JP3082828B2 - Method and apparatus for measuring cast solidification thickness - Google Patents

Method and apparatus for measuring cast solidification thickness

Info

Publication number
JP3082828B2
JP3082828B2 JP07105598A JP10559895A JP3082828B2 JP 3082828 B2 JP3082828 B2 JP 3082828B2 JP 07105598 A JP07105598 A JP 07105598A JP 10559895 A JP10559895 A JP 10559895A JP 3082828 B2 JP3082828 B2 JP 3082828B2
Authority
JP
Japan
Prior art keywords
slab
coil
core
thickness
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07105598A
Other languages
Japanese (ja)
Other versions
JPH08304008A (en
Inventor
和夫 井出上
則幸 川田
辰史 青井
宏 中嶋
元己 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP07105598A priority Critical patent/JP3082828B2/en
Publication of JPH08304008A publication Critical patent/JPH08304008A/en
Application granted granted Critical
Publication of JP3082828B2 publication Critical patent/JP3082828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は連続鋳造鋳片の凝固厚さ
測定方法及び装置に関し、凝固厚さの増加に伴う測定精
度の低下を少なくするように工夫したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the solidification thickness of a continuously cast slab, and is designed to reduce the decrease in measurement accuracy accompanying an increase in the solidification thickness.

【0002】[0002]

【従来の技術】連続鋳造鋳片の凝固厚さを測定する従来
技術として、特開昭59−151003号公報に開示さ
れた方法等が知られている。
2. Description of the Related Art As a conventional technique for measuring the solidification thickness of a continuous cast slab, a method disclosed in Japanese Patent Application Laid-Open No. 59-150003 is known.

【0003】この種の従来技術では、図7に示すように
励磁コイル31を2次コイル32A,32Bで前後から
挟んでなるセンサ30を鋳片1の表面1Aに近接して配
置し、図8に示すように交流電源33から励磁コイル3
1に電流を流し、2次コイル32A,32Bに生じる起
電力の差分を増幅器34により増幅して、凝固厚さtを
検出していた。図7中の符号で、2は凝固シェル部、3
は未凝固部(溶鋼などの溶湯)を示す。
In this type of prior art, as shown in FIG. 7, a sensor 30 having an exciting coil 31 sandwiched between secondary coils 32A and 32B from the front and rear is arranged close to the surface 1A of the slab 1 as shown in FIG. As shown in FIG.
1, the difference between the electromotive forces generated in the secondary coils 32A and 32B is amplified by the amplifier 34, and the solidification thickness t is detected. 7, reference numeral 2 denotes a solidified shell portion;
Indicates an unsolidified portion (a molten metal such as molten steel).

【0004】その動作原理は、励磁コイル31により発
生する交流磁界が凝固シェル部2に渦電流を流すと、こ
の渦電流の浸透深さ(表皮厚さ:スキンデプス)が凝固
厚さtによって変化することにより、2次コイル32
A,32Bに生じる起電力の差分が凝固厚さtに対応す
るということである。
The principle of operation is that when an AC magnetic field generated by the exciting coil 31 causes an eddy current to flow through the solidified shell portion 2, the penetration depth (skin depth: skin depth) of the eddy current changes depending on the solidified thickness t. By doing so, the secondary coil 32
That is, the difference between the electromotive forces generated in A and 32B corresponds to the solidification thickness t.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来技術
では、凝固厚さtの増加に伴う測定精度の低下が懸念さ
れる。この理由を、鋼について以下に説明する。
However, in the above-mentioned prior art, there is a concern that the measurement accuracy may decrease as the solidification thickness t increases. The reason for this will be described below for steel.

【0006】鋼の電気抵抗は図9に示すように温度に依
存し、1000℃から凝固点まではなだらかに変化する
が、溶鋼部で約7%急に上昇する。また、磁界の浸透深
さδは次式(1)で表わされる。但し、ρは電気抵抗
率、fは周波数、μは透磁率、πは円周率である。
The electrical resistance of steel depends on temperature as shown in FIG. 9, and changes gradually from 1000 ° C. to the freezing point, but rises sharply by about 7% in the molten steel portion. The magnetic field penetration depth δ is represented by the following equation (1). Here, ρ is the electrical resistivity, f is the frequency, μ is the magnetic permeability, and π is the circular constant.

【0007】[0007]

【数1】 (Equation 1)

【0008】鋼の場合、700℃以上ではμ=1である
から、式(1)より浸透深さδは周波数fが決まれば、
電気抵抗率ρによって変化することになる。
In the case of steel, μ = 1 at 700 ° C. or higher. Therefore, if the frequency f is determined from the equation (1),
It will vary with the electrical resistivity ρ.

