JP2012215413A - Internal coagulation detection apparatus and internal coagulation detection method - Google Patents

Internal coagulation detection apparatus and internal coagulation detection method Download PDF

Info

Publication number
JP2012215413A
JP2012215413A JP2011079513A JP2011079513A JP2012215413A JP 2012215413 A JP2012215413 A JP 2012215413A JP 2011079513 A JP2011079513 A JP 2011079513A JP 2011079513 A JP2011079513 A JP 2011079513A JP 2012215413 A JP2012215413 A JP 2012215413A
Authority
JP
Japan
Prior art keywords
slab
unit
distance
ultrasonic wave
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011079513A
Other languages
Japanese (ja)
Inventor
Toshihide Fukui
利英 福井
Yasuhiro Wasa
泰宏 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011079513A priority Critical patent/JP2012215413A/en
Publication of JP2012215413A publication Critical patent/JP2012215413A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately and surely detect a coagulation position of a cast piece manufactured by a continuous casting device as a target, without setting a lift-off amount according to a contact method and further without being affected by variation in lift-off amount.SOLUTION: An internal coagulation detection apparatus 1 comprises a transmitter 5 which transmits an ultrasonic wave toward a cast piece W, a receiver 6 which receives the ultrasonic wave transmitted by the transmitter 5 and transmitted through the cast piece W, a determination unit 21 which determines a coagulation position inside the cast piece W on the basis of a signal of the ultrasonic wave received by the receiver 6, a distance measuring unit 22 which measures a distance between the cast piece W and the transmitter 5 and a distance between the cast piece W and the receiver 6, and a correction processing unit 23 which corrects a signal strength of the ultrasonic wave received by the receiver 6 on the basis of the distances measured by the distance measuring unit 22.

Description

本発明は、連続鋳造装置で製造された鋳片を対象とする内部凝固検出装置及び内部凝固検出方法に関するものである。   The present invention relates to an internal solidification detection device and an internal solidification detection method for a slab manufactured by a continuous casting apparatus.

連続鋳造装置では、転炉や二次精錬設備等から出鋼された溶鋼を取鍋による搬送を経てタンディッシュへ注入し、このタンディッシュで一時的に貯留させた溶鋼を鋳型へ注入し、鋳型から鋳片を引き抜くと共に垂直部、曲がり部、水平部へと誘導しつつ冷却することにより、鋳片を連続的に製造する。
製造される鋳片では、鋳型から下流側へ離れるにつれて凝固シェルの肉厚が増加し、反対に鋳片中心部の未凝固部が減少して、やがて凝固完了に至るようになる。このような連続鋳造装置による鋳片の製造では、鋳片の凝固位置(クレータエンド位置)が鋳造方向のどの位置にあるかを判定することが、鋳片の生産性や品質向上にとって極めて重要とされる。
In continuous casting equipment, molten steel produced from converters, secondary refining facilities, etc. is poured into the tundish through a ladle, and the molten steel temporarily stored in this tundish is poured into the mold, The slab is continuously produced by pulling out the slab from and cooling it while guiding it to the vertical part, the bent part, and the horizontal part.
In the manufactured slab, the thickness of the solidified shell increases as it moves away from the mold, and on the contrary, the unsolidified portion at the center of the slab decreases and eventually solidification is completed. In the production of slabs using such a continuous casting machine, it is extremely important for the productivity and quality improvement of slabs to determine where the slab solidification position (crater end position) is in the casting direction. Is done.

なぜなら、鋳造速度を上昇させると凝固位置は鋳片の鋳造方向下流側に移動するが、凝固位置が鋳片支持ロールの設置範囲を超えるとバルジングが起こり、場合によっては鋳造を停止させる必要が生じる。故に、凝固位置が明確でない場合には鋳造速度をむやみに増速できない(生産性を高められない)からである。また、扁平断面形のスラブ鋳片では、凝固位置が鋳片の幅方向に均一とならず、また時間によって凝固位置の幅方向形状が変動することもある。   This is because if the casting speed is increased, the solidification position moves to the downstream side in the casting direction of the slab, but if the solidification position exceeds the installation range of the slab support roll, bulging occurs, and in some cases, it is necessary to stop the casting. . Therefore, if the solidification position is not clear, the casting speed cannot be increased unnecessarily (the productivity cannot be increased). Further, in a slab slab having a flat cross-sectional shape, the solidification position is not uniform in the width direction of the slab, and the width direction shape of the solidification position may vary with time.

そこで従来、電磁超音波の探触子によって超音波の横波を鋳片に送信し、横波が液相である未凝固部を伝播しない性質を利用して、探触子の設置位置に凝固位置が到達したと判定する方法が提案されている(例えば、特許文献1を参照)。
特許文献1に開示された技術では、リフトオフ量(鋳片と探触子との間の距離)として設定する設定値だけ探触子から鋳片側へ突出させるようにタッチロールを設け、このタッチロールを鋳片に押し付ける構成としていた。これは、電磁超音波の探触子感度はリフトオフ量が大きいほど弱くなるため、高感度状態を維持させる(微弱な信号を検出する)ためにはリフトオフ量を小さくし且つ一定に保持させる必要があったからである。
Therefore, conventionally, by utilizing the property that the ultrasonic wave is transmitted to the slab by the electromagnetic ultrasonic probe and the transverse wave does not propagate through the unsolidified portion that is in the liquid phase, the solidification position is located at the probe installation position. A method for determining that it has been reached has been proposed (see, for example, Patent Document 1).
In the technique disclosed in Patent Document 1, a touch roll is provided so as to protrude from the probe toward the slab by a set value set as a lift-off amount (distance between the slab and the probe). Was pressed against the slab. This is because the probe sensitivity of electromagnetic ultrasonic waves becomes weaker as the lift-off amount increases, so that it is necessary to keep the lift-off amount small and constant in order to maintain a high sensitivity state (detect weak signals). Because there was.

