefore, it is necessary to control the solidification completion position of the slab (also referred to as “crater end position”) within the range of the light reduction belt composed of a roll group for carrying out the light reduction.

ところで、スラブ鋳片(以下、単に「鋳片」とも記す)においては、その断面が扁平形状であるため、凝固完了位置は鋳片幅方向で必ずしも均一でない。しかも、鋳型内の溶鋼流動の変化や二次冷却スプレーノズルの詰り状況の変化などによって、時間によってもその形状が刻々と変動することが知られている。   By the way, in a slab slab (hereinafter, also simply referred to as “slab”), since the cross section is flat, the solidification completion position is not necessarily uniform in the slab width direction. In addition, it is known that the shape of the mold fluctuates with time due to changes in the flow of molten steel in the mold and changes in the clogging state of the secondary cooling spray nozzle.

凝固完了位置が鋳片の幅方向で異なると、軽圧下帯における圧下量が鋳片幅方向の各位置で異なってしまうため、圧下されにくく圧下量の少ない位置、つまり凝固完了位置が鋳造方向に伸張した位置では、十分な中心偏析改善効果が得られず、軽圧下を実施しても中心偏析を抑制できない場合が生ずる。鋳片の幅方向において、例えば幅中央部が早期に凝固完了した場合には、軽圧下しても、完全凝固した幅中央部の変形抵抗が大きいために幅中央部以外の部位には圧下力が働かず、所望する圧下量が付与できなくなる。これは、軽圧下装置は設備スペースや設備コストの制限から、一般的に完全凝固した鋳片を圧下するほどの耐荷重は有しておらず、鋳片短辺以外の鋳片幅方向の一部が完全凝固して圧下荷重が規定荷重以上になった場合には、設備保護のために、皿バネ或いは油圧設定によって圧下ロールを逃がす構造となっているからである。   If the solidification completion position is different in the width direction of the slab, the amount of reduction in the light reduction zone will be different in each position in the width direction of the slab.Therefore, the position where the amount of reduction is difficult, that is, the solidification completion position is in the casting direction. At the extended position, a sufficient center segregation improvement effect cannot be obtained, and there are cases where center segregation cannot be suppressed even if light reduction is performed. In the width direction of the slab, for example, when solidification is completed early in the width center, even if it is lightly reduced, the deformation resistance of the fully solidified width center is large, so the reduction force is applied to the parts other than the width center. Does not work, and the desired amount of reduction cannot be applied. This is because light reduction devices generally do not have a load resistance enough to reduce a completely solidified slab because of limitations on equipment space and equipment cost. This is because, when the part is completely solidified and the rolling load exceeds the specified load, the rolling roll is released by a disc spring or hydraulic setting to protect the equipment.

このように、鋳片幅方向で凝固の遅い部分、つまり、最終凝固位置の伸張した部分には、軽圧下が行われず、その結果、その部分の中心偏析が悪化する。   Thus, light reduction is not performed on a portion that is slowly solidified in the width direction of the slab, that is, a portion where the final solidification position is extended, and as a result, the center segregation of that portion is deteriorated.

そこで、この最終凝固位置が伸張した部分を消滅させて、鋳片幅方向に軽圧下力を働かせることを目的として、特許文献2には、横波超音波センサーと縦波超音波センサーとを具備する凝固完了位置検知装置を用いて、鋳片幅方向の凝固完了位置を検出し、検出された凝固完了位置のなかの最も伸張していない部分と最も伸張した部分との鋳造方向の差が基準範囲内となるように、鋳型内の溶鋼流動を調整するか、または、二次冷却帯の幅切り量を調整するか、少なくとも何れかの一方を実施しながら、軽圧下帯で鋳片を圧下することが提案されている。
特開昭54−107831号公報 特開2006−198644号公報
Therefore, Patent Document 2 includes a transverse wave ultrasonic sensor and a longitudinal wave ultrasonic sensor for the purpose of extinguishing the portion where the final solidification position is extended and applying a light reduction force in the slab width direction. The solidification completion position detection device is used to detect the solidification completion position in the slab width direction, and the difference in the casting direction between the least expanded portion and the most extended portion of the detected solidification completion position is the reference range. Adjust the molten steel flow in the mold or adjust the width of the secondary cooling zone so that it is inside, or at least one of them, while rolling down the slab in the light reduction zone It has been proposed.
JP 54-107831 A JP 2006-198664 A

しかしながら、上記特許文献2には以下の問題点がある。   However, Patent Document 2 has the following problems.

即ち、特許文献2では、鋳片幅方向における凝固完了位置の差が2m以内であれば鋳片幅方向で軽圧下力がほぼ均等に働くとしているが、凝固完了位置の差が2m程度の場合には、凝固完了位置が伸張した部分の中心偏析は、それ以外の部分に比べて悪化する。また、特許文献2では、鋳型内の溶鋼流動を調整するか、または、二次冷却帯の幅切り量を調整することで、鋳片幅方向における凝固完了位置の差を2m以内にするとしており、鋳造条件が定常状態であれば十分に凝固完了位置の差を2m以内に調整可能であるが、非定常状態の場合、例えば浸漬ノズルの吐出孔の一方が詰ったことにより凝固完了位置に差が生じた場合や、二次冷却スプレーノズルが詰ったことにより凝固完了位置に差が生じた場合などでは、凝固完了位置の差が大きくなりすぎて、特許文献2による鋳型内の溶鋼流動を調整するか、または、二次冷却帯の幅切り量を調整する方法のみでは、凝固完了位置の差を所定値以内に調整することが困難である。従って、このような場合には、凝固完了位置が伸張した部分の中心偏析は悪化する。   That is, in Patent Document 2, if the difference in the solidification completion position in the slab width direction is within 2 m, the light reduction force works almost evenly in the slab width direction, but the difference in the solidification completion position is about 2 m. In other words, the center segregation of the portion where the solidification completion position is extended is worse than that of the other portions. In Patent Document 2, the difference in solidification completion position in the slab width direction is set to be within 2 m by adjusting the flow of molten steel in the mold or by adjusting the width of the secondary cooling zone. If the casting conditions are in a steady state, the difference in solidification completion position can be sufficiently adjusted within 2 m. In the non-steady state, for example, one of the discharge holes of the immersion nozzle is clogged, resulting in a difference in solidification completion position. If there is a difference in the solidification completion position due to clogging of the secondary cooling spray nozzle or the like, the difference in the solidification completion position becomes too large and the molten steel flow in the mold according to Patent Document 2 is adjusted. In addition, it is difficult to adjust the difference in solidification completion position within a predetermined value only by the method of adjusting the width of the secondary cooling zone. Therefore, in such a case, the center segregation of the portion where the solidification completion position is extended is worsened.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋳片幅方向で凝固完了位置に大きな差が生じた場合でも、鋳片幅方向に均一な中心偏析の改善が可能となる、連続鋳造鋳片の製造方法及び連続鋳造機を提供することである。   The present invention has been made in view of the above circumstances, and the object thereof is to improve uniform center segregation in the slab width direction even when a large difference occurs in the solidification completion position in the slab width direction. It is providing the manufacturing method and continuous casting machine of continuous casting slab which become.

本発明者等は、上記課題を解決するべく、鋭意検討・研究を行った。   The present inventors have intensively studied and studied to solve the above problems.

その結果、凝固完了位置検知装置によって検出される凝固完了位置の鋳片幅方向の形状に応じて、二次冷却帯において、幅切りのみならず、鋳片の幅方向全体で二次冷却水量を変更すれば、鋳片幅方向の凝固完了位置の形状を均一化できることが、伝熱計算上からは可能であることが分かった。しかしながら、この方法を実施するためには、鋳造方向及び鋳片幅方向に設置された多数のスプレーノズルからの二次冷却水量を、各スプレーノズルでそれぞれ独立して制御する必要があり、そのためには、設備改造コストが多大であるのみならず、各スプレーノズルの制御が極めて煩雑となることから、実用化は困難であるとの結論に至った。   As a result, depending on the shape of the solidification completion position detected by the solidification completion position detection device in the width direction of the slab, the secondary cooling water amount is not only cut in the secondary cooling zone but also in the entire width direction of the slab. It was found from the heat transfer calculation that the shape of the solidification completion position in the slab width direction can be made uniform if changed. However, in order to carry out this method, the amount of secondary cooling water from a large number of spray nozzles installed in the casting direction and the slab width direction must be controlled independently by each spray nozzle. Therefore, it was concluded that not only the cost of remodeling the equipment was great, but also the control of each spray nozzle was extremely complicated, so that practical application was difficult.

そこで、鋳片を軽圧下しながら凝固させる際に、鋳片幅方向の凝固完了位置が均一でなく、鋳片幅方向において一部が凝固完了した場合であっても、凝固完了位置が鋳造方向に伸張した部分の中心偏析を軽減するための方策を検討した。その結果、鋳片を軽圧下しながら凝固させる際に、鋳片に軽圧下力を付与すると同時に、オンラインで凝固完了位置の幅方向形状を把握し、凝固完了位置が鋳造方向に伸張した部分に、溶鋼の流動を抑制可能な静磁場を印加することで、凝固完了位置が鋳造方向に伸張した部分の中心偏析が改善され、鋳片全幅にわたって中心偏析の軽微な鋳片を得ることができるとの知見が得られた。   Therefore, when solidifying the slab while lightly reducing, the solidification completion position in the slab width direction is not uniform, and even if part of the solidification is completed in the slab width direction, the solidification completion position is in the casting direction. A measure to reduce the center segregation of the stretched part was studied. As a result, when the slab is solidified while being lightly reduced, a light reduction force is applied to the slab, and at the same time, the shape in the width direction of the solidification completion position is grasped online, and the solidification completion position is extended to the casting direction. By applying a static magnetic field that can suppress the flow of molten steel, the center segregation of the portion where the solidification completion position extends in the casting direction is improved, and a small slab with center segregation over the entire width of the slab can be obtained. The knowledge of was obtained.