【0009】そこで凝固厚さtによる鋳片1の電気抵抗
率の変化を考えると、凝固シェル部2と未凝固部(溶
鋼)3の平均的な値となるので、変化量はわずかとな
る。更に凝固厚さtが厚くなると、電気抵抗率の高い溶
鋼3の割合が減るため、平均的な変化量が更に小さくな
って測定精度の低下が懸念される。
Considering the change in the electrical resistivity of the slab 1 depending on the solidification thickness t, the change is small since the average value of the solidified shell portion 2 and the unsolidified portion (molten steel) 3 is obtained. When the solidification thickness t is further increased, the ratio of the molten steel 3 having a high electric resistivity is reduced, and the average change amount is further reduced, so that the measurement accuracy may be reduced.

【0010】本発明は、凝固厚さの増加に伴う測定精度
の低下が少ない測定方法及び測定装置を提供することを
目的とする。
[0010] It is an object of the present invention to provide a measuring method and a measuring apparatus in which a decrease in measurement accuracy due to an increase in solidified thickness is small.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する本発
明に係る鋳片の凝固厚さ測定方法は、連続鋳造鋳片に鋳
片進行方向と直角な方向に互いに異なった少なくとも2
つの周波数の磁界を印加し、同磁界によって鋳片内部の
未凝固部に生じた渦電流に基づく電圧を検出し、同電圧
の比から凝固厚さを求めることを特徴とするものであ
る。
According to the present invention, there is provided a method for measuring the solidification thickness of a slab, comprising the steps of: forming a continuous cast slab having at least two different slabs in a direction perpendicular to the slab advancing direction;
A magnetic field of two frequencies is applied, a voltage based on an eddy current generated in an unsolidified portion inside the slab by the magnetic field is detected, and a solidification thickness is obtained from a ratio of the voltages.

【0012】また、上記課題を解決する本発明に係る鋳
片の凝固厚さ測定装置は、C型コア,同コアに巻いた励
磁コイル及び前記コア先端のNS両磁極を囲むように巻
いたサーチコイルを有し、NS極を鋳片進行方向と直角
な方向に向けて配設した流速センサと、前記励磁コイル
に異なった周波数の交流を印加する電源と、前記サーチ
コイルからの異なった周波数の出力から凝固厚さを演算
する手段と、を具備したことを特徴とするものであり、
更には、前記コアに巻いたギャップ検出用コイルと、同
コアと前記鋳片間のギャップの変化により生じる前記サ
ーチコイルの出力の変化を、前記ギャップ検出用コイル
からの出力により補正する手段と、を具備したことを特
徴とし、あるいは、前記鋳片内部の未凝固部を攪拌する
手段を具備したことを特徴とする。
In addition, a solidified thickness measuring apparatus for a cast slab according to the present invention that solves the above-mentioned problems is a C-shaped core, an exciting coil wound around the core, and a search coil wound around both NS magnetic poles at the tip of the core. A flow sensor having a coil, NS poles oriented in a direction perpendicular to the slab traveling direction, a power supply for applying an alternating current of a different frequency to the exciting coil, and a different frequency from the search coil. Means for calculating the solidification thickness from the output, comprising:
Further, a gap detection coil wound around the core, and a means for correcting a change in the output of the search coil caused by a change in the gap between the core and the slab by an output from the gap detection coil, Or a means for agitating an unsolidified portion inside the slab.

【0013】[0013]

【作用】連続鋳造鋳片の未凝固部には、ノズルからの溶
湯の吐出により流れが存在する。そこで図4に示すよう
に、鋳片1の進行方向が紙面に直交する鉛直方向であ
り、溶湯流に紙面に平行な水平方向17の成分vH が存
在するものとして、コア5に励磁コイル6を巻き且つN
S両磁極を囲むようにサーチコイル7を巻いてなるセン
サ4を鋳片進行方向と直角な方向16に向けて配置し、
励磁コイル6に交流を印加することにより、鋳片表面に
直角に磁界を印加した場合を考えてみる。
In the unsolidified portion of the continuous cast slab, a flow exists due to discharge of the molten metal from the nozzle. Therefore, as shown in FIG. 4, assuming that the direction of travel of the slab 1 is a vertical direction perpendicular to the plane of the paper and that the molten metal flow has a component v H in the horizontal direction 17 parallel to the plane of the paper, the excitation coil 6 And N
The sensor 4 formed by winding the search coil 7 so as to surround the S magnetic poles is disposed in a direction 16 perpendicular to the slab advancing direction,
Consider a case where a magnetic field is applied at right angles to the surface of the slab by applying an alternating current to the exciting coil 6.