特開平11−183449号公報JP-A-11-183449

連続鋳造直後の鋳片は、表面温度が500℃を超え且つスケールも多い状態にある。そのため、このような状況下で特許文献1の技術を実施すると、探触子と鋳片の間にスケールが詰まって探触子を破損させたり、タッチロールが固着して探触子が案内ロールに巻き込まれたりするなどの問題があった。それ故、タッチロールによる接触方式でリフトオフ量の設定を行うことは採用できず、鋳片の凝固状態を安定して連続的に判定することは実現困難とされていた。   The slab immediately after continuous casting has a surface temperature exceeding 500 ° C. and a large amount of scale. Therefore, when the technique of Patent Document 1 is carried out under such circumstances, the scale is clogged between the probe and the slab and the probe is damaged, or the touch roll is fixed and the probe is guided to the guide roll. There was a problem such as being caught in. Therefore, setting the lift-off amount by a contact method using a touch roll cannot be adopted, and it has been difficult to realize stable and continuous determination of the solidified state of the slab.

ところで、鋳片を伝播し透過した超音波を受信する際の信号強度の変位に着目すれば、鋳片内部の状況、即ち、未凝固部が徐々に減少してゆく状況や凝固完了に至った状況を把握できることになる。しかし、タッチロールによる接触方式でリフトオフ量の設定を行わないものとすると、鋳片表面に現れるオシレーションマーク等の凹凸が原因でリフトオフ量は変動することになって、前記した超音波受信時の信号強度もリフトオフ量の変動に伴って変位してしまう。従って、この信号強度の変位が未凝固部の変位によるのか又はリフトオフ量の変動によるのかを判別できないことになる。   By the way, if attention is paid to the displacement of the signal intensity when receiving the transmitted ultrasonic wave transmitted through the slab, the situation inside the slab, that is, the situation where the unsolidified portion gradually decreases or the solidification is completed. You will be able to grasp the situation. However, if the lift-off amount is not set by the contact method using the touch roll, the lift-off amount fluctuates due to irregularities such as oscillation marks appearing on the surface of the slab. The signal intensity is also displaced as the lift-off amount varies. Therefore, it cannot be determined whether the displacement of the signal intensity is due to the displacement of the unsolidified portion or the variation of the lift-off amount.

このように、いずれの方法を採用するにしても、鋳片の凝固位置を正確且つ確実に検出するのは困難となっていた。
本発明は、上記事情に鑑みてなされたものであって、リフトオフ量の変動に影響されることなく鋳片の凝固位置を正確且つ確実に検出できるようにした内部凝固検出装置及び内部凝固検出方法を提供することを目的とする。
Thus, no matter which method is adopted, it has been difficult to accurately and reliably detect the solidification position of the slab.
The present invention has been made in view of the above circumstances, and an internal solidification detection device and an internal solidification detection method capable of accurately and reliably detecting the solidification position of a slab without being affected by fluctuations in the lift-off amount. The purpose is to provide.

前記目的を達成するために、本発明は次の手段を講じた。
即ち、本発明に係る内部凝固検出装置は、連続鋳造装置により製造された鋳片に向けて超音波を送信する送信部と、前記送信部が送信した超音波であって鋳片を透過してきた超音波を受信する受信部と、前記受信部が受信した超音波の信号を基に鋳片の内部における凝固位置を判定する判定部と、を有すると共に、前記鋳片と送信部との距離及び鋳片と受信部との距離を計測する距離計測部と、前記距離計測部が計測した距離を基に、受信部が受信した超音波の信号強度を補正する補正処理部と、を備えていることを特徴とする。
In order to achieve the above object, the present invention has taken the following measures.
That is, the internal solidification detection device according to the present invention has transmitted a ultrasonic wave transmitted to the slab manufactured by the continuous casting apparatus, and the ultrasonic wave transmitted by the transmission unit and transmitted through the slab. A receiving unit that receives the ultrasonic wave, and a determination unit that determines a solidification position inside the slab based on an ultrasonic signal received by the receiving unit, and a distance between the slab and the transmitting unit, and A distance measuring unit that measures the distance between the slab and the receiving unit; and a correction processing unit that corrects the signal intensity of the ultrasonic wave received by the receiving unit based on the distance measured by the distance measuring unit. It is characterized by that.

前記送信部は鋳片の一方側に配置され、前記受信部は鋳片を挟んで送信部と対向する鋳片の他方側へ配置されているものとするとよい。
更に好ましくは、前記送信部及び受信部は、鋳片に沿って配置されていて当該鋳片の内部に渦電流を発生させるコイルと、前記コイルの背面に配備され且つ渦電流が発生する鋳片内の領域に磁場を形成する磁石と、を備えるものであるとするのがよい。
The transmitting unit may be disposed on one side of the slab, and the receiving unit may be disposed on the other side of the slab facing the transmitting unit across the slab.
More preferably, the transmitting unit and the receiving unit are arranged along a slab and generate an eddy current inside the slab, and a slab provided on the back surface of the coil and generating an eddy current And a magnet that forms a magnetic field in the inner region.

また、前記補正処理部は、前記距離計測部が計測した距離が短くなった場合は、受信部が受信した超音波の信号強度を小さくし、前記距離計測部が計測した距離が長くなった場合は、受信部が受信した超音波の信号強度を大きくするように構成されているものとするのがよい。
好ましくは、前記距離計測部は、前記コイルから構成されているものとするのがよい。
Further, when the distance measured by the distance measuring unit becomes short, the correction processing unit reduces the signal intensity of the ultrasonic wave received by the receiving unit, and when the distance measured by the distance measuring unit becomes long Is preferably configured to increase the signal strength of the ultrasonic wave received by the receiving unit.
Preferably, the distance measuring unit is configured from the coil.

一方、本発明に係る鋳片の内部凝固検出方法は、連続鋳造装置により製造された鋳片に向けて送信部から超音波を送信する送信ステップと、前記送信ステップが送信した超音波であって鋳片を透過してきた超音波を受信部で受信する受信ステップと、前記受信ステップが受信した超音波の信号を基に鋳片の内部における凝固位置を判定する判定ステップと、を有すると共に、前記鋳片と送信部との距離及び鋳片と受信部との距離を計測する距離計測ステップと、前記距離計測ステップが計測した距離を基に、前記受信ステップにて受信した超音波の信号強度を補正する補正処理ステップと、を備えていることを特徴とする。   On the other hand, the method for detecting the internal solidification of a slab according to the present invention includes a transmission step of transmitting an ultrasonic wave from a transmitter toward a slab manufactured by a continuous casting apparatus, and an ultrasonic wave transmitted by the transmission step. A receiving step for receiving ultrasonic waves transmitted through the slab at a receiving unit; and a determination step for determining a solidification position inside the slab based on an ultrasonic signal received by the receiving step; and Based on the distance measurement step for measuring the distance between the slab and the transmitter and the distance between the slab and the receiver, and the distance measured by the distance measurement step, the signal intensity of the ultrasonic wave received in the reception step is calculated. And a correction processing step for correcting.