本発明は、上記知見に基づいてなされたものであり、第1の発明に係る連続鋳造鋳片の製造方法は、複数対の圧下ロールからなる軽圧下帯を備えた連続鋳造機を用い、鋳片の厚み中心部の固相率が0.4以下の時点から前記軽圧下帯にて鋳片の圧下を開始して、鋳片に圧下力を付与しながら軽圧下帯の範囲内で凝固完了させて連続鋳造鋳片を製造するに際し、鋳造中に鋳片幅方向の凝固完了位置を検出し、検出した凝固完了位置の情報に基づき、凝固完了位置が鋳造方向に伸張している部分に対して、前記軽圧下帯にて鋳片厚み方向の静磁場を印加することを特徴とするものである。   The present invention has been made on the basis of the above knowledge, and the method for producing a continuous cast slab according to the first invention uses a continuous casting machine provided with a light reduction belt comprising a plurality of pairs of reduction rolls, Starting the rolling of the slab in the light rolling zone from the time when the solid phase ratio at the thickness center of the piece is 0.4 or less, solidification is completed within the range of the light rolling zone while applying a rolling force to the slab. When the continuous cast slab is manufactured, the solidification completion position in the width direction of the slab is detected during casting. Based on the information on the detected solidification completion position, the position where the solidification completion position extends in the casting direction is detected. Then, a static magnetic field in the slab thickness direction is applied in the light pressure lower belt.

また、第2の発明に係る連続鋳造機は、複数対の圧下ロールからなる、鋳片に圧下力を付与するための軽圧下帯と、鋳片の幅方向の凝固完了位置を検出するための凝固完了位置検知手段と、該凝固完了位置検知手段による検出結果に基づいて凝固完了位置が鋳造方向に伸張している部分を求めるための凝固完了位置形状演算手段と、前記軽圧下帯に配置された、鋳片の厚み方向に静磁場を印加するための静磁場印加装置と、該静磁場印加装置を、前記凝固完了位置形状演算手段から入力される信号に基づいて凝固完了位置が鋳造方向に伸張している部分に設置するための静磁場印加位置制御手段と、を具備することを特徴とするものである。   Moreover, the continuous casting machine which concerns on 2nd invention is for detecting the solidification completion position of the light reduction belt | band | zone for giving a reduction force to a slab which consists of several pairs of reduction rolls, and the width direction of a slab. Solidification completion position detection means, solidification completion position shape calculation means for obtaining a portion where the solidification completion position extends in the casting direction based on the detection result by the solidification completion position detection means, and the light pressure lower belt In addition, a static magnetic field application device for applying a static magnetic field in the thickness direction of the slab, and the static magnetic field application device with a solidification completion position in the casting direction based on a signal input from the solidification completion position shape calculation means. And a static magnetic field application position control means for installing in the extended part.

本発明によれば、鋳片に軽圧下力を付与しつつ凝固完了させる際に、凝固完了位置が鋳造方向に伸張している部分に、静磁場を印加して当該部分における溶鋼の流動を抑制するので、凝固完了位置が鋳造方向に伸張している部分の中心偏析が抑制され、その結果、鋳片幅方向の凝固完了位置に鋳造方向の大きな差が生じた場合でも、鋳片幅方向にわたって中心偏析の軽微な鋳片を得ることが可能となる。   According to the present invention, when solidification is completed while applying a light reduction force to the slab, a static magnetic field is applied to a portion where the solidification completion position extends in the casting direction to suppress the flow of molten steel in the portion. Therefore, the center segregation of the portion where the solidification completion position extends in the casting direction is suppressed, and as a result, even if a large difference in the casting direction occurs in the solidification completion position in the slab width direction, It is possible to obtain a slab with a slight center segregation.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明の実施形態例を示す図であって、本発明に係るスラブ連続鋳造機の側面概略図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a view showing an embodiment of the present invention, and is a schematic side view of a slab continuous casting machine according to the present invention.

図1において、1はスラブ連続鋳造機、2は溶鋼を凝固するための鋳型、3は鋳造される鋳片を支持するための鋳片支持ロールであり、スラブ連続鋳造機1の鋳型2に注入された溶鋼は、鋳型2によって冷却されて鋳型2と接触する部位に固相部10を形成し、周囲を固相部10とし、内部を未凝固相である液相部11とする鋳片9は、鋳型2の下方に、対抗して配置された複数対の鋳片支持ロール3に支持されつつ、鋳型2の下方に引き抜かれる。鋳造方向に隣り合う鋳片支持ロール3の間隙には、鋳片9の表面に向けて冷却水を吹き付けるエアーミストスプレーノズルや水スプレーノズルなどのスプレーノズル(図示せず)が配置されて、二次冷却帯が鋳型下方に設置されており、鋳片9は鋳造方向下流側に引き抜かれながら二次冷却帯で冷却され、中心部まで完全に凝固する。この中心部まで完全に凝固した位置が凝固完了位置12である。凝固が完了した鋳片9は、鋳片支持ロール3の下流側に設置された鋳片切断機7で所定の長さに切断され、鋳片9Aとして搬送用ロール8によって搬出される。   In FIG. 1, 1 is a slab continuous casting machine, 2 is a mold for solidifying molten steel, 3 is a slab support roll for supporting a cast slab, and is injected into the mold 2 of the slab continuous casting machine 1 The molten steel is cooled by the mold 2 to form a solid phase portion 10 at a portion in contact with the mold 2, the periphery is a solid phase portion 10, and the inside is a slab 9 having an unsolidified liquid phase portion 11. Is pulled out below the mold 2 while being supported by a plurality of pairs of slab support rolls 3 arranged opposite to each other below the mold 2. A spray nozzle (not shown) such as an air mist spray nozzle or a water spray nozzle that blows cooling water toward the surface of the slab 9 is disposed in the gap between the slab support rolls 3 adjacent to each other in the casting direction. A secondary cooling zone is provided below the mold, and the slab 9 is cooled in the secondary cooling zone while being drawn out downstream in the casting direction, and completely solidified to the center. The position where the solidification has been completely achieved is the solidification completion position 12. The slab 9 that has been solidified is cut into a predetermined length by a slab cutting machine 7 installed on the downstream side of the slab support roll 3, and is carried out as a slab 9A by a transport roll 8.

二次冷却帯の下流側には、軽圧下帯4が配置されている。軽圧下帯4は、鋳片支持ロール3の対向するロール間の間隔(「ロール間隔」と称す)が鋳造方向下流に向って徐々に狭くなるように設定され、鋳造される鋳片9に対して圧下力を付与することのできる鋳片支持ロール3の群が存在する部位である。   A light pressure lower zone 4 is disposed downstream of the secondary cooling zone. The light pressure lower belt 4 is set so that the interval between the opposed rolls of the slab support roll 3 (referred to as “roll interval”) is gradually narrowed toward the downstream in the casting direction. This is a site where there is a group of slab support rolls 3 that can apply a rolling force.

本発明においては、軽圧下を開始する時点は鋳片9の厚み中心部の固相率が0.4以下の時点であり、且つ、軽圧下帯4の範囲内で凝固を完了させる必要があり、従って、これらの条件を満足させるために、伝熱計算などに基づき鋳片引抜速度または二次冷却水量を調整する。これは、鋳片厚み中心部の固相率が0.4を越えてから軽圧下を開始しても、それ以前に濃化溶鋼の流動が発生する可能性があり、これにより中心偏析が発生して、軽圧下の効果を十分に発揮することができなく、一方、凝固完了位置12が軽圧下帯4を越えて下流側に伸張した場合には、圧下力が働かず、中心偏析の改善効果が得られないからである。   In the present invention, the time when the light reduction is started is the time when the solid phase ratio in the central portion of the thickness of the slab 9 is 0.4 or less, and the solidification needs to be completed within the range of the light reduction zone 4. Therefore, in order to satisfy these conditions, the slab drawing speed or the amount of secondary cooling water is adjusted based on heat transfer calculation or the like. This is because, even if light reduction starts after the solid phase ratio at the center of the slab thickness exceeds 0.4, the flow of concentrated molten steel may occur before that, which causes center segregation. Therefore, when the effect of light reduction cannot be fully exhibited, and when the solidification completion position 12 extends downstream beyond the light pressure reduction band 4, the reduction force does not work and the center segregation is improved. This is because the effect cannot be obtained.

この軽圧下帯4を用いて、凝固末期の鋳片9を圧下し、凝固収縮に基づく濃化溶鋼の流動を抑え、鋳片9の中心偏析を改善する。この軽圧下帯4におけるロール間隔の勾配は、圧下速度が0.6〜1.5mm/minの範囲になる程度に設定すればよい。圧下速度が0.6mm/min未満では、中心偏析を軽減する効果が少なく、一方、圧下速度が1.5mm/minを超えると、濃化溶鋼が鋳造方向とは逆方向に絞り出され、鋳片中心部には負偏析が生成される虞があるからである。また、総圧下量は2〜6mm程度とすれば十分である。   By using the lightly lower belt 4, the slab 9 at the end of solidification is crushed, the flow of the concentrated molten steel based on the solidification shrinkage is suppressed, and the center segregation of the slab 9 is improved. What is necessary is just to set the gradient of the roll space | interval in this light reduction belt 4 to such an extent that a reduction speed becomes the range of 0.6-1.5 mm / min. When the rolling speed is less than 0.6 mm / min, the effect of reducing the center segregation is small. On the other hand, when the rolling speed exceeds 1.5 mm / min, the concentrated molten steel is squeezed out in the direction opposite to the casting direction. This is because negative segregation may be generated at the center of the piece. Further, it is sufficient that the total reduction amount is about 2 to 6 mm.