【0014】この場合、励磁コイル6により発生する磁
束φS が凝固シェル部2で減衰して未凝固部3に至り、
水平方向の溶湯流速vH と導体長(コア寸法)Lに比例
して凝固シェル部2との界面で未凝固部3内に渦電流1
8が流れ、この渦電流18が磁束φv を作る(図5参
照)。更にこの磁束φv が凝固シェル部2で減衰してサ
ーチコイル7と鎖交し、サーチコイル7に起電力が生
じ、その出力電圧Vは次式(2)で表わされる。但し、
鋳片1とコア5間のギャップgは一定とする。
In this case, the magnetic flux φ S generated by the exciting coil 6 is attenuated by the solidified shell portion 2 and reaches the unsolidified portion 3.
The eddy current 1 in the unsolidified portion 3 at the interface with the solidified shell portion 2 in proportion to the horizontal melt flow velocity v H and the conductor length (core dimension) L
8 flows, and this eddy current 18 creates a magnetic flux φ v (see FIG. 5). Further, the magnetic flux φ v is attenuated in the solidified shell portion 2 and interlinks with the search coil 7 to generate an electromotive force in the search coil 7, and the output voltage V is expressed by the following equation (2). However,
The gap g between the slab 1 and the core 5 is constant.

【0015】[0015]

【数2】 (Equation 2)

【0016】つまり、センサ4は電磁的な非接触型流速
センサであり、凝固シェル部2と未凝固部3との界面の
流速vH を検出する。また、その出力電圧Vは凝固厚さ
tと、減衰率αとによって変化する。しかし、鋳片の凝
固厚さ測定では溶湯流速vH、凝固厚さtがともに未知
量であるから、このままでは凝固厚さtを求めることが
できない。
That is, the sensor 4 is an electromagnetic non-contact type flow velocity sensor, and detects the flow velocity v H at the interface between the solidified shell portion 2 and the non-solidified portion 3. The output voltage V changes depending on the solidification thickness t and the attenuation rate α. However, in the measurement of the solidified thickness of the slab, since the molten metal flow velocity v H and the solidified thickness t are both unknown quantities, the solidified thickness t cannot be obtained as it is.

【0017】そこで減衰率αが浸透度(スキンデプス)
δの逆数であり、周波数fに依存することに着目し、少
なくとも2つの周波数f1 とf2 を用いると、周波数f
1 におけるセンサ出力電圧V1 は次式(3)で表わさ
れ、周波数f2 におけるセンサ電圧出力V2 は次式
(4)で表わされる。但し、α1 は周波数f1 における
減衰率、α2 は周波数f2 における減衰率であり、μ=
1、ρは凝固シェル部2の電気抵抗率なのでほぼ一定で
あるため、α1 及びα2 は予め求めておくことができ
る。
Therefore, the attenuation rate α is determined by the degree of penetration (skin depth).
Paying attention to the fact that it is the reciprocal of δ and depends on the frequency f, if at least two frequencies f 1 and f 2 are used, the frequency f
Sensor output voltages V 1 at 1 is expressed by the following equation (3), the sensor voltage output V 2 at frequency f 2 is expressed by the following equation (4). Where α 1 is the attenuation rate at frequency f 1 , α 2 is the attenuation rate at frequency f 2 , and μ =
Since 1 and ρ are almost constant because they are the electrical resistivity of the solidified shell portion 2, α 1 and α 2 can be obtained in advance.

【0018】[0018]

【数3】 V1 ∝B・vH ・L・exp(−2α1 t) ……式(3)V 1 ∝B · v H · L · exp (−2α 1 t) (3)

【0019】[0019]

【数4】 V2 ∝B・vH ・L・exp(−2α2 t) ……式(4)V 2 ∝B · v H · L · exp (−2α 2 t) Equation (4)

【0020】そこで2つのセンサ出力電圧の比、例えば
2 /V1 をとると、式(4)/式(3)より次式
(5)が成立し、減衰率α1 ,α2 と凝固厚さtの指数
関数となる。更に式(5)を対数化すると次式(6)と
なる。
Then, when the ratio of the two sensor output voltages, for example, V 2 / V 1 is taken, the following expression (5) is established from the expressions (4) / (3), and the attenuation rates α 1 , α 2 and the coagulation It becomes an exponential function of the thickness t. Further, when Expression (5) is logarithmized, the following Expression (6) is obtained.