本発明に係る内部凝固検出装置及び内部凝固検出方法は、リフトオフ量の変動に影響されることなく鋳片の凝固位置を正確且つ確実に検出できるようになっている。   The internal solidification detection device and the internal solidification detection method according to the present invention can accurately and reliably detect the solidification position of the slab without being affected by fluctuations in the lift-off amount.

本発明に係る内部凝固検出装置を示したブロック構成図である。It is the block block diagram which showed the internal coagulation detection apparatus which concerns on this invention. 鋳片に対して電磁超音波を送信させる状況を説明する模式図である。It is a schematic diagram explaining the condition which transmits an electromagnetic ultrasonic wave with respect to a slab. 連続鋳造装置を示した側断面図である。It is the sectional side view which showed the continuous casting apparatus. 図3のA部において鋳片内部の状況を示した図である。It is the figure which showed the condition inside slab in the A section of FIG. 送信部及び受信部の大きさについて説明した図である。It is the figure explaining the magnitude | size of a transmission part and a receiving part. 送信部に印加される周波数と発生する渦電流との関係を説明した図である。It is the figure explaining the relationship between the frequency applied to a transmission part, and the eddy current which generate | occur | produces. 別の実施形態を示した側面図である。It is the side view which showed another embodiment.

以下、本発明の実施の形態を、図面に基づき説明する。
図1及び図2は、本発明に係る内部凝固検出装置1の第1実施形態を示している。
この内部凝固検出装置1は、図3に示す連続鋳造装置2により製造された鋳片Wに電磁超音波を送信し、鋳片Wから受信される電磁超音波の状況(非受信を含む)によって鋳片W内の凝固位置を判定するものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show a first embodiment of an internal coagulation detector 1 according to the present invention.
The internal solidification detection device 1 transmits electromagnetic ultrasonic waves to the slab W manufactured by the continuous casting device 2 shown in FIG. 3, and depends on the state of electromagnetic ultrasonic waves (including non-reception) received from the slab W. The solidification position in the slab W is determined.

図1に示すように、内部凝固検出装置1は、鋳片Wに近接して設置される電磁超音波の送信部5及び受信部6と、これら送信部5及び受信部6を制御すると共に、受信部6が受信した信号の処理を行う制御部7と、を備えている。さらに、内部凝固検出装置1は、鋳片Wと送信部5との距離及び鋳片Wと受信部6との距離を計測する距離計測部22と、距離計測部22が計測した距離を基に、受信部6が受信した超音波の信号強度を補正する補正処理部23とを備えている。   As shown in FIG. 1, the internal solidification detection device 1 controls the electromagnetic ultrasonic transmission unit 5 and the reception unit 6 installed in the vicinity of the slab W, and controls the transmission unit 5 and the reception unit 6. And a control unit 7 for processing a signal received by the reception unit 6. Further, the internal solidification detection device 1 is based on the distance measurement unit 22 that measures the distance between the slab W and the transmission unit 5 and the distance between the slab W and the reception unit 6 and the distance measured by the distance measurement unit 22. And a correction processing unit 23 for correcting the signal intensity of the ultrasonic wave received by the receiving unit 6.

なお、図3に示すように、連続鋳造装置2は、取鍋10からの溶鋼が供給されるタンディッシュ11と、このタンディッシュ11からの溶鋼が注入される鋳型12と、この鋳型12から引き抜かれた鋳片Wを案内するために、鋳型12の下方で鋳片Wの鋳造方向(長手方向)に沿って設けられる複数の案内ロール13とを有している。
このような連続鋳造装置2において製造される鋳片Wは、鋳型12から下方へ垂直に引き出される垂直部14aと、この垂直部14aから水平方向へ向けて曲がりつつ引き出される曲がり部14bと、この曲がり部14bから水平方向に沿って引き出される水平部14cとを経て、水平部14cの下流側に設置されるガス切断装置(図示略)へ向けて搬送される。
As shown in FIG. 3, the continuous casting apparatus 2 includes a tundish 11 to which molten steel from the ladle 10 is supplied, a mold 12 to which molten steel from the tundish 11 is injected, and a pull from the mold 12. In order to guide the extracted slab W, it has a plurality of guide rolls 13 provided along the casting direction (longitudinal direction) of the slab W below the mold 12.
The slab W manufactured in such a continuous casting apparatus 2 includes a vertical portion 14a that is vertically drawn downward from the mold 12, a bent portion 14b that is drawn while being bent from the vertical portion 14a in the horizontal direction, It is conveyed toward a gas cutting device (not shown) installed on the downstream side of the horizontal portion 14c through the horizontal portion 14c drawn out in the horizontal direction from the bent portion 14b.

鋳片Wは、水平部14cに到達した状態で鋳片中心部の未凝固部が全て凝固して、凝固完了に至り、その後にガス切断装置による切断が行われるようになっている。そのため、この水平部14cに対して本発明の内部凝固検出装置1が設置される。
内部凝固検出装置1が備える送信部5は、連続鋳造された鋳片Wに対して電磁超音波(横波)を送信するものであり、これに対して受信部6は、送信部5が送信した電磁超音波であって且つ鋳片Wに伝播して透過した電磁超音波を受信するところである。送信部5は、鋳片Wの一方側で鋳片Wに沿って配置されており、受信部6は、鋳片Wを挟んで送信部5と対向する位置(鋳片Wの他方側)で鋳片Wに沿って配置されている。
When the slab W reaches the horizontal portion 14c, all the unsolidified portions at the center of the slab are solidified to complete the solidification, and thereafter the cutting is performed by the gas cutting device. Therefore, the internal coagulation detector 1 of the present invention is installed on the horizontal portion 14c.
The transmission unit 5 included in the internal solidification detection device 1 transmits electromagnetic ultrasonic waves (transverse waves) to the continuously cast slab W. On the other hand, the reception unit 6 transmits the transmission unit 5. An electromagnetic ultrasonic wave that has propagated through and transmitted through the slab W is received. The transmitter 5 is arranged along the slab W on one side of the slab W, and the receiver 6 is located at a position facing the transmitter 5 across the slab W (the other side of the slab W). It is arranged along the slab W.