この軽圧下帯4には、隣り合う鋳片支持ロール3の間隙に、鋳片9の幅方向左右にそれぞれ1基づつ、静磁場印加装置14が設置されている。図2に、静磁場印加装置14の設置状況を示す。静磁場印加装置14は、鋳片9を挟んで相対する一対の磁極14cと、磁極14cのN極とS極とをつなぐリターンヨーク14bと、このリターンヨーク14bを周回する、磁極14cを磁化するための励磁コイル14aと、励磁コイル14aに接続する直流電源装置(図示せず)と、で構成され、直流電源装置から供給される直流電源により、相対する磁極14c間で鋳片9を貫通する静磁場が印加されるようになっている。尚、静磁場印加装置14は、図1では2本の鋳片支持ロール3の間隔毎に配置されており、このように、数本の鋳片支持ロール3の間隔毎に配置してもよいが、中心偏析の低減のためには、軽圧下帯4の全ての鋳片支持ロール3の間隙に配置することが望ましい。この場合、静磁場印加装置14が一箇所のみでは効果が少ないので、鋳造方向に少なくとも二箇所は設置することが必要である。また、静磁場を印加するにあたって、上記の電磁石以外に永久磁石を利用してもよい。   In this light pressure lower belt 4, one static magnetic field applying device 14 is installed in the gap between adjacent slab support rolls 3, one on each side in the width direction of the slab 9. In FIG. 2, the installation situation of the static magnetic field application apparatus 14 is shown. The static magnetic field application device 14 magnetizes the pair of magnetic poles 14c that are opposed to each other with the slab 9 interposed therebetween, the return yoke 14b that connects the N pole and the S pole of the magnetic pole 14c, and the magnetic pole 14c that goes around the return yoke 14b. And a DC power supply device (not shown) connected to the excitation coil 14a. The DC power supply supplied from the DC power supply device penetrates the slab 9 between the opposing magnetic poles 14c. A static magnetic field is applied. Note that the static magnetic field application device 14 is arranged at intervals of two slab support rolls 3 in FIG. 1, and may be arranged at intervals of several slab support rolls 3 in this way. However, in order to reduce the center segregation, it is desirable to arrange in the gaps of all the slab support rolls 3 of the light pressure lower belt 4. In this case, since the effect is small if the static magnetic field applying device 14 is only at one place, it is necessary to install at least two places in the casting direction. Moreover, when applying a static magnetic field, you may utilize a permanent magnet other than said electromagnet.

それぞれの静磁場印加装置14は、それぞれの位置調整用アクチュエーター16と連結されており、それぞれの位置調整用アクチュエーター16によって独立して、鋳片幅方向に移動可能となっている。この位置調整用アクチュエーター16は、静磁場印加位置制御装置15と接続しており、静磁場印加位置制御装置15から入力される信号によって作動するようになっている。一方、静磁場印加位置制御装置15は、後述する静磁場印加位置判定装置6と接続しており、静磁場印加位置判定装置6から入力される信号に基づいて、位置調整用アクチュエーター16に信号を送信する。静磁場印加位置制御装置15及び位置調整用アクチュエーター16は、静磁場印加装置14の設置位置を決定するための静磁場印加位置制御手段としての役割を有している。また、静磁場印加位置判定装置6も、その一部は静磁場印加位置制御手段として機能する。尚、磁極14cの形状は、鋳片の鋳造方向に相当する長さを40mm、鋳片の幅方向に相当する長さを100〜300mm程度とし、隣り合う鋳片支持ロール3の間隙に十分に納まる寸法とする。このように、磁極14cを隣り合う鋳片支持ロール3の間隙に配置することにより、効率良く静磁場を印加できるが、鋳片支持ロール3の間隙に配置することは必須ではなく、鋳片支持ロール3の上方に配置しても構わない。   Each of the static magnetic field application devices 14 is connected to each of the position adjusting actuators 16 and can be moved independently in the slab width direction by each of the position adjusting actuators 16. The position adjusting actuator 16 is connected to the static magnetic field application position control device 15 and is operated by a signal input from the static magnetic field application position control device 15. On the other hand, the static magnetic field application position control device 15 is connected to a static magnetic field application position determination device 6 described later, and sends a signal to the position adjustment actuator 16 based on a signal input from the static magnetic field application position determination device 6. Send. The static magnetic field application position control device 15 and the position adjusting actuator 16 have a role as static magnetic field application position control means for determining the installation position of the static magnetic field application device 14. Also, part of the static magnetic field application position determination device 6 functions as a static magnetic field application position control means. The shape of the magnetic pole 14c is such that the length corresponding to the casting direction of the slab is 40 mm and the length corresponding to the width direction of the slab is about 100 to 300 mm, which is sufficient for the gap between the adjacent slab support rolls 3. It is a dimension that fits. Thus, by arranging the magnetic pole 14c in the gap between the adjacent slab support rolls 3, a static magnetic field can be applied efficiently, but it is not essential to place it in the gap between the slab support rolls 3, and the slab support is supported. It may be arranged above the roll 3.

また更に、本発明に係るスラブ連続鋳造機1には、図1に示すように、鋳片9の凝固完了位置12を検出するための凝固完了位置検知手段として、凝固完了位置検知装置5が設置されている。また、この凝固完了位置検知装置5の検出信号に基づき、凝固完了位置12の鋳片幅方向の分布を求めるとともに、求めた分布から凝固完了位置12が鋳造方向に伸張している部分を求め、更に、静磁場の印加が必要な位置を判定するための静磁場印加位置判定装置6が設置されている。この静磁場印加位置判定装置6は、凝固完了位置形状演算手段としての機能も有している。   Furthermore, in the slab continuous casting machine 1 according to the present invention, as shown in FIG. 1, a solidification completion position detection device 5 is installed as solidification completion position detection means for detecting the solidification completion position 12 of the slab 9. Has been. Further, based on the detection signal of the solidification completion position detection device 5, the distribution of the solidification completion position 12 in the slab width direction is obtained, and the portion where the solidification completion position 12 extends in the casting direction is obtained from the obtained distribution. Furthermore, a static magnetic field application position determination device 6 for determining a position where a static magnetic field needs to be applied is installed. The static magnetic field application position determination device 6 also has a function as solidification completion position shape calculation means.

本発明で使用する凝固完了位置検知装置5は、鋳片9における縦波超音波の伝播時間から鋳片9の固相部10の厚みを測定し、これによって凝固完了位置12を検出する検知装置であるが、縦波超音波の伝播速度は、鋼種による依存性や鋳片厚みの影響が大きく、これらの校正を行わないと、精度良く固相部10の厚みを測定することができない。そこで、本発明で使用する凝固完了位置検知装置5では、横波超音波は液相部11を透過しないということに基づいて測定される凝固完了位置12の位置を利用して、縦波超音波の測定結果を校正する。   The solidification completion position detection device 5 used in the present invention measures the thickness of the solid phase portion 10 of the slab 9 from the propagation time of the longitudinal wave ultrasonic waves in the slab 9, and thereby detects the solidification completion position 12. However, the propagation speed of the longitudinal ultrasonic wave is greatly influenced by the steel type and the thickness of the slab, and the thickness of the solid phase portion 10 cannot be measured accurately unless these are calibrated. Therefore, in the coagulation completion position detection device 5 used in the present invention, the longitudinal wave ultrasonic wave is detected using the position of the coagulation completion position 12 measured based on the fact that the transverse wave ultrasonic wave does not pass through the liquid phase part 11. Calibrate the measurement results.

つまり、横波超音波センサーによる透過信号が、消失状態から出現した時点、或いは、検出状態から消失した時点は、鋼種や鋳造条件に拘わらず、凝固完了位置12と横波超音波センサーの配置位置とが一致するという絶対値計測ができるので、凝固完了位置12を横波超音波センサーの配置位置とした条件下において、縦波超音波の伝播時間から凝固完了位置12を算出する計算式を校正することにより、相対的な測定精度に優れている、縦波超音波の伝播時間を用いた凝固完了位置12の推定方法を、絶対的な精度にも優れた検知手段として使用可能となる。   That is, when the transmission signal from the transverse wave ultrasonic sensor appears from the disappearance state or disappears from the detection state, the solidification completion position 12 and the placement position of the transverse wave ultrasonic sensor are determined regardless of the steel type and casting conditions. Since the absolute value can be measured to coincide with each other, the calculation formula for calculating the coagulation completion position 12 from the propagation time of the longitudinal wave ultrasonic wave is calibrated under the condition that the coagulation completion position 12 is the arrangement position of the transverse wave ultrasonic sensor. The estimation method of the coagulation completion position 12 using the propagation time of longitudinal ultrasonic waves, which is excellent in relative measurement accuracy, can be used as a detection means excellent in absolute accuracy.