【0021】[0021]

【数5】 V2 /V1 =exp(−2(α2 −α1 )t) ……式(5)V 2 / V 1 = exp (−2 (α 2 −α 1 ) t) Equation (5)

【0022】[0022]

【数6】 (Equation 6)

【0023】ここで式(6)を考察する。f1 <f2
設定すると、α1 <α2 になるから式(3)(4)より
1 >V2 である。そのため、式(6)の分子ln (V
2 /V1 )の値はマイナスであって、電圧比V2 /V1
が小さいほど、大きくなる。分母の−2(α2 −α1
はマイナスである。従って、電圧比V2 /V1 が小さく
なると、凝固厚さtは大きくなる。
Here, equation (6) will be considered. If f 1 <f 2 is set, α 12 , so that V 1 > V 2 from the equations (3) and (4). Therefore, the molecule l n (V
2 / V 1 ) is negative and the voltage ratio V 2 / V 1
The smaller is the larger. Denominator -2 (α 2 −α 1 )
Is negative. Therefore, when the voltage ratio V 2 / V 1 decreases, the solidification thickness t increases.

【0024】そこで式(6)の演算を行うことにより、
電圧比V2 /V1 から直接的に凝固厚さtを求めること
ができ、従来のような凝固厚さの増加に伴う測定精度の
低下が少なくなる。
Then, by performing the operation of equation (6),
The solidification thickness t can be obtained directly from the voltage ratio V 2 / V 1, and a decrease in measurement accuracy due to an increase in the solidification thickness as in the related art is reduced.

【0025】なお電圧比V1 /V2 を用いる場合は次式
(7)となり、f1 <f2 であれば電圧比V1 /V2
大きくなると、凝固厚さtが大きくなるが、これは式
(6)の場合と等価的である。
When the voltage ratio V 1 / V 2 is used, the following equation (7) is obtained. If f 1 <f 2 , the solidification thickness t increases as the voltage ratio V 1 / V 2 increases. This is equivalent to the case of equation (6).

【0026】[0026]

【数7】 (Equation 7)

【0027】ところで、図6に示すように鋳片1は鋳片
進行方向15に移動するので、鋳片移動速度vV によっ
ても未凝固部3内に渦電流19が流れるが、この場合は
それぞれの電流がキャンセルし合うため、サーチコイル
7には鋳片移動速度vV に基づく起電力は生じない。
Since the slab 1 moves in the slab advancing direction 15 as shown in FIG. 6, an eddy current 19 flows in the unsolidified portion 3 depending on the slab moving speed v V. , The electromotive force based on the slab moving speed v V is not generated in the search coil 7.

【0028】また、コア5と鋳片1との間のギャップg
が変化するとセンサ出力電圧が変化するので測定精度が
低下するが、このような場合にはコア5にコイル8を巻
いておくとその出力電圧がギャップgに応じて変化する
ので、コイル8の出力電圧でサーチコイル7の出力電圧
を補正する。これにより、ギャップ変化による測定精度
の低下を防止できる。
The gap g between the core 5 and the slab 1
Changes the sensor output voltage, so that the measurement accuracy is reduced. In such a case, if the coil 8 is wound around the core 5, the output voltage changes according to the gap g. The output voltage of the search coil 7 is corrected by the voltage. Thereby, it is possible to prevent a decrease in measurement accuracy due to a change in the gap.

【0029】更に、前述の如くノズルからの溶湯の吐出
による流速を利用するため凝固末期など流速が低下する
と測定精度が低下するところであるが、このような場合
にはリニアモータ型電磁攪拌装置などを用いて未凝固部
内を攪拌することにより、流速を増加させる。これによ
り、測定精度の低下を防止することができる。
Further, as described above, since the flow rate due to the discharge of the molten metal from the nozzle is used, if the flow rate is reduced at the end of solidification, the measurement accuracy will be reduced. In such a case, a linear motor type electromagnetic stirrer or the like is required. The flow rate is increased by agitating the inside of the unsolidified portion by using. Thereby, it is possible to prevent a decrease in measurement accuracy.

【0030】[0030]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図面中、図1は本発明の一実施例に係る鋳片の凝
固厚さ測定装置の構成を示す図、図2は鋳片と流速セン
サとの位置関係を鋳片を正面から見て示す図、図3は鋳
片を破断して示す図2の側面図である。但し図1中で、
鋳片は図2中のI−I線で水平に破断した状態で示して
ある。図4は本発明の測定原理を示す図、図5は溶湯の
流れにより発生する渦電流を示す図、図6は鋳片の移動
により発生する渦電流を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, FIG. 1 is a diagram showing a configuration of a device for measuring a solidified thickness of a slab according to one embodiment of the present invention, and FIG. 2 is a diagram showing a positional relationship between the slab and a flow rate sensor when the slab is viewed from the front. FIG. 3 is a side view of FIG. However, in FIG.
The slab is shown in a state of being broken horizontally along line II in FIG. 4 is a diagram illustrating the measurement principle of the present invention, FIG. 5 is a diagram illustrating an eddy current generated by the flow of molten metal, and FIG. 6 is a diagram illustrating an eddy current generated by movement of the slab.