図2(a)に示すように、送信部5は、鋳片Wの内部に渦電流を発生させるレーストラック型(渦巻き型)のコイル18と、このコイル18の背面に配備され且つ渦電流が発生する鋳片W内の領域に磁場を形成させる磁石19とを有している。
具体的には、鋳片Wの一方側に永久磁石である磁石19が、例えば、鋳片W側が図2(a)の左からS極とN極、鋳片Wに対して背を向ける側がN極とS極のように配備され、鋳片Wと磁石19との間であって鋳片Wの表面と平行にコイル18が配備されている。なお、連続鋳造によって1000℃にも達する高温となっている鋳片Wに対し、電磁超音波を伝播させるためには、リフトオフ量(コイル18と鋳片Wとの間の距離)は小さくする必要がある。このリフトオフ量は最大で10mm程度とするのが好適とされる。
As shown in FIG. 2A, the transmitter 5 is provided with a racetrack type (spiral type) coil 18 that generates an eddy current inside the slab W, and a rear surface of the coil 18, and the eddy current is generated. And a magnet 19 for forming a magnetic field in a region in the generated slab W.
Specifically, the magnet 19 which is a permanent magnet on one side of the slab W is, for example, the side of the slab W facing the back from the left side of FIG. N poles and S poles are provided, and a coil 18 is provided between the slab W and the magnet 19 and parallel to the surface of the slab W. Note that the lift-off amount (distance between the coil 18 and the slab W) needs to be reduced in order to propagate electromagnetic ultrasonic waves to the slab W that has reached a high temperature of 1000 ° C. due to continuous casting. There is. The lift-off amount is preferably about 10 mm at the maximum.

このような構成の送信部5は、コイル18に電流を流すことで鋳片W内に渦電流を誘起させ、この渦電流と磁界との相互作用により発生するローレンツ力により鋳片内に振動を励起させ、鋳片W内に電磁超音波を発生させる。
これに対し、受信部6は、送信部5と同様にレーストラック型(渦巻き型)のコイル18と磁石19とを有したもので、これらコイル18と磁石19とが、送信部5の場合とは鋳片Wを境として反転した(逆向きの)配置で設けられている。この受信部6は、送信部5から鋳片Wに向けて送信され鋳片W内を伝播してきた超音波を、送信部5の動作の逆を辿ることで受信する。
The transmitter 5 having such a configuration induces an eddy current in the slab W by flowing a current through the coil 18 and vibrates in the slab by the Lorentz force generated by the interaction between the eddy current and the magnetic field. Excited to generate electromagnetic ultrasonic waves in the slab W.
On the other hand, the receiving unit 6 has a racetrack type (spiral type) coil 18 and a magnet 19 as in the transmitting unit 5, and the coil 18 and the magnet 19 are the same as the case of the transmitting unit 5. Is provided in an inverted (reverse direction) arrangement with the slab W as a boundary. The receiving unit 6 receives ultrasonic waves transmitted from the transmitting unit 5 toward the slab W and propagated through the slab W by tracing the reverse of the operation of the transmitting unit 5.

ところで、図4に示すように、送信部5によって送信された電磁超音波は、鋳片Wの凝固部では鋳片W内を伝播するが、鋳片W内に液相である未凝固部が存在すると電磁超音波は減衰され、伝播しないか又は伝播しにくいという現象が生じる。そのため、所定の信号強度を有した電磁超音波を受信部6が受信するか否かを監視することにより、鋳片W内に未凝固部が残っているか否か、すなわち、凝固が完了しているか否かを判別することができる。   By the way, as shown in FIG. 4, the electromagnetic ultrasonic wave transmitted by the transmission unit 5 propagates in the slab W in the solidified part of the slab W, but the unsolidified part that is a liquid phase is present in the slab W. When present, the electromagnetic ultrasonic wave is attenuated, causing a phenomenon that it does not propagate or is difficult to propagate. Therefore, by monitoring whether the receiving unit 6 receives electromagnetic ultrasonic waves having a predetermined signal strength, whether or not an unsolidified portion remains in the slab W, that is, solidification is completed. It can be determined whether or not.

一方、内部凝固検出装置1が備える制御部7は、送信部5及び受信部6を制御したり、受信部6から得られる信号を処理したりするところで、コンピュータなどによって構成された信号処理部20を有している。この信号処理部20は、判定部21と距離計測部22と補正処理部23とを有している。
また、制御部7は、送信部5に対応して設けられた送信側の信号切替部25と、受信部6に対応して設けられた受信側の信号切替部26と、これら信号切替部25,26と信号処理部20との間に接続されたインピーダンス検出部27及び凝固位置検出部28とを有している。
On the other hand, the control unit 7 included in the internal coagulation detection device 1 controls the transmission unit 5 and the reception unit 6 and processes a signal obtained from the reception unit 6. The signal processing unit 20 is configured by a computer or the like. have. The signal processing unit 20 includes a determination unit 21, a distance measurement unit 22, and a correction processing unit 23.
The control unit 7 includes a transmission-side signal switching unit 25 provided corresponding to the transmission unit 5, a reception-side signal switching unit 26 provided corresponding to the reception unit 6, and the signal switching unit 25. , 26 and the signal processing unit 20, an impedance detection unit 27 and a coagulation position detection unit 28 are connected.