この凝固完了位置検知装置5は、鋳片9を挟んで対向配置させた横波超音波送信器17及び横波超音波受信器18からなる横波超音波センサーと、鋳片9を挟んで対向配置させた縦波超音波送信器19及び縦波超音波受信器20からなる縦波超音波センサーと、横波超音波送信器17及び縦波超音波送信器19へ電気信号を与えて鋳片9に超音波を送出するための電気回路である超音波送信部21と、横波超音波受信器18にて受信した受信信号を処理するための横波透過強度検出部22及び凝固完了位置到達検出部23と、縦波超音波受信器20にて受信した受信信号を処理するための縦波伝播時間検出部24及び凝固完了位置演算部25と、を備えている。横波超音波送信器17及び縦波超音波送信器19にて送出された超音波は鋳片9を透過し、横波超音波受信器18及び縦波超音波受信器20でそれぞれ受信され、電気信号に変換される。尚、図1では、横波超音波センサー及び縦波超音波センサーが軽圧下帯4に設置されているが、この設置位置は軽圧下帯4に限るものでなく、二次冷却帯である限り何れであっても構わない。   The solidification completion position detection device 5 is disposed so as to face the transverse wave ultrasonic sensor including the transverse wave ultrasonic transmitter 17 and the transverse wave ultrasonic receiver 18 that are opposed to each other with the slab 9 interposed therebetween. An electrical signal is given to the longitudinal wave ultrasonic sensor including the longitudinal wave ultrasonic transmitter 19 and the longitudinal wave ultrasonic receiver 20, and the transverse wave ultrasonic transmitter 17 and the longitudinal wave ultrasonic transmitter 19 to ultrasonically transmit the slab 9. An ultrasonic transmission unit 21 that is an electric circuit for transmitting a signal, a transverse wave transmission intensity detection unit 22 and a coagulation completion position arrival detection unit 23 for processing a reception signal received by the transverse wave ultrasonic receiver 18, A longitudinal wave propagation time detection unit 24 and a coagulation completion position calculation unit 25 for processing a reception signal received by the wave ultrasonic receiver 20 are provided. The ultrasonic waves transmitted by the transverse wave ultrasonic transmitter 17 and the longitudinal wave ultrasonic transmitter 19 are transmitted through the slab 9 and received by the transverse wave ultrasonic receiver 18 and the longitudinal wave ultrasonic receiver 20, respectively, and are supplied as electrical signals. Is converted to In FIG. 1, the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor are installed in the light pressure lower belt 4, but this installation position is not limited to the light pressure lower belt 4, and as long as it is a secondary cooling belt, It does not matter.

横波超音波センサー及び縦波超音波センサーは、例えば鋳片9の幅方向に移動可能な架台に取り付けられていて、送信器と受信器とが同期して移動することで、鋳片9の幅方向各位置における凝固完了位置12を検出できるようになっている。この場合、横波超音波センサー及び縦波超音波センサーが同期して移動する構造になっている。   The transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor are attached to, for example, a frame that can move in the width direction of the slab 9, and the width of the slab 9 is obtained by moving the transmitter and the receiver in synchronization. The solidification completion position 12 at each position in the direction can be detected. In this case, the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor are configured to move synchronously.

横波透過強度検出部22は、横波超音波受信器18により受信された横波超音波信号の強度を検出する装置であり、凝固完了位置到達検出部23は、横波透過強度検出部22にて検出された横波超音波の透過信号の変化から、凝固完了位置12が横波超音波送信器17及び横波超音波受信器18の配置位置よりも鋳造方向の上流側か、或いは下流側かを判定する装置である。また、縦波伝播時間検出部24は、縦波超音波受信器20にて受信した受信信号から鋳片9を透過する縦波超音波の伝播時間を検出する装置であり、凝固完了位置演算部25は、縦波伝播時間検出部24で検出された縦波超音波の伝播時間から凝固完了位置12を演算して求める装置である。ここで、横波透過強度検出部22、凝固完了位置到達検出部23、縦波伝播時間検出部24及び凝固完了位置演算部25は、計算機にて演算される。   The transverse wave transmission intensity detection unit 22 is a device that detects the intensity of the transverse wave ultrasonic signal received by the transverse wave ultrasonic receiver 18, and the coagulation completion position arrival detection unit 23 is detected by the transverse wave transmission intensity detection unit 22. The apparatus determines whether the coagulation completion position 12 is upstream or downstream in the casting direction with respect to the arrangement position of the transverse wave ultrasonic wave transmitter 17 and the transverse wave ultrasonic wave receiver 18 from the change of the transmitted signal of the transverse wave ultrasonic wave. is there. The longitudinal wave propagation time detection unit 24 is a device that detects the propagation time of longitudinal wave ultrasonic waves that pass through the slab 9 from the reception signal received by the longitudinal wave ultrasonic receiver 20. Reference numeral 25 denotes an apparatus for calculating and determining the coagulation completion position 12 from the propagation time of the longitudinal wave ultrasonic wave detected by the longitudinal wave propagation time detection unit 24. Here, the transverse wave transmission intensity detection unit 22, the coagulation completion position arrival detection unit 23, the longitudinal wave propagation time detection unit 24, and the coagulation completion position calculation unit 25 are calculated by a computer.

尚、横波超音波受信器18及び縦波超音波受信器20とこの計算機との間には、超音波信号増幅器や波形を計算機に取り込むためのA/D変換器などが必要であるが、図中では省略している。また、図1に示す凝固完了位置検知装置5においては、横波超音波送信器17と縦波超音波送信器19とが一体的に構成され、同様に、横波超音波受信器18と縦波超音波受信器20とが一体的に構成されている。   Note that an ultrasonic signal amplifier and an A / D converter for taking a waveform into the computer are required between the transverse wave ultrasonic receiver 18 and the longitudinal wave ultrasonic receiver 20 and the computer. It is omitted inside. Further, in the coagulation completion position detection device 5 shown in FIG. 1, the transverse wave ultrasonic transmitter 17 and the longitudinal wave ultrasonic transmitter 19 are integrally configured, and similarly, the transverse wave ultrasonic receiver 18 and the longitudinal wave ultrasonic wave transmitter 19 are combined. The sound wave receiver 20 is integrally formed.

ここで、凝固完了位置検知装置5の動作を説明する。先ず、横波透過強度検出部22の動作について図3を参照して説明する。   Here, the operation of the solidification completion position detection device 5 will be described. First, the operation of the transverse wave transmission intensity detector 22 will be described with reference to FIG.

図3は、横波透過強度検出部22の動作を示す図で、送信信号の1発分に対応した受信信号波形を示している。図3中の最初の波は、送信信号が電気的に横波超音波受信器18に漏れ込んだものであり、2番目の波が横波超音波の透過信号である。   FIG. 3 is a diagram showing the operation of the transverse wave transmission intensity detection unit 22 and shows a reception signal waveform corresponding to one transmission signal. The first wave in FIG. 3 is a signal in which the transmission signal is electrically leaked into the transverse wave ultrasonic receiver 18, and the second wave is a transmission signal of the transverse wave ultrasonic wave.

横波超音波の透過信号が現れる時間位置は、鋳片9の厚み、鋳片9のおよその温度、及び横波超音波の伝播速度から、大まかに既知であるので、その位置の信号だけを取り出すゲートを設け、そのゲート内の信号の最大値を求めるようにする。この処理は、受信信号の波形をA/D変換で計算機内に取り込むことにより、計算処理で容易に実現することができる。信号の最大値の取り方としては、0Vを基準にした絶対値でも、また、ピークトゥーピーク値でも何れでもよい。尚、実際には、送信信号は数10Hz〜数100Hzの周期で繰り返されるので、その一つ一つの波形を平均化してから横波超音波の透過強度を求めたり、一つ一つの波形の透過強度を平均化したりして、ノイズによる揺らぎの影響を少なくすることが有効である。   The time position at which the transmission signal of the transverse wave ultrasonic wave appears is roughly known from the thickness of the slab 9, the approximate temperature of the slab 9, and the propagation speed of the transverse wave ultrasonic wave. And the maximum value of the signal in the gate is obtained. This processing can be easily realized by calculation processing by taking the waveform of the received signal into the computer by A / D conversion. As a method of taking the maximum value of the signal, either an absolute value based on 0 V or a peak-to-peak value may be used. Actually, since the transmission signal is repeated with a period of several tens of Hz to several hundreds of Hz, the transmission intensity of the transverse ultrasonic wave is obtained after averaging each waveform, or the transmission intensity of each waveform. It is effective to reduce the influence of fluctuation caused by noise.

次ぎに、凝固完了位置到達検出部23の動作について図4を参照して説明する。図4は、凝固完了位置到達検出部23の動作の1例を示す図で、連続鋳造操業の数10分間にわたって鋳造条件を変化させながら、横波透過強度検出部22から送られてくる横波超音波の透過信号の強度を検出したチャート図である。   Next, the operation of the solidification completion position arrival detection unit 23 will be described with reference to FIG. FIG. 4 is a diagram showing an example of the operation of the solidification completion position arrival detection unit 23. The transverse wave ultrasonic wave sent from the transverse wave transmission intensity detection unit 22 while changing the casting conditions over several tens of minutes of continuous casting operation. It is the chart which detected the intensity | strength of the transmitted signal of.

図4に示すように、連続鋳造操業の鋳造条件の変化に応じて横波超音波の透過信号の強度は変化する。図4中のA及びBの範囲では透過信号の強度は非常に小さくなっており、凝固完了位置12が、横波超音波送信器17及び横波超音波受信器18の配置位置よりも鋳造方向の下流側に存在する状態を表している。   As shown in FIG. 4, the intensity of the transmitted signal of the transverse ultrasonic wave changes according to the change in the casting conditions of the continuous casting operation. In the range of A and B in FIG. 4, the intensity of the transmission signal is very small, and the coagulation completion position 12 is downstream in the casting direction from the arrangement position of the transverse wave ultrasonic transmitter 17 and the transverse wave ultrasonic receiver 18. It represents the state that exists on the side.