【0031】本実施例では、図2、図3に示すように、
連続鋳造の鋳片1の進行方向15が鉛直方向であるとし
て説明する。16は水平方向を示す。また、鋳片1は断
面矩形状のものとし、4つの表面1A〜1Dのうち、1
Aがセンサ側、1Bが反センサ側、1Cと1Dが側面側
として説明する。更に、鋳片1の未凝固部3は溶鋼であ
るとする。
In this embodiment, as shown in FIGS. 2 and 3,
A description will be given on the assumption that the traveling direction 15 of the slab 1 of continuous casting is a vertical direction. Reference numeral 16 indicates the horizontal direction. The slab 1 has a rectangular cross section, and one of the four surfaces 1A to 1D has
A description is given on the assumption that A is the sensor side, 1B is the opposite sensor side, and 1C and 1D are the side faces. Further, it is assumed that the unsolidified portion 3 of the slab 1 is molten steel.

【0032】図1に示すように本実施例に係る鋳片の凝
固厚さ測定装置は、流速センサ4と、交流電源9と、位
相整流回路10と、信号増幅器11と、補正回路12
と、信号処理回路13と、リニアモータ型の電磁攪拌装
置14から構成されている。
As shown in FIG. 1, the apparatus for measuring the solidified thickness of a slab according to the present embodiment comprises a flow velocity sensor 4, an AC power supply 9, a phase rectifier circuit 10, a signal amplifier 11, and a correction circuit 12.
, A signal processing circuit 13 and a linear motor type electromagnetic stirring device 14.

【0033】また流速センサ4はコ字形状とも言えるC
型コア5と、励磁コイル6と、サーチコイル7と、ギャ
ップ検出用コア8からなり、励磁コイル6とギャップ検
出用コイル8は隣り合せてコア5に巻き、更にコア5先
端のNS両磁極を囲むようにサーチコイル7を巻いてい
る。
The flow rate sensor 4 is C-shaped.
A mold core 5, an exciting coil 6, a search coil 7, and a gap detecting core 8 are provided. The exciting coil 6 and the gap detecting coil 8 are wound around the core 5 next to each other. The search coil 7 is wound so as to surround it.

【0034】交流電源9は励磁コイル6に互いに異なる
周波数f1 ,f2 の交流を印加するものである。本実施
例では、f1 <f2 とし、交流電源9の周波数をf1
らf 2 に交互に変化させて測定を行うものとして説明す
る。
The AC power supply 9 is different from the excitation coil 6
Frequency f1, FTwoIs applied. This implementation
In the example, f1<FTwoAnd the frequency of the AC power supply 9 is f1Or
F TwoIt is assumed that the measurement is performed by alternately changing
You.

【0035】流速センサ4は、図1〜図3に示すよう
に、鋳片進行方向15と直角な水平面内の方向16にN
S磁極を向けて鋳片1の表面1Aに近接して配置してあ
る。言い換えれば、NS両磁極は同一の水平面上にあ
り、鋳片表面1Aにギャップgをおいて正対している。
これにより、鋳片表面1Aに、鋳片進行方向と直角な方
向16の交流磁界が流速センサ4より印加される(図4
参照)。
As shown in FIGS. 1 to 3, the flow velocity sensor 4 has N in a direction 16 in a horizontal plane perpendicular to the slab traveling direction 15.
It is arranged close to the surface 1A of the slab 1 with the S magnetic pole facing. In other words, the NS magnetic poles are on the same horizontal plane and face the cast slab surface 1A with a gap g.
Thus, an alternating magnetic field in a direction 16 perpendicular to the slab traveling direction is applied from the flow velocity sensor 4 to the slab surface 1A (FIG. 4).
reference).

【0036】従って、交流電源9により励磁コイル6を
励磁すると、図4に示すように磁束φS が発生し、この
磁束φS と未凝固部3での溶湯流17とにより図5に示
すように未凝固部3に渦電流18が発生し、この渦電流
18によって図4、図5に示すように磁束φV が発生す
る。
Therefore, when the exciting coil 6 is excited by the AC power supply 9, a magnetic flux φ S is generated as shown in FIG. 4, and the magnetic flux φ S and the molten metal flow 17 in the unsolidified portion 3 cause the magnetic flux φ S as shown in FIG. An eddy current 18 is generated in the unsolidified portion 3, and a magnetic flux φ V is generated by the eddy current 18 as shown in FIGS.