信号切替部25,26は、信号処理部20の判定部21が信号処理を行うときには送信部5、受信部6と凝固位置検出部28とを接続し、距離計測部22が信号処理を行うときには送信部5、受信部6とインピーダンス検出部27とを接続するように、回路を切り替えるためのものである。
信号処理部20の判定部21は、受信部6が受信した電磁超音波の信号を基に鋳片Wの内部における凝固位置を判定するところである。従って、この判定部21が信号処理を行うときには、送信側の信号切替部25は、送信部5が鋳片Wへ向けて電磁超音波を送信する状態とされ、また受信側の信号切替部26は、受信部6が鋳片Wに生じた渦電流から電磁超音波を受信する状態とされて、凝固位置検出部28から判定部21へ信号を出力できるようにする。
The signal switching units 25 and 26 connect the transmission unit 5 and the reception unit 6 to the coagulation position detection unit 28 when the determination unit 21 of the signal processing unit 20 performs signal processing, and when the distance measurement unit 22 performs signal processing. This is for switching circuits so that the transmission unit 5, the reception unit 6 and the impedance detection unit 27 are connected.
The determination unit 21 of the signal processing unit 20 determines the solidification position in the slab W based on the electromagnetic ultrasonic signal received by the reception unit 6. Therefore, when the determination unit 21 performs signal processing, the transmission-side signal switching unit 25 is in a state where the transmission unit 5 transmits electromagnetic ultrasonic waves toward the slab W, and the reception-side signal switching unit 26. Is configured to receive the electromagnetic ultrasonic wave from the eddy current generated in the slab W so that the signal can be output from the coagulation position detection unit 28 to the determination unit 21.

これに対し、信号処理部20の距離計測部22は、鋳片Wと送信部5との距離(送信側のリフトオフ量)及び鋳片Wと受信部6との距離(受信側のリフトオフ量)を計測するところである。なお、この距離計測部22において、送信側のリフトオフ量や受信側のリフトオフ量を計測するための具体的な構成は、送信部5や受信部6が備えるコイル18を利用するものとなっている。   On the other hand, the distance measuring unit 22 of the signal processing unit 20 includes a distance between the slab W and the transmission unit 5 (a transmission-side lift-off amount) and a distance between the slab W and the reception unit 6 (a reception-side lift-off amount). Is about to measure. In this distance measuring unit 22, a specific configuration for measuring the lift-off amount on the transmission side and the lift-off amount on the reception side uses a coil 18 provided in the transmission unit 5 and the reception unit 6. .

すなわち、図2(b)に示すように、電磁超音波を発生するために鋳片W内に生じた渦電流に誘起され、コイル18に電流が生じることになる。このときコイル18で検出されるインピーダンスは、送信側のリフトオフ量や受信側のリフトオフ量が変動するのに伴って変位するようになる。そこで、この距離計測部22は、このインピーダンスの変化から距離を算出する構成となっている。   That is, as shown in FIG. 2B, an electric current is generated in the coil 18 by being induced by an eddy current generated in the slab W in order to generate electromagnetic ultrasonic waves. At this time, the impedance detected by the coil 18 is displaced as the lift-off amount on the transmission side and the lift-off amount on the reception side fluctuate. Therefore, the distance measuring unit 22 is configured to calculate the distance from the change in impedance.

このようなことから、この距離計測部22が信号処理を行うときには、送信側の信号切替部25は、送信部5が鋳片Wへ向けて電磁超音波を送信した後、この送信を一旦停止させ、鋳片Wに生じた渦電流から送信部5のコイル18を介してインピーダンス検出部27でインピーダンスの検出ができる状態とし、インピーダンス検出部27から距離計測部22へ信号を出力できるようにする。   For this reason, when the distance measuring unit 22 performs signal processing, the transmission-side signal switching unit 25 temporarily stops the transmission after the transmitting unit 5 transmits electromagnetic ultrasonic waves toward the slab W. The impedance detection unit 27 can detect the impedance from the eddy current generated in the slab W via the coil 18 of the transmission unit 5, and the signal can be output from the impedance detection unit 27 to the distance measurement unit 22. .

また、受信側の信号切替部26についても同様に、受信部6が鋳片Wからの電磁超音波の受信を行った後、この受信を一旦停止させ、鋳片Wに生じた渦電流から受信部6のコイル18を介してインピーダンス検出部27でインピーダンスの検出ができる状態とし、インピーダンス検出部27から距離計測部22へ信号を出力できるようにする。
一方、信号処理部20の補正処理部23は、距離計測部22が計測した距離(送信側や受信側のリフトオフ量)を基に、受信部6が受信した電磁超音波の信号強度を補正するところである。
Similarly, with respect to the signal switching unit 26 on the receiving side, after the receiving unit 6 receives electromagnetic ultrasonic waves from the slab W, the reception is temporarily stopped and received from the eddy current generated in the slab W. The impedance detection unit 27 can detect the impedance via the coil 18 of the unit 6 so that a signal can be output from the impedance detection unit 27 to the distance measurement unit 22.
On the other hand, the correction processing unit 23 of the signal processing unit 20 corrects the signal intensity of the electromagnetic ultrasonic wave received by the reception unit 6 based on the distance (the lift-off amount on the transmission side or the reception side) measured by the distance measurement unit 22. By the way.

この補正処理部23による補正が必要な理由は、鋳片Wに生じた長手方向の微少なうねり変形や鋳片表面に現れるオシレーションマーク等の凹凸が原因でリフトオフ量が変動したとき、これに伴い、電磁超音波を受信した際の信号強度も変位してしまうことにある。すなわち、この信号強度の変位が未凝固部の存在によるのか又はリフトオフ量の変動によるのかを判別できないという不具合を解消するために、補正を行う。   The reason why correction by the correction processing unit 23 is necessary is that when the lift-off amount fluctuates due to slight waviness deformation in the longitudinal direction generated in the slab W or unevenness such as oscillation marks appearing on the surface of the slab. Along with this, the signal intensity when receiving the electromagnetic ultrasonic waves is also displaced. That is, correction is performed in order to solve the problem that it is impossible to determine whether the displacement of the signal intensity is due to the presence of an unsolidified portion or a variation in the lift-off amount.

補正処理部29による具体的な補正の方法としては、距離計測部22が計測した距離が短くなった場合には、受信部6が受信した電磁超音波の信号強度を所定量だけ小さくし、反対に、距離計測部22が計測した距離が長くなった場合には、受信部6が受信した電磁超音波の信号強度を所定量だけ大きくする、というものである。具体的な目安としては、本発明者らが行った実験的により、距離計測部22が計測した距離(リフトオフ量)が設定値(例えば10mm)から1mm短くなると信号のゲインを6dB小さくし、反対に1mm長くなると信号のゲインを6dB大きくすれば、信号強度はほぼ一定に保たれるという知見が得られている。   As a specific correction method by the correction processing unit 29, when the distance measured by the distance measuring unit 22 becomes short, the signal intensity of the electromagnetic ultrasonic wave received by the receiving unit 6 is decreased by a predetermined amount, In addition, when the distance measured by the distance measuring unit 22 becomes longer, the signal intensity of the electromagnetic ultrasonic wave received by the receiving unit 6 is increased by a predetermined amount. As a specific guideline, when the distance (lift-off amount) measured by the distance measuring unit 22 is shortened by 1 mm from a set value (for example, 10 mm), the signal gain is decreased by 6 dB, and the opposite is obtained. In addition, it has been found that if the signal gain is increased by 6 dB when the length is increased by 1 mm, the signal intensity can be kept substantially constant.