凝固完了位置到達検出部23では、透過信号の強度が所定の判定しきい値を横切った時点で、凝固完了位置12が横波超音波センサーの配置位置を通過したと判定する。この判定しきい値は、予め定めた固定値でも、或いは横波超音波の透過信号が現れない時間領域の信号レベルからノイズレベルを求め、その値を用いた変動しきい値でも、どちらでも構わない。凝固完了位置到達検出部23は、このようにして凝固完了位置12が横波超音波センサーの配置位置を通過したと判定すると、凝固完了位置演算部25へタイミング信号を送出する。   The coagulation completion position arrival detection unit 23 determines that the coagulation completion position 12 has passed the arrangement position of the transverse wave ultrasonic sensor when the intensity of the transmission signal crosses a predetermined determination threshold value. This determination threshold value may be either a predetermined fixed value or a fluctuation threshold value obtained by obtaining a noise level from a signal level in a time domain in which a transverse ultrasonic transmission signal does not appear. . When the coagulation completion position arrival detection unit 23 determines that the coagulation completion position 12 has passed the arrangement position of the transverse wave ultrasonic sensor in this way, the coagulation completion position arrival detection unit 23 sends a timing signal to the coagulation completion position calculation unit 25.

次ぎに、縦波伝播時間検出部24の動作について図5を参照して説明する。図5は、縦波伝播時間検出部24の動作を示す図で、送信信号の1発分に対応した受信信号の波形を示す図である。図5中の最初の波は、送信信号が電気的に縦波超音波受信器20に漏れ込んだものであり、2番目の波が縦波超音波の透過信号である。   Next, the operation of the longitudinal wave propagation time detector 24 will be described with reference to FIG. FIG. 5 is a diagram illustrating the operation of the longitudinal wave propagation time detection unit 24, and is a diagram illustrating a waveform of a reception signal corresponding to one transmission signal. The first wave in FIG. 5 is a transmission signal that has leaked into the longitudinal wave ultrasonic wave receiver 20 electrically, and the second wave is a transmission signal of longitudinal wave ultrasound.

縦波伝播時間検出部24は、送信信号の送出タイミングから縦波超音波の透過信号の出現タイミングまでの時間を検出する。縦波超音波の透過信号の検出方法としては、図5に示すように、しきい値以上になる時点としても、或いはゲート内の最大値となる時点としても、どちらでもよい。この処理は、横波透過強度検出部22と同様に、受信信号の波形をA/D変換で計算機内に取り込むことにより、計算処理で容易に実現することができる。また実際には、送信信号は数10Hz〜数100Hzの周期で繰り返されるので、その一つ一つの波形を平均化してから縦波超音波の伝播時間を求めたり、一つ一つの波形の伝播時間を平均化したりして、ノイズによる揺らぎの影響を少なくすることが有効である。   The longitudinal wave propagation time detection unit 24 detects the time from the transmission timing of the transmission signal to the appearance timing of the transmission signal of the longitudinal wave ultrasonic wave. As a method for detecting a transmission signal of longitudinal ultrasonic waves, as shown in FIG. 5, either the time when the threshold value is exceeded or the time when the maximum value in the gate is reached may be used. Similar to the transverse wave transmission intensity detector 22, this processing can be easily realized by calculation processing by capturing the waveform of the received signal into the computer by A / D conversion. In practice, since the transmission signal is repeated at a period of several tens Hz to several hundreds Hz, the propagation time of longitudinal ultrasonic waves is obtained after averaging each waveform or the propagation time of each waveform. It is effective to reduce the influence of fluctuation caused by noise.

最後に、凝固完了位置演算部25の動作について図6を参照して説明する。図6は、凝固完了位置演算部25の動作を示す図で、縦波超音波の伝播時間から凝固完了位置12を算出する近似式を図示したものである。凝固完了位置12が縦波超音波送信器19及び縦波超音波受信器20の配置位置よりも鋳造方向の下流側になるほど、液相部11の厚みが増大するため、伝播時間は長くなる。従って、伝播時間と、鋳型2内の溶鋼湯面13から凝固完了位置12までの距離とはおよそ比例関係になり、図6のような関係を示す。そこで、伝播時間から凝固完了位置12を求めるには、多項式の近似式、例えば下記の(1)式に示す一次式などを用いればよい。   Finally, the operation of the coagulation completion position calculation unit 25 will be described with reference to FIG. FIG. 6 is a diagram illustrating the operation of the coagulation completion position calculation unit 25, and illustrates an approximate expression for calculating the coagulation completion position 12 from the propagation time of longitudinal wave ultrasonic waves. As the solidification completion position 12 is located downstream of the arrangement position of the longitudinal wave ultrasonic transmitter 19 and the longitudinal wave ultrasonic receiver 20 in the casting direction, the thickness of the liquid phase portion 11 increases, and the propagation time becomes longer. Therefore, the propagation time and the distance from the molten steel surface 13 in the mold 2 to the solidification completion position 12 are approximately proportional to each other, and the relationship shown in FIG. 6 is shown. Therefore, in order to obtain the solidification completion position 12 from the propagation time, an approximate expression of a polynomial, for example, a linear expression shown in the following expression (1) may be used.

CE=a1×Δt+a0 …(1)
但し、(1)式において、CEは鋳型内の溶鋼湯面13から凝固完了位置12までの距離、Δtは縦波超音波の伝播時間、a1及びa0は多項式の係数である。
CE = a1 × Δt + a0 (1)
In the equation (1), CE is the distance from the molten steel surface 13 in the mold to the solidification completion position 12, Δt is the propagation time of longitudinal ultrasonic waves, and a1 and a0 are polynomial coefficients.

図6中、Aで示す線は、縦波超音波に基づく鋳型内の溶鋼湯面13から凝固完了位置12までの距離の校正前の近似式を表している。   In FIG. 6, the line indicated by A represents an approximate expression before calibration of the distance from the molten steel surface 13 in the mold to the solidification completion position 12 based on longitudinal wave ultrasonic waves.

しかしながら、縦波超音波の伝播速度は鋼種などによって異なるため、当該鋼種などによって係数a0を更正する必要がある。そこで、以下にその更正方法を説明する。   However, since the propagation speed of longitudinal ultrasonic waves differs depending on the steel type, the coefficient a0 needs to be corrected depending on the steel type. Therefore, the correction method will be described below.

凝固完了位置到達検出部23から凝固完了位置12の通過判定のタイミング信号が凝固完了位置演算部25に送出されると、凝固完了位置演算部25では、その時点における縦波超音波の伝播時間(Δt1)を求め、更に、鋳型内の溶鋼湯面13から凝固完了位置12までの距離(CE)が、横波超音波センサーの配置位置と合致するように、下記の(2)式を用いて(1)式の係数(a0)を修正する。   When the timing signal for determining the passage of the coagulation completion position 12 is sent from the coagulation completion position arrival detection unit 23 to the coagulation completion position calculation unit 25, the coagulation completion position calculation unit 25 transmits the propagation time of longitudinal ultrasonic waves at that time ( Δt1) is obtained, and further, the following equation (2) is used so that the distance (CE) from the molten steel surface 13 in the mold to the solidification completion position 12 matches the arrangement position of the transverse ultrasonic sensor ( 1) Modify the coefficient (a0) in the equation.

a0=CE1−a1×Δt1 …(2)
但し、(2)式において、CE1は鋳型内の溶鋼湯面13から横波超音波センサーの配置位置までの距離、Δt1は凝固完了位置12が横波超音波センサーの配置位置を通過したと判定した時点の縦波超音波の伝播時間である。
a0 = CE1-a1 * [Delta] t1 (2)
However, in the formula (2), CE1 is the distance from the molten steel surface 13 in the mold to the arrangement position of the transverse wave ultrasonic sensor, and Δt1 is the time when it is determined that the solidification completion position 12 has passed the arrangement position of the transverse wave ultrasonic sensor. Is the propagation time of longitudinal ultrasonic waves.

これによって、凝固完了位置12を求める近似式は校正され、例えば図6中にBで示す校正後となる。校正後は、Bで示す校正後の近似式を用いて、縦波超音波の伝播時間に基づいて精度良く凝固完了位置12を鋳造中にオンラインで検知することが可能となる。   Thus, the approximate expression for obtaining the solidification completion position 12 is calibrated, for example, after calibration indicated by B in FIG. After the calibration, the solidification completion position 12 can be detected on-line during casting with high accuracy based on the propagation time of the longitudinal wave ultrasonic wave using the approximate expression after calibration indicated by B.

校正する時点は、新たな鋼種を鋳造する毎の1回だけでも、また、連続鋳造の操業中に横波超音波センサーの配置位置を凝固完了位置12が横切る毎に、或いは、操作員の判断による適当な時期の何れでもよい。   The calibration is performed only once every time a new steel type is cast, every time the solidification completion position 12 crosses the position of the transverse ultrasonic sensor during continuous casting, or at the discretion of the operator. Any suitable time may be used.