【0037】サーチコイル7は磁束φV を検出するもの
であり、磁束φV に応じた起電力がサーチコイル7に生
じ、これが流速センサ4の出力電圧(流速信号)とな
る。ここで、V1 を周波数がf1 の場合のセンサ出力電
圧、V2 を周波数がf2 の場合のセンサ出力電圧とす
る。
The search coil 7 is for detecting the magnetic flux phi V, resulting in electromotive force search coil 7 corresponding to the flux phi V, which is the output voltage of the flow sensor 4 (flow rate signal). Here, frequency V 1 is the sensor output voltage when the f 1, the frequency of V 2 is the sensor output voltage when the f 2.

【0038】一方、ギャップ検出用コイル8は鋳片表面
1Aとコア5とのギャップgを検出するものであり、磁
束φS がギャップgにより変化することから、磁束φS
の検出によりギャップgに応じた電圧Vg を出力する。
ここで、Vg1を周波数がf1の場合のギャップ検出電
圧、Vg2を周波数がf2 の場合のギャップ検出電圧とす
る。
On the other hand, the gap detecting coil 8 is for detecting the gap g between the slab surface 1A and the core 5. Since the magnetic flux φ S changes with the gap g, the magnetic flux φ S
Detected by outputting a voltage V g in accordance with the gap g.
Here, frequency V g1 gap detection voltage for f 1, the frequency of V g2 is a gap detection voltage in the case of f 2.

【0039】位相整流回路10は、サーチコイル7に励
磁による磁束φS と流速による磁束φV とが同時に鎖交
するので、センサ出力電圧V1 ,V2 から磁束φS の成
分を除去するたのものであり、これらの磁束φS ,φV
間に90°の位相差があることを利用して、交流電源9
の周波数f1 ,f2 により各センサ出力V1 ,V2 を位
相整流することにより、流速による磁束φV に応じた信
号を分離して出力する。
The phase rectifier circuit 10 also removes the component of the magnetic flux φ S from the sensor output voltages V 1 and V 2 because the magnetic flux φ S generated by excitation and the magnetic flux φ V generated by the flow velocity simultaneously link the search coil 7. And these magnetic fluxes φ S , φ V
Utilizing the fact that there is a 90 ° phase difference between
By phase rectifying the sensor outputs V 1 , V 2 with the frequencies f 1 , f 2 , a signal corresponding to the magnetic flux φ V due to the flow velocity is separated and output.

【0040】信号増幅器11はギャップ検出用コイル8
の出力電圧Vg1,Vg2を増幅するものである。
The signal amplifier 11 has a gap detecting coil 8.
To amplify the output voltages V g1 and V g2 of FIG.

【0041】補正回路12はセンサ出力電圧V1 ,V2
からギャップgの変動の影響を除去するものであり、セ
ンサ出力電圧V1 ,V2 をギャップ検出電圧Vg1,Vg2
で補正することにより、ギャップ変動の影響を受けない
信号を得る。
The correction circuit 12 detects the sensor output voltages V 1 , V 2
To remove the influence of the change of the gap g from the sensor output voltages V 1 , V 2 and the gap detection voltages V g1 , V g2.
, A signal which is not affected by gap fluctuation is obtained.

【0042】信号処理回路13はセンサ出力電圧V1
2 と減衰率α1 ,α2 とを用いて所定の演算を行うこ
とにより凝固厚さtを求めるものであり、本実施例では
電圧比V2 /V1 を用いて前出の式(6)即ちt=−
(ln (V2 /V1 ))/2(α2 −α1 )の演算処理
を行う。ここで、α1 は周波数がf1 の場合の減衰率、
α2 は周波数がf2 の場合の減衰率とする。
The signal processing circuit 13 outputs the sensor output voltage V 1 ,
V 2 and the attenuation factor alpha 1, by using the alpha 2 is intended to obtain the solidification thickness t by performing a prescribed operation, wherein in this embodiment supra using the voltage ratio V 2 / V 1 ( 6) That is, t = −
(L n (V 2 / V 1)) / performs arithmetic processing of 2 (α 2 -α 1). Here, α 1 is an attenuation rate when the frequency is f 1 ,
α 2 is an attenuation rate when the frequency is f 2 .