次に、内部凝固検出装置1の使用状況に基づいて、本発明に係る内部凝固検出方法を説明する。
内部凝固検出方法は、送信ステップと、受信ステップと、判定ステップと、距離計測ステップと、補正処理ステップとを備えている。
送信ステップでは、連続鋳造装置2により製造された鋳片Wに向けて送信部5から電磁超音波を送信する。
Next, the internal coagulation detection method according to the present invention will be described based on the usage status of the internal coagulation detection device 1.
The internal coagulation detection method includes a transmission step, a reception step, a determination step, a distance measurement step, and a correction processing step.
In the transmission step, electromagnetic ultrasonic waves are transmitted from the transmission unit 5 toward the slab W manufactured by the continuous casting apparatus 2.

受信ステップでは、送信ステップで送信した電磁超音波であって鋳片Wを透過してきた電磁超音波を受信部6で受信する。
判定ステップでは、受信ステップで受信した電磁超音波の信号(非受信を示す「信号無し」を含む)を基に、鋳片W内の凝固状況を判定する。すなわち、鋳片W内に未凝固部が存在しているときと凝固が完了しているときとでは、電磁超音波が透過するか否か、或いは、受信した信号強度が強いか弱いかの違いがあるので、これらによって凝固位置の判定が可能となっている。
In the reception step, the electromagnetic ultrasonic wave transmitted in the transmission step and transmitted through the slab W is received by the receiving unit 6.
In the determination step, the solidification state in the slab W is determined based on the electromagnetic ultrasonic signal (including “no signal” indicating non-reception) received in the reception step. That is, there is a difference between whether the electromagnetic ultrasonic wave is transmitted or whether the received signal intensity is strong or weak when there is an unsolidified portion in the slab W and when the solidification is completed. Thus, the solidification position can be determined by these.

距離計測ステップでは、電磁超音波の送受信タイミング間で信号切替部25,26の切り替えを行い、インピーダンス検出部27によりインピーダンスを検出する。検出されたインピーダンスは、距離計測部22へと出力され、鋳片Wと送信部5との距離(送信側のリフトオフ量)及び鋳片Wと受信部6との距離(受信側のリフトオフ量)として算出される。   In the distance measuring step, the signal switching units 25 and 26 are switched between transmission and reception timings of electromagnetic ultrasonic waves, and the impedance is detected by the impedance detection unit 27. The detected impedance is output to the distance measuring unit 22, and the distance between the slab W and the transmitting unit 5 (the lift-off amount on the transmission side) and the distance between the slab W and the receiving unit 6 (the lift-off amount on the receiving side). Is calculated as

補正処理ステップでは、距離計測ステップが計測した距離を基に、受信ステップで受信した電磁超音波の信号強度を補正する。すなわち、送信部5と鋳片Wとの設定距離と、受信部6と鋳片Wとの設定距離とを加算した設定値に対し、送受信側のリフトオフ量の合計が小さいときには、補正処理部23において信号に乗ずるゲインを小さくし(−6dB/mm)、反対に大きいときには、補正処理部23において信号に乗ずるゲインを大きくする(6dB/mm)という補正処理がなされる。   In the correction processing step, the signal intensity of the electromagnetic ultrasonic wave received in the reception step is corrected based on the distance measured in the distance measurement step. That is, when the total lift-off amount on the transmission / reception side is small with respect to the set value obtained by adding the set distance between the transmission unit 5 and the slab W and the set distance between the reception unit 6 and the slab W, the correction processing unit 23 When the gain multiplied by the signal is decreased (−6 dB / mm), and when the gain is increased, the correction processing unit 23 performs the correction process of increasing the gain multiplied by the signal (6 dB / mm).

このようにすることで、送受信側での実質的なリフトオフ量が変動するような異常が生じても、リフトオフ量の変動を補正した状態で、送信部5から受信部6へ向けての電磁超音波検出が可能となり、正確且つ確実に鋳片Wにおける凝固位置の判定が行えることになる。
なお、図5(a)に示す如く、鋳片表面においては、オシレーションマーク等の表面凹凸や表面粗度が大きい部分が存在することがある。この場合、送信部5、受信部6のコイル18の面積が小さいと、表面凹凸の凹部と凸部とでインピーダンス値が頻繁に変位し、その結果、平均的なインピーダンスを検出することが難しくなる。そこで、図5(b)に示すように、送信部5、受信部6のコイル18を、鋳片Wの表面に沿って大きくするのが好適となる。
By doing so, even if an abnormality occurs in which the substantial lift-off amount varies on the transmission / reception side, the electromagnetic wave from the transmission unit 5 toward the reception unit 6 is corrected in a state where the variation in the lift-off amount is corrected. The sound wave can be detected, and the solidification position in the slab W can be accurately and reliably determined.
In addition, as shown to Fig.5 (a), on the slab surface, there may exist a part with large surface unevenness | corrugations and surface roughness, such as an oscillation mark. In this case, if the area of the coil 18 of the transmitter 5 and the receiver 6 is small, the impedance value is frequently displaced between the concave and convex portions of the surface irregularities, and as a result, it becomes difficult to detect the average impedance. . Therefore, as shown in FIG. 5B, it is preferable that the coils 18 of the transmitter 5 and the receiver 6 are enlarged along the surface of the slab W.