次いで、静磁場印加位置判定装置6の動作を説明する。静磁場印加位置判定装置6は、凝固完了位置検知装置5の凝固完了位置演算部25の演算結果に基づき、凝固完了位置12の鋳片幅方向における形状を演算する、凝固完了位置形状演算手段としての凝固完了位置形状演算部26と、この凝固完了位置形状演算部26によって演算された凝固完了位置12の形状に基づき、鋳片9の幅方向及び鋳造方向で静磁場の印加が必要な範囲、つまり、凝固完了位置12が鋳造方向に伸張して、鋳片中心部に液相部11が残存し、静磁場を印加することにより残存する液相部11の流動を抑制する必要のある範囲を決定する、静磁場印加位置制御手段としての静磁場印加領域判定部27と、を備えている。   Next, the operation of the static magnetic field application position determination device 6 will be described. The static magnetic field application position determination device 6 is a solidification completion position shape calculation means that calculates the shape of the solidification completion position 12 in the slab width direction based on the calculation result of the solidification completion position calculation unit 25 of the solidification completion position detection device 5. Based on the solidification completion position shape calculation unit 26 and the shape of the solidification completion position 12 calculated by the solidification completion position shape calculation unit 26, a range in which a static magnetic field needs to be applied in the width direction and the casting direction of the slab 9, That is, the solidification completion position 12 extends in the casting direction, the liquid phase portion 11 remains in the center portion of the slab, and the range in which the flow of the remaining liquid phase portion 11 needs to be suppressed by applying a static magnetic field is set. And a static magnetic field application region determination unit 27 as a static magnetic field application position control means to be determined.

このうち、凝固完了位置形状演算部26は、凝固完了位置演算部25で演算された鋳片幅方向各位置における凝固完了位置12に関する情報と、それが計測された鋳片幅方向位置の情報とに基づき、鋳片9の全幅にわたる凝固完了位置12の形状を演算する。   Among these, the solidification completion position shape calculation unit 26 includes information on the solidification completion position 12 at each position in the slab width direction calculated by the solidification completion position calculation unit 25, and information on the slab width direction position at which it is measured. Based on the above, the shape of the solidification completion position 12 over the entire width of the slab 9 is calculated.

静磁場印加領域判定部27は、以下のようにして静磁場印加の必要な領域を決定する。即ち、図7に示すような凝固完了位置12の形状であった場合に、鋳片の短辺以外で幅方向の領域において、一部分でも完全凝固している位置から鋳造方向下流側であって、未凝固相である液相部11が残留する領域(図7の斜線の範囲)を静磁場印加領域として判定する。静磁場印加領域判定部27は、この静磁場印加領域として判定した領域に静磁場が印加されるように、静磁場印加位置制御装置15に対して出力する。この場合、伸張した凝固完了位置12の中心位置と、静磁場印加装置14の中心位置とが一致するように、静磁場印加位置制御装置15に対して出力する。また、凝固完了位置12の伸張した部分が鋳片幅方向で3箇所以上存在する場合には、伸張の度合いの大きい順に静磁場印加装置14を配置するように、静磁場印加位置制御装置15に対して出力する。   The static magnetic field application region determination unit 27 determines a region where static magnetic field application is required as follows. That is, in the case of the shape of the solidification completion position 12 as shown in FIG. 7, in the region in the width direction other than the short side of the slab, from the position where even a part is completely solidified, the downstream side in the casting direction, A region where the liquid phase portion 11 that is an unsolidified phase remains (a hatched range in FIG. 7) is determined as a static magnetic field application region. The static magnetic field application region determination unit 27 outputs the static magnetic field application position control device 15 so that the static magnetic field is applied to the region determined as the static magnetic field application region. In this case, the output is output to the static magnetic field application position control device 15 so that the center position of the extended solidification completion position 12 and the center position of the static magnetic field application device 14 coincide. Further, when there are three or more extended portions of the solidification completion position 12 in the slab width direction, the static magnetic field application position control device 15 is arranged so that the static magnetic field application devices 14 are arranged in descending order of the degree of expansion. Output.

このようにして構成されるスラブ連続鋳造機1において、以下のようにして鋳片9Aを製造する。   In the slab continuous casting machine 1 configured as described above, the slab 9A is manufactured as follows.

浸漬ノズル(図示せず)を介して鋳型2に溶鋼を鋳造する。鋳型2に鋳造された溶鋼は鋳型2で冷却されて固相部10を形成し、内部に液相部11を有する鋳片9として、鋳片支持ロール3に支持されつつ下方に連続的に引き抜かれる。鋳片9は鋳片支持ロール3を通過する間、二次冷却帯で冷却され、固相部10の厚みを増大して、軽圧下帯4に至る。そして、軽圧下帯4において適宜な圧下量で圧下され、やがて中心部までの凝固を完了する。   Molten steel is cast on the mold 2 through an immersion nozzle (not shown). The molten steel cast in the mold 2 is cooled by the mold 2 to form a solid phase portion 10, and continuously drawn as a slab 9 having a liquid phase portion 11 therein while being supported by the slab support roll 3. It is. While the slab 9 passes through the slab support roll 3, it is cooled in the secondary cooling zone, increases the thickness of the solid phase portion 10, and reaches the light pressure lower zone 4. And it is reduced by the appropriate amount of reduction in the light reduction zone 4, and solidification to a center part is completed eventually.

その際に、凝固完了位置検知装置5及び静磁場印加位置判定装置6により凝固完了位置12の鋳片幅方向の位置を検出する。そして、検出した凝固完了位置12の鋳片幅方向の形状に応じて、静磁場印加位置判定装置6は静磁場の印加領域を決定し、その信号に基づいて位置調整用アクチュエーター16により静磁場印加装置14を移動させ、そして所定の位置に配置した静磁場印加装置14から鋳片9へ静磁場を印加する。   At that time, the solidification completion position detection device 5 and the static magnetic field application position determination device 6 detect the position of the solidification completion position 12 in the slab width direction. Then, the static magnetic field application position determination device 6 determines the static magnetic field application area according to the detected shape of the solidification completion position 12 in the slab width direction, and the static magnetic field application is performed by the position adjustment actuator 16 based on the signal. The apparatus 14 is moved, and a static magnetic field is applied to the slab 9 from the static magnetic field application apparatus 14 arranged at a predetermined position.

尚、予め伝熱計算などに基づいて、凝固完了位置12の伸張した部分であっても、凝固完了位置12は軽圧下帯4の範囲内であり、且つ、軽圧下帯4による圧下が開始される時点は、鋳片9の厚み中心部の固相率が0.4以下の時点となるように、鋳造条件が設定されているが、凝固完了位置検知装置5による検出結果がこれと異なる場合には、鋳片引抜速度や二次冷却水量を調整して、上記条件を満足させる。凝固が完了した鋳片9を、鋳片切断機7で所定の長さに切断し、鋳片9Aとして搬送用ロール8によって次工程に搬出する。   It should be noted that the solidification completion position 12 is within the range of the light pressure lower belt 4 and the reduction by the light pressure lower belt 4 is started even in the extended portion of the solidification completion position 12 based on heat transfer calculation in advance. When the casting conditions are set so that the solid phase ratio at the central portion of the thickness of the slab 9 is 0.4 or less, but the detection result by the solidification completion position detector 5 is different from this In order to satisfy the above conditions, the slab drawing speed and the amount of secondary cooling water are adjusted. The slab 9 that has been solidified is cut into a predetermined length by the slab cutting machine 7, and is carried out to the next process by the transport roll 8 as a slab 9A.

一般的に、鋳片9の凝固完了位置12の幅方向形状は、二次冷却帯における「幅切り」などの影響から、前述した図7のような形状になりやすいが、本発明では、凝固完了位置12の幅方向形状に応じて静磁場を印加するので、凝固完了位置12が鋳造方向に伸張した部分であっても中心偏析を軽減することができる。尚、二次冷却における「幅切り」とは、連続鋳造機の二次冷却帯において意図的にスラブ鋳片長辺面のコーナー近傍に冷却水を噴霧せずに冷却する手法である。   In general, the shape in the width direction of the solidification completion position 12 of the slab 9 tends to be the shape as shown in FIG. 7 due to the influence of “width cutting” in the secondary cooling zone. Since a static magnetic field is applied according to the width direction shape of the completion position 12, the center segregation can be reduced even if the solidification completion position 12 is a portion extending in the casting direction. The “width cutting” in the secondary cooling is a method of cooling without spraying cooling water intentionally in the vicinity of the corner of the long side surface of the slab slab in the secondary cooling zone of the continuous casting machine.

静磁場の印加によって鋳片9の中心偏析が軽減するのは、以下の理由による。   The reason why the center segregation of the slab 9 is reduced by the application of the static magnetic field is as follows.

静磁場の印加された環境のなかで、電気伝導性の良好な液体が静磁場の磁束に対して垂直に流動すると、液体中には誘導電流が発生し、この誘導電流と印加される静磁場との相互作用により、流動方向とは逆向きの電磁力が液体に働き、流動を抑制することが知られている。即ち、鋳片9を挟んで相対する磁極14cを配置し、この磁極14cから鋳片9の厚み方向に磁場強度Bの静磁場を印加させた状態で、鋳片内部の液相部11が鋳造方向や幅方向に速度Vで移動すると、下記の(3)式に基づく起電力Eが発生する。   When a liquid with good electrical conductivity flows perpendicular to the magnetic flux of a static magnetic field in an environment where a static magnetic field is applied, an induced current is generated in the liquid, and this induced current and the applied static magnetic field It is known that an electromagnetic force in a direction opposite to the flow direction acts on the liquid due to the interaction with the liquid and suppresses the flow. That is, the magnetic phase 14c opposed to each other with the slab 9 interposed therebetween is disposed, and the liquid phase portion 11 inside the slab is cast in a state in which a static magnetic field having a magnetic field strength B is applied from the magnetic pole 14c in the thickness direction of the slab 9. When moving in the direction and the width direction at a speed V, an electromotive force E based on the following equation (3) is generated.