【0043】電磁攪拌装置14はリニアモータの原理に
より未凝固部3を電磁的に非接触に攪拌するものであ
り、この攪拌により同未凝固部3内の流速を増加させ
る。
The electromagnetic stirring device 14 stirs the unsolidified portion 3 electromagnetically in a non-contact manner based on the principle of a linear motor, and increases the flow rate in the unsolidified portion 3 by the stirring.

【0044】次に、上述した装置における全体的な動作
を説明する。鋳片1の凝固厚さtの測定に際し、交流電
源9より周波数をf1 からf2 に交互に変化させて流速
センサ4の励磁コイル6に交流を印加する。この時にサ
ーチコイル7から得られる周波数別のセンサ出力電圧V
1 ,V2 から、位相整流回路10により励磁磁束φS
成分を除去する。また、ギャップ検出用コイル8から得
られるギャップ検出電圧Vg1,Vg2を用いて、補正回路
12によりセンサ出力電圧V1 ,V2 のギャップ変動分
を補正して除去する。このように不要成分を除去したセ
ンサ出力電圧V 1 ,V2 の比V2 /V1 を用いて、信号
処理回路13により前式(6)の演算処理を行い、凝固
厚さtを求める。また凝固末期など流速が低下する場合
には、電磁攪拌装置14を自動的に、あるいは手動で動
作させて流速を増加させ、測定精度の低下を防ぐ。
Next, the overall operation of the above-described device
Will be described. When measuring the solidification thickness t of the slab 1,
F from source 91To fTwoFlow rate
An alternating current is applied to the exciting coil 6 of the sensor 4. At this time,
Sensor output voltage V for each frequency obtained from the
1, VTwoFrom the excitation flux φ by the phase rectifier circuit 10.Sof
Remove components. In addition, it is obtained from the gap detecting coil 8.
Gap detection voltage Vg1, Vg2Using the correction circuit
12, the sensor output voltage V1, VTwoGap variation
Is corrected and removed. In this way, unnecessary components are removed.
Sensor output voltage V 1, VTwoRatio VTwo/ V1Using the signal
The arithmetic processing of the above equation (6) is performed by the processing circuit 13 and
Find the thickness t. Also, when the flow velocity decreases, such as at the end of solidification
The electromagnetic stirrer 14 automatically or manually.
To increase the flow rate and prevent a decrease in measurement accuracy.

【0045】具体的な測定例を示すと、励磁コイル6の
表面磁束が30ガウス、サーチコイル7の径が55φ
(巻数3000回)、周波数が100Hz、凝固厚さが2
0mmの場合、サーチコイル7から0.2mV程度の出力が
得られた。
In a specific measurement example, the surface magnetic flux of the exciting coil 6 is 30 Gauss, and the diameter of the search coil 7 is 55φ.
(3000 turns), frequency 100Hz, solidification thickness 2
In the case of 0 mm, an output of about 0.2 mV was obtained from the search coil 7.

【0046】ここで、ギャップgの変動がない場合、あ
るいは無視できる程度に少ない場合には、ギャップ検出
用コイル8及び補正回路12等は必ずしも必要ではな
い。また、凝固末期等でも十分な流速があれば電磁攪拌
装置14は必ずしも必要ではなく、逆に凝固末期以外で
も流速が不十分であれば電磁攪拌装置を常時動作させて
おいても良い。更に、サーチコイル7に鎖交する励磁に
よる磁束φS はN極側とS極側で大部分がキャンセルさ
れるので、残りが無視できる程度に少ない場合には、位
相整流回路10は必ずしも必要でない。また更に、コア
5はH型コアの一部を使用する場合も含め、実質的にコ
字形状あるいはC型であれば何でも良い。
Here, when there is no change in the gap g or when it is negligibly small, the gap detecting coil 8 and the correction circuit 12 are not necessarily required. Also, if there is a sufficient flow rate even at the end of solidification, the electromagnetic stirrer 14 is not necessarily required. Conversely, if the flow rate is not sufficient even at times other than the end of solidification, the electromagnetic stirrer may be operated at all times. Further, since most of the magnetic flux φ S due to the excitation linked to the search coil 7 is canceled on the N-pole side and the S-pole side, the phase rectifier circuit 10 is not necessarily required when the remainder is negligibly small. . Further, the core 5 may be of any shape as long as it is substantially U-shaped or C-shaped, including the case where a part of the H-shaped core is used.