また、図6(a)に示すように、送信部5、受信部6のコイル18に印加する電流の周波数を大きくする(高周波にする)と、鋳片Wの表面に近い位置(表面凹凸が現れている層)で渦電流が生じるようになり、このような状態では渦電流が不完全となってインピーダンス検出を行うことが困難となる。そこで、図6(b)に示すように、送信部5、受信部6のコイル18に印加する電流の周波数を小さくする(低周波にする)ことにより、鋳片Wの表面から所定深さの位置へ的確に渦電流を生じさせ、インピーダンス検出を確実なものとして、平均的な距離を計測させるようにするのが好適である。   Further, as shown in FIG. 6A, when the frequency of the current applied to the coil 18 of the transmitter 5 and the receiver 6 is increased (high frequency), the position close to the surface of the slab W (the surface unevenness is reduced). In such a state, the eddy current becomes incomplete and it is difficult to detect impedance. Therefore, as shown in FIG. 6B, by reducing the frequency of the current applied to the coils 18 of the transmitter 5 and the receiver 6 (lowering the frequency), a predetermined depth from the surface of the slab W is obtained. It is preferable to generate an eddy current accurately at the position and measure the average distance to ensure impedance detection.

ところで、鋳片の凝固位置においては、未凝固部と凝固完了部と間が固液混合領域となっており、電磁超音波が伝播はするけれども凝固位置に比べて伝播しにくい状況となる。そのために、この固液混合領域によって生じる信号強度の変位と、鋳片Wの表面粗度が大きいときに表面での信号散乱が生じて電磁超音波の信号強度が変位する状況とを見分けるのは、困難となっている。しかしながら、本実施形態のように、送信部5、受信部6のコイル18に印加する電流の周波数を低周波にすることで、鋳片Wの表面粗度の影響を排除でき、固液混合領域を含む鋳片内部の状態を高精度で判別することが可能になる。   By the way, in the solidification position of the slab, a solid-liquid mixing region is formed between the unsolidified portion and the solidification completed portion, and although electromagnetic ultrasonic waves propagate, it is difficult to propagate compared to the solidification position. Therefore, it is possible to distinguish the displacement of the signal intensity caused by the solid-liquid mixing region from the situation in which the signal intensity of the electromagnetic ultrasonic wave is displaced due to the signal scattering on the surface when the surface roughness of the slab W is large. It has become difficult. However, the influence of the surface roughness of the slab W can be eliminated by reducing the frequency of the current applied to the coils 18 of the transmitter 5 and the receiver 6 as in this embodiment, and the solid-liquid mixing region It becomes possible to discriminate the state inside the slab containing the iron with high accuracy.

ところで、本発明は、上記実施形態に限定されるものではなく、実施の形態に応じて適宜変更可能である。
例えば、送信部5、受信部6が備えるコイル18は、レーストラック型のコイルに限定されず、例えば、メアンダ型のコイルとすることもできる。
送信部5、受信部6が備えるコイル18を用いて送信側及び受信側のリフトオフ量を計測する構成以外に、図7に示すように、送信部5、受信部6とは別に、レーザ距離計などの非接触型の距離検出器35,36を設けて送信側及び受信側のリフトオフ量を計測する構成を採用してもよい。
By the way, this invention is not limited to the said embodiment, It can change suitably according to embodiment.
For example, the coil 18 included in the transmission unit 5 and the reception unit 6 is not limited to a racetrack type coil, and may be a meander type coil, for example.
In addition to the configuration in which the lift-off amounts on the transmission side and the reception side are measured using the coils 18 included in the transmission unit 5 and the reception unit 6, as shown in FIG. 7, a laser distance meter separately from the transmission unit 5 and the reception unit 6. For example, a non-contact type distance detector 35 or 36 may be provided to measure the lift-off amounts on the transmission side and the reception side.

送信部5と受信部6とを鋳片Wの同じ側に並設するか又は一体化する(電磁超音波の送信後、受信に切り替える構成とする等)ことにより、受信部6は、鋳片Wから反射した電磁超音波を受信させる構成としてもよい。   By arranging the transmission unit 5 and the reception unit 6 side by side on the same side of the slab W or integrating them (such as switching to reception after transmission of electromagnetic ultrasonic waves), the reception unit 6 is The configuration may be such that electromagnetic ultrasonic waves reflected from W are received.

1 内部凝固検出装置
2 連続鋳造装置
5 送信部
6 受信部
7 制御部
10 取鍋
11 タンディッシュ
12 鋳型
13 案内ロール
14a 垂直部
14b 曲がり部
14c 水平部
18 コイル
19 磁石
20 信号処理部
21 判定部
22 距離計測部
23 補正処理部
25 信号切替部
26 信号切替部
27 インピーダンス検出部
28 凝固位置検出部
29 補正処理部
35 距離検出器
36 距離検出器
W 鋳片
DESCRIPTION OF SYMBOLS 1 Internal solidification detection apparatus 2 Continuous casting apparatus 5 Transmission part 6 Reception part 7 Control part 10 Ladle 11 Tundish 12 Mold 13 Guide roll 14a Vertical part 14b Bending part 14c Horizontal part 18 Coil 19 Magnet 20 Signal processing part 21 Determination part 22 Distance measurement unit 23 Correction processing unit 25 Signal switching unit 26 Signal switching unit 27 Impedance detection unit 28 Coagulation position detection unit 29 Correction processing unit 35 Distance detector 36 Distance detector W Cast slab

Claims (6)