E=V×B …(3)
この起電力Eにより、液相部11には渦電流I(I=σ×E)が発生し、この渦電流Iと磁場強度Bとの相互作用により、液相部11の流動方向とは逆方向に、下記の(4)式で示す体積力Fが働く。但し、σは比電気抵抗(m/Ω)である。
E = V × B (3)
Due to this electromotive force E, an eddy current I (I = σ × E) is generated in the liquid phase portion 11, and the flow direction of the liquid phase portion 11 is reversed by the interaction between the eddy current I and the magnetic field strength B. The body force F shown by the following formula (4) works in the direction. Where σ is the specific electrical resistance (m / Ω).

F=−I×B=−σ×V×B2 …(4)
(4)式からも明らかなように、体積力Fは、液相部11つまり溶鋼の流速と静磁場の強度とに比例する。この体積力Fによって、溶鋼の流動が抑制され、中心偏析が軽減される。尚、最終凝固部では液相部11の厚みは薄く、従って、最終凝固部における液相部11の移動方向は、鋳片表面と平行な方向、つまり、静磁場の磁束と直行する方向となる。
F = −I × B = −σ × V × B 2 (4)
As apparent from the equation (4), the body force F is proportional to the liquid phase portion 11, that is, the flow velocity of the molten steel and the strength of the static magnetic field. This bulk force F suppresses the flow of molten steel and reduces central segregation. In the final solidified portion, the liquid phase portion 11 is thin. Therefore, the moving direction of the liquid phase portion 11 in the final solidified portion is a direction parallel to the slab surface, that is, a direction perpendicular to the magnetic flux of the static magnetic field. .

以上説明したように、本発明によれば、鋳片9を軽圧下しながら、鋳造中に常に凝固完了位置12を検出し、その検出結果に基づき、凝固完了位置12が鋳造方向に伸張した部位に軽圧下帯4にて静磁場を印加するので、凝固完了位置12が鋳造方向に伸張した部位であっても、未凝固溶鋼の流動が抑制され、中心偏析を鋳片幅方向で均一に低減でき、高品質の鋳片9Aを安定して製造することができる。   As described above, according to the present invention, the solidification completion position 12 is always detected during casting while the slab 9 is lightly pressed, and the solidification completion position 12 extends in the casting direction based on the detection result. Since a static magnetic field is applied to the light pressure lower zone 4, the flow of unsolidified molten steel is suppressed even at the solidification completion position 12 extending in the casting direction, and the center segregation is uniformly reduced in the slab width direction. The high-quality cast slab 9A can be manufactured stably.

尚、図1に示す凝固完了位置検知装置5では、横波超音波センサーと縦波超音波センサーとが同一位置に配置されているが、同一位置に配置する必要はなく、鋳片幅方向の同一位置に設置するならば、鋳造方向に離れた位置であっても構わない。   In the solidification completion position detection device 5 shown in FIG. 1, the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor are arranged at the same position, but need not be arranged at the same position, and the same in the slab width direction. As long as it is installed at a position, it may be a position away from the casting direction.

ここで、鋳片幅方向の同一位置とは、凝固完了位置12の鋳造方向の変化がほとんど無いと見なせる範囲内を意味するものとする。スラブ連続鋳造機1では、凝固完了位置12が鋳片9の幅方向で異なる場合があるので、横波超音波センサーと縦波超音波センサーとで検出する凝固完了位置12が同一であるか、或いは、凝固完了位置12に鋳造方向の変化が生じたとしても変化の差がほとんど無いと見なせる幅方向の範囲内に横波超音波センサー及び縦波超音波センサーを配置する必要がある。具体的には、凝固完了位置12の鋳片幅方向の形状を平坦と見なせる場合には、数100mm離れていてもよく、逆に、凝固完了位置12の鋳片幅方向の形状が大きく変化している場合には、数10mm以内とする必要がある。これは、この目的に用いられる超音波の波長が数10mmであり、且つセンサーの大きさが数10mm程度であることから、回折の影響も考慮すると、数10mm以内であれば同一位置と見なすことができるからである。   Here, the same position in the slab width direction means a range in which it can be considered that there is almost no change in the casting direction of the solidification completion position 12. In the slab continuous casting machine 1, the solidification completion position 12 may be different in the width direction of the slab 9, so that the solidification completion position 12 detected by the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor is the same, or Even if a change in the casting direction occurs at the solidification completion position 12, it is necessary to arrange the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor within a range in the width direction where it can be considered that there is almost no difference in change. Specifically, when the shape of the solidification completion position 12 in the slab width direction can be regarded as flat, it may be several hundred mm away, and conversely, the shape of the solidification completion position 12 in the slab width direction changes greatly. If it is, it must be within several tens of mm. This is because the wavelength of the ultrasonic wave used for this purpose is several tens of millimeters and the size of the sensor is about several tens of millimeters. Therefore, if the influence of diffraction is taken into consideration, it is regarded as the same position within several tens of millimeters. Because you can.

また、横波超音波センサーと縦波超音波センサーとを同一位置に配置する場合、必ずしも縦波超音波と横波超音波とを同一位置で発生・検出させる電磁超音波センサーを使用する必要はなく、横波超音波センサーと縦波超音波センサーとの配置間隔が、数10mm以内であるならば、横波超音波センサーと縦波超音波センサーとを別々に配置しても構わない。   In addition, when the transverse ultrasonic sensor and the longitudinal ultrasonic sensor are arranged at the same position, it is not always necessary to use an electromagnetic ultrasonic sensor that generates and detects longitudinal ultrasonic waves and transverse ultrasonic waves at the same position. As long as the arrangement interval between the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor is within several tens of millimeters, the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor may be arranged separately.

以下、本発明の実施例を説明する。化学成分組成が、C:0.15質量%、Si:0.15質量%、Mn:1.0質量%、P:0.015質量%、S:0.005質量%、Ti:0.01質量%、sol.Al:0.03質量%である中炭素鋼を溶製し、図1に示すスラブ連続鋳造機を用いて、鋳片引抜速度を1.5m/minとし、幅:2100mm、厚み:250mmのスラブ鋳片に鋳造した。   Examples of the present invention will be described below. Chemical component composition is C: 0.15 mass%, Si: 0.15 mass%, Mn: 1.0 mass%, P: 0.015 mass%, S: 0.005 mass%, Ti: 0.01 1% by mass, sol.Al: 0.03% by mass of medium carbon steel was melted, and using the slab continuous casting machine shown in FIG. 1, the slab drawing speed was 1.5 m / min, width: 2100 mm, Thickness: Cast into a 250 mm slab slab.

軽圧下帯におけるロール間隔の絞り込み勾配を1mmあたり0.53mmとして鋳片を圧下するとともに、軽圧下帯において、凝固完了位置検知装置により検出される凝固完了位置の鋳片幅方向形状に応じて、凝固完了位置が鋳造方向に伸張した部分に静磁場を印加した。静磁場印加装置は、鋳型下端から26〜32m範囲のロール間に約2m間隔で4箇所、凝固完了位置が鋳造方向に最も伸張した部分に静磁場印加装置の中心位置が一致するように配置し、5000ガウスの磁場強度で静磁場を印加した。   According to the slab width direction shape of the solidification completion position detected by the solidification completion position detection device in the light pressure lower band, while rolling down the slab by setting the narrowing gradient of the roll interval in the light pressure lower band to 0.53 mm per mm, A static magnetic field was applied to the portion where the solidification completion position extended in the casting direction. The static magnetic field application device is arranged at about 2 m intervals between the rolls in the range of 26 to 32 m from the lower end of the mold so that the center position of the static magnetic field application device coincides with the portion where the solidification completion position extends most in the casting direction. A static magnetic field was applied at a magnetic field intensity of 5000 gauss.

また、比較のために、静磁場を印加せず、軽圧下帯におけるロール間隔の絞り込み勾配を1mmあたり0.53mmとして、上記鋼種を同一鋳造条件で鋳造した。   For comparison, the steel type was cast under the same casting conditions without applying a static magnetic field and setting the narrowing gradient of the roll interval in the light pressure zone to 0.53 mm per mm.

鋳造した鋳片から鋳片全幅試料を採取し、鋳片の中心偏析を調査した。中心偏析の調査は、鋳片中心部から鋳片幅方向に100ピッチで5mm直径のドリルで切り粉を採取し、燃焼式炭素分析計によって炭素濃度(C)を求め、鋳片の1/4厚み位置から採取した切り粉の炭素分析値(C0)との比である、炭素の偏析度(C/C0)を調査した。 A slab full width sample was taken from the cast slab and the center segregation of the slab was investigated. The center segregation was investigated by collecting chips with a 5 mm diameter drill at 100 pitches in the width direction of the slab from the center of the slab, determining the carbon concentration (C) with a combustion carbon analyzer, and 1/4 of the slab. The degree of segregation of carbon (C / C 0 ), which is a ratio to the carbon analysis value (C 0 ) of the chips collected from the thickness position, was investigated.