連続鋳造装置により製造された鋳片に向けて超音波を送信する送信部と、前記送信部が送信した超音波であって鋳片を透過してきた超音波を受信する受信部と、前記受信部が受信した超音波の信号を基に鋳片の内部における凝固位置を判定する判定部と、を有すると共に、
前記鋳片と送信部との距離及び鋳片と受信部との距離を計測する距離計測部と、
前記距離計測部が計測した距離を基に、受信部が受信した超音波の信号強度を補正する補正処理部と、
を備えていることを特徴とする鋳片の内部凝固検出装置。
A transmitter that transmits ultrasonic waves toward a slab manufactured by a continuous casting apparatus; a receiver that receives ultrasonic waves transmitted by the transmitter and transmitted through the slab; and the receiver And a determination unit for determining a solidification position inside the slab based on the ultrasonic signal received,
A distance measuring unit for measuring the distance between the cast piece and the transmitting unit and the distance between the cast piece and the receiving unit;
Based on the distance measured by the distance measuring unit, a correction processing unit that corrects the signal intensity of the ultrasonic wave received by the receiving unit;
An apparatus for detecting the internal solidification of a slab, comprising:
前記送信部は鋳片の一方側に配置され、前記受信部は鋳片を挟んで送信部と対向する鋳片の他方側へ配置されていることを特徴とする請求項1に記載の鋳片の内部凝固検出装置。   2. The slab according to claim 1, wherein the transmitting unit is disposed on one side of the slab, and the receiving unit is disposed on the other side of the slab facing the transmitting unit across the slab. Internal coagulation detector. 前記送信部及び受信部は、鋳片に沿って配置されていて当該鋳片の内部に渦電流を発生させるコイルと、前記コイルの背面に配備され且つ渦電流が発生する鋳片内の領域に磁場を形成する磁石と、を備えることを特徴とする請求項1又は2に記載の鋳片の内部凝固検出装置。   The transmitting unit and the receiving unit are arranged along the slab and generate an eddy current inside the slab, and the coil is disposed on the back surface of the coil and generates an eddy current. An apparatus for detecting the internal solidification of a slab according to claim 1, comprising a magnet that forms a magnetic field. 前記補正処理部は、前記距離計測部が計測した距離が短くなった場合は、受信部が受信した超音波の信号強度を小さくし、前記距離計測部が計測した距離が長くなった場合は、受信部が受信した超音波の信号強度を大きくするように構成されていることを特徴とする請求項1〜3のいずれかに記載の鋳片の内部凝固検出装置。   When the distance measured by the distance measuring unit is shortened, the correction processing unit decreases the signal intensity of the ultrasonic wave received by the receiving unit, and when the distance measured by the distance measuring unit is increased, The apparatus for detecting the internal solidification of a slab according to any one of claims 1 to 3, wherein the receiving unit is configured to increase the signal intensity of the received ultrasonic wave. 前記距離計測部は、前記コイルから構成されていることを特徴とする請求項3に記載の鋳片の内部凝固検出装置。   The slab internal solidification detection device according to claim 3, wherein the distance measurement unit includes the coil. 連続鋳造装置により製造された鋳片に向けて送信部から超音波を送信する送信ステップと、
前記送信ステップが送信した超音波であって鋳片を透過してきた超音波を受信部で受信する受信ステップと、
前記受信ステップが受信した超音波の信号を基に鋳片の内部における凝固位置を判定する判定ステップと、を有すると共に、
前記鋳片と送信部との距離及び鋳片と受信部との距離を計測する距離計測ステップと、
前記距離計測ステップが計測した距離を基に、前記受信ステップにて受信した超音波の信号強度を補正する補正処理ステップと、
を備えていることを特徴とする鋳片の内部凝固検出方法。
A transmission step of transmitting ultrasonic waves from the transmission unit toward the slab manufactured by the continuous casting apparatus;
Receiving step of receiving the ultrasonic wave transmitted by the transmitting step and transmitted through the slab at the receiving unit;
A determination step of determining a solidification position inside the slab based on an ultrasonic signal received by the reception step, and
A distance measuring step for measuring the distance between the slab and the transmitting unit and the distance between the slab and the receiving unit;
Based on the distance measured by the distance measuring step, a correction processing step for correcting the signal intensity of the ultrasonic wave received in the receiving step;
A method for detecting the internal solidification of a slab, comprising:
JP2011079513A 2011-03-31 2011-03-31 Internal coagulation detection apparatus and internal coagulation detection method Withdrawn JP2012215413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011079513A JP2012215413A (en) 2011-03-31 2011-03-31 Internal coagulation detection apparatus and internal coagulation detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011079513A JP2012215413A (en) 2011-03-31 2011-03-31 Internal coagulation detection apparatus and internal coagulation detection method

Publications (1)

Publication Number Publication Date
JP2012215413A true JP2012215413A (en) 2012-11-08

Family

ID=47268310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011079513A Withdrawn JP2012215413A (en) 2011-03-31 2011-03-31 Internal coagulation detection apparatus and internal coagulation detection method

Country Status (1)

Country Link
JP (1) JP2012215413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080444A (en) * 2014-10-14 2016-05-16 新日鐵住金株式会社 Measurement device, measurement method, program and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080444A (en) * 2014-10-14 2016-05-16 新日鐵住金株式会社 Measurement device, measurement method, program and storage medium

Similar Documents

Publication Publication Date Title
JP5051204B2 (en) Method and device for detecting solidification completion position of continuous cast slab and method for producing continuous cast slab
KR100610532B1 (en) Method of producing continuously cast pieces of steel and device for measuring solidified state thereof
JP2006192473A (en) Method for measuring level of molten steel in casting mold of continuous casting facility
JP4453556B2 (en) Manufacturing method of continuous cast slab
KR20140025893A (en) Bulging detecting module and bulging detecting method using the same
JP2012215413A (en) Internal coagulation detection apparatus and internal coagulation detection method
JP5458876B2 (en) Casting slab weight control method
WO2013002220A1 (en) Method for measuring melt layer thickness of mold powder for continuous casting
JP4453557B2 (en) Manufacturing method of continuous cast slab
JP4483538B2 (en) Method and device for detecting solidification completion position of continuous cast slab and method for producing continuous cast slab
JP6863078B2 (en) Crater end position detection method and detection device for continuously cast slabs
JP2009066656A (en) Method for producing continuously cast slab
JP6222154B2 (en) Ultrasonic flaw detector, ultrasonic flaw detection method, and steel material manufacturing method
JP2007152424A (en) Method and device for detecting in-mold molten steel level in continuous casting apparatus
JP2014034046A (en) Measuring method of molten metal surface level and mold powder thickness of molten metal in casting mold for continuous casting
JP2009195937A (en) Method for producing continuously cast slab, and continuous casting machine
JPH11183449A (en) Method and apparatus for measurement of center solid-phase rate of cast piece
KR101937805B1 (en) Apparatus for detecting solidification of steel and method for the same
JP7318848B1 (en) Solidification position measurement device, solidification position measurement method, metal material quality control method, casting equipment, metal material manufacturing equipment, and metal material manufacturing method
JP2006198645A (en) Method for determining quality of continuously cast slab
JP6358035B2 (en) Measuring device, measuring method, program, and storage medium
JPH1183814A (en) Solidification state detecting method for cast piece device therefor
JP2005211926A (en) Method and device for detecting fully solidified position of continuously cast slab
JPS62137562A (en) Flaw detector for continuous ingot
JP2004322210A (en) Continuous casting method for steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603