図8に、調査した炭素の偏析度(C/C0)の鋳片幅方向分布に併せて、当該鋳片鋳造時における凝固完了位置検知装置により検出された凝固完了位置の鋳片幅方向形状(クレータエンド形状)を示す。図8からも明らかなように、凝固完了位置が鋳片幅方向で不均一であるにも拘わらず、本発明例では炭素の偏析度(C/C0)が幅方向に均一化されていることが分かる。これに対して、比較例では、凝固完了位置が鋳造方向に伸張した部分において炭素の偏析度(C/C0)が悪化した。 FIG. 8 shows the slab width direction shape of the solidification completion position detected by the solidification completion position detection device at the time of the slab casting, together with the slab width direction distribution of the carbon segregation degree (C / C 0 ) investigated. (Crater end shape) is shown. As is apparent from FIG. 8, the carbon segregation degree (C / C 0 ) is made uniform in the width direction in the present invention example even though the solidification completion position is non-uniform in the slab width direction. I understand that. On the other hand, in the comparative example, the segregation degree (C / C 0 ) of carbon deteriorated in the portion where the solidification completion position extended in the casting direction.

本発明に係るスラブ連続鋳造機の側面概略図である。It is a side schematic diagram of the slab continuous casting machine concerning the present invention. 図1に示す静磁場印加装置の設置状況を示す図である。It is a figure which shows the installation condition of the static magnetic field application apparatus shown in FIG. 横波透過強度検出部の動作を示す図である。It is a figure which shows operation | movement of a transverse wave transmission intensity detection part. 凝固完了位置到達検出部の動作の1例を示す図である。It is a figure which shows an example of operation | movement of the coagulation completion position arrival detection part. 縦波伝播時間検出部の動作を示す図である。It is a figure which shows operation | movement of a longitudinal wave propagation time detection part. 凝固完了位置演算部の動作を示す図である。It is a figure which shows operation | movement of the coagulation completion position calculating part. 凝固完了位置の幅方向形状の1例を示す図である。It is a figure which shows one example of the width direction shape of a coagulation completion position. 炭素の偏析度(C/C0)の鋳片幅方向分布に併せて、凝固完了位置の鋳片幅方向形状を示す図である。In conjunction with the slab width direction distribution of segregation ratio (C / C 0) of the carbon is a diagram showing a slab width direction shape of the solidification completion position.

符号の説明Explanation of symbols

1 スラブ連続鋳造機
2 鋳型
3 鋳片支持ロール
4 軽圧下帯
5 凝固完了位置検知装置
6 静磁場印加位置判定装置
7 鋳片切断機
8 搬送用ロール
9 鋳片
10 固相部
11 液相部
12 凝固完了位置
13 溶鋼湯面
14 静磁場印加装置
14a 励磁コイル
14b リターンヨーク
14c 磁極
15 静磁場印加位置制御装置
16 位置調整用アクチュエーター
17 横波超音波送信器
18 横波超音波受信器
19 縦波超音波送信器
20 縦波超音波受信器
21 超音波送信部
22 横波透過強度検出部
23 凝固完了位置到達検出部
24 縦波伝播時間検出部
25 凝固完了位置演算部
26 凝固完了位置形状演算部
27 静磁場印加領域判定部
DESCRIPTION OF SYMBOLS 1 Slab continuous casting machine 2 Mold 3 Cast slab support roll 4 Light pressure lower belt 5 Solidification completion position detection device 6 Static magnetic field application position determination device 7 Cast slab cutting machine 8 Roll for conveyance 9 Cast slab 10 Solid phase part 11 Liquid phase part 12 Solidification completion position 13 Molten steel surface 14 Static magnetic field application device 14a Excitation coil 14b Return yoke 14c Magnetic pole 15 Static magnetic field application position control device 16 Actuator for position adjustment 17 Transverse wave ultrasonic transmitter 18 Transverse wave ultrasonic receiver 19 Longitudinal wave ultrasonic transmission 20 Longitudinal wave ultrasonic wave receiver 21 Ultrasonic wave transmission unit 22 Transverse wave transmission intensity detection unit 23 Coagulation completion position arrival detection unit 24 Longitudinal wave propagation time detection unit 25 Coagulation completion position calculation unit 26 Coagulation completion position shape calculation unit 27 Static magnetic field application Area determination unit

Claims (2)

複数対の圧下ロールからなる軽圧下帯を備えた連続鋳造機を用い、鋳片の厚み中心部の固相率が0.4以下の時点から前記軽圧下帯にて鋳片の圧下を開始して、鋳片に圧下力を付与しながら軽圧下帯の範囲内で凝固完了させて連続鋳造鋳片を製造するに際し、鋳造中に鋳片幅方向の凝固完了位置を検出し、検出した凝固完了位置の情報に基づき、凝固完了位置が鋳造方向に伸張している部分に対して、前記軽圧下帯にて鋳片厚み方向の静磁場を印加することを特徴とする、連続鋳造鋳片の製造方法。   Using a continuous casting machine equipped with a light reduction belt consisting of a plurality of pairs of reduction rolls, the reduction of the slab is started in the light reduction zone when the solid phase ratio at the thickness center of the slab is 0.4 or less. When producing a continuous cast slab by completing solidification within the range of the light rolling zone while applying a rolling force to the slab, the solidification completion position in the slab width direction is detected during casting, and the detected solidification completion Based on the position information, a static magnetic field in the thickness direction of the slab is applied to the portion where the solidification completion position extends in the casting direction, using the light pressure lower zone, and the continuous cast slab is manufactured. Method. 複数対の圧下ロールからなる、鋳片に圧下力を付与するための軽圧下帯と、
鋳片の幅方向の凝固完了位置を検出するための凝固完了位置検知手段と、
該凝固完了位置検知手段による検出結果に基づいて凝固完了位置が鋳造方向に伸張している部分を求めるための凝固完了位置形状演算手段と、
前記軽圧下帯に配置された、鋳片の厚み方向に静磁場を印加するための静磁場印加装置と、
該静磁場印加装置を、前記凝固完了位置形状演算手段から入力される信号に基づいて凝固完了位置が鋳造方向に伸張している部分に設置するための静磁場印加位置制御手段と、
を具備することを特徴とする連続鋳造機。
A light reduction belt for applying a reduction force to the slab, comprising a plurality of pairs of reduction rolls;
A solidification completion position detection means for detecting a solidification completion position in the width direction of the slab;
A solidification completion position shape calculating means for obtaining a portion where the solidification completion position extends in the casting direction based on a detection result by the solidification completion position detection means;
A static magnetic field application device for applying a static magnetic field in the thickness direction of the slab, disposed in the light pressure lower belt,
A static magnetic field application position control means for installing the static magnetic field application device in a portion where the solidification completion position extends in the casting direction based on a signal input from the solidification completion position shape calculation means;
A continuous casting machine comprising:
JP2008039572A 2008-02-21 2008-02-21 Method for producing continuously cast slab, and continuous casting machine Pending JP2009195937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039572A JP2009195937A (en) 2008-02-21 2008-02-21 Method for producing continuously cast slab, and continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039572A JP2009195937A (en) 2008-02-21 2008-02-21 Method for producing continuously cast slab, and continuous casting machine

Publications (1)

Publication Number Publication Date
JP2009195937A true JP2009195937A (en) 2009-09-03

Family

ID=41140058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039572A Pending JP2009195937A (en) 2008-02-21 2008-02-21 Method for producing continuously cast slab, and continuous casting machine

Country Status (1)

Country Link
JP (1) JP2009195937A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018171650A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Method for producing steel sheet
CN110494235A (en) * 2017-03-29 2019-11-22 杰富意钢铁株式会社 The continuous casing of steel
CN113000804A (en) * 2021-02-24 2021-06-22 中冶赛迪工程技术股份有限公司 Method for selecting optimal starting point and end point of plate blank continuous casting dynamic soft reduction interval

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494235A (en) * 2017-03-29 2019-11-22 杰富意钢铁株式会社 The continuous casing of steel
US10967425B2 (en) 2017-03-29 2021-04-06 Jfe Steel Corporation Continuous steel casting method
CN110494235B (en) * 2017-03-29 2021-11-16 杰富意钢铁株式会社 Method for continuously casting steel
JP2018171650A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Method for producing steel sheet
CN113000804A (en) * 2021-02-24 2021-06-22 中冶赛迪工程技术股份有限公司 Method for selecting optimal starting point and end point of plate blank continuous casting dynamic soft reduction interval

Similar Documents

Publication Publication Date Title
KR100610534B1 (en) Method of producing continuously cast pieces of steel and device for measuring solidified state thereof
JP5051204B2 (en) Method and device for detecting solidification completion position of continuous cast slab and method for producing continuous cast slab
JP5098594B2 (en) Manufacturing method of continuous casting slab and continuous casting machine
JP5098394B2 (en) Continuous casting slab manufacturing method, continuous casting machine
JP2011224583A (en) Method for determining centerline segregation of continuously cast slab
JP5092642B2 (en) Steel continuous casting method and continuous casting machine
JP4453556B2 (en) Manufacturing method of continuous cast slab
JP2009195937A (en) Method for producing continuously cast slab, and continuous casting machine
JP4453557B2 (en) Manufacturing method of continuous cast slab
JP5145746B2 (en) Continuous casting slab manufacturing method, continuous casting machine
JP5458876B2 (en) Casting slab weight control method
JP2012110947A (en) Method of detecting and controlling solidification completion position of continuous cast piece
JP4453558B2 (en) Quality judgment method for continuous cast slabs
JP2005177860A (en) Method for detecting solidification completion position of continuous casting cast piece, detector, and method for producing continuous casting cast piece
JP2003033851A (en) Method for manufacturing cast steel slab by continuous casting
JP4569093B2 (en) Method for detecting solidification completion position of continuous cast slab
JP2003103351A (en) Manufacturing method for continuous casting ingot
JP4296946B2 (en) Method and device for detecting solidification completion position of continuous cast slab
JPH10128508A (en) Method for controlling fluid of molten metal in mold of continuous caster