【0047】更に、励磁コイル6に印加する交流の周波
数をf1 からf2 に交互に切り替える他、周波数f1
交流と周波数f2 の交流を重畳して励磁コイル6に印加
しても良く、この場合はサーチコイル7及びギャップ検
出用コイル8の各出力電圧から、フィルタを用いる等に
よりf1 に対応する信号とf2 に対応する信号を分離し
て得れば良い。
Further, in addition to alternately switching the frequency of the alternating current applied to the exciting coil 6 from f 1 to f 2 , the alternating current of the frequency f 1 and the alternating current of the frequency f 2 may be superimposed and applied to the exciting coil 6. , from the output voltage of this search coil 7 and the gap detection coil 8 may be Ere separates a signal corresponding to the signal and f 2 corresponding to f 1 by such a filter.

【0048】[0048]

【発明の効果】本発明によれば、凝固シェル部と未凝固
部との界面での流速を利用して凝固厚さを直接的に検出
するので、従来のような凝固厚さ増加に伴う測定精度の
低下が少ない。
According to the present invention, the solidification thickness is directly detected by using the flow velocity at the interface between the solidified shell portion and the non-solidified portion. Little decrease in accuracy.

【0049】また本発明によれば、ギャップ検出用コイ
ルを利用してその出力によりサーチコイルの出力を補正
する場合は、コアと鋳片表面間のぎャップ変動による影
響を除去することができる。更に、未凝固部を攪拌する
場合は、凝固末期等でも流速を増加できるので、凝固厚
さが厚くなってもサーチコイルの出力が大きくなって測
定精度の低下を防止できる。つまり、凝固厚さが厚くな
っても測定が可能である。
Further, according to the present invention, when the output of the search coil is corrected using the output of the gap detecting coil, the influence of the gap variation between the core and the slab surface can be eliminated. Further, when stirring the unsolidified portion, the flow velocity can be increased even in the final stage of solidification or the like, so that even if the solidified thickness is increased, the output of the search coil is increased and a decrease in measurement accuracy can be prevented. That is, the measurement can be performed even when the solidification thickness increases.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る鋳片の凝固厚さ測定装
置の構成を示す図。
FIG. 1 is a view showing a configuration of an apparatus for measuring a solidified thickness of a slab according to one embodiment of the present invention.

【図2】鋳片と流速センサとの位置関係を鋳片正面から
見て示す図。
FIG. 2 is a view showing a positional relationship between a slab and a flow sensor as viewed from the front of the slab.

【図3】鋳片を破断して示す図2の側面図。FIG. 3 is a side view of FIG. 2 showing a slab broken.

【図4】本発明の測定原理を示す図。FIG. 4 is a diagram showing a measurement principle of the present invention.

【図5】溶湯の流れにより発生する渦電流を示す図。FIG. 5 is a diagram showing an eddy current generated by a flow of a molten metal.

【図6】鋳片の移動により発生する渦電流を示す図。FIG. 6 is a diagram showing an eddy current generated by movement of a slab.

【図7】従来例のコイル構成を示す図。FIG. 7 is a diagram showing a coil configuration of a conventional example.

【図8】従来例の回路構成を示す図。FIG. 8 is a diagram showing a circuit configuration of a conventional example.

【図9】鋼における電気抵抗率と温度との関係を示す
図。
FIG. 9 is a diagram showing the relationship between electrical resistivity and temperature in steel.

【符号の説明】[Explanation of symbols]

1 鋳片 1A 鋳片表面 2 凝固シェル部 3 未凝固部 4 流速センサ 5 コア 6 励磁コイル 7 サーチコイル 8 ギャップ検出用コイル 9 交流電源 10 位相整流回路 11 信号増幅器 12 補正回路 13 信号処理回路 14 リニアモータ型電磁攪拌装置 15 鋳片進行方向 16 鋳片進行方向に直角な方向 17 溶湯流 18 渦電流 t 凝固厚さ vH 流速 φS 励磁コイルにより発生する磁束 φV 流速で発生した渦電流が作る磁束DESCRIPTION OF SYMBOLS 1 Cast piece 1A Cast piece surface 2 Solidified shell part 3 Unsolidified part 4 Flow velocity sensor 5 Core 6 Exciting coil 7 Search coil 8 Gap detecting coil 9 AC power supply 10 Phase rectifier circuit 11 Signal amplifier 12 Correction circuit 13 Signal processing circuit 14 Linear Motor type electromagnetic stirrer 15 Slab traveling direction 16 Direction perpendicular to the slab traveling direction 17 Molten metal flow 18 Eddy current t Solidification thickness v H flow velocity φ S Magnetic flux generated by exciting coil φ V Eddy current generated at flow velocity Magnetic flux

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中嶋 宏 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社 広島研究所内 (72)発明者 中島 元己 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社 広島研究所内 (56)参考文献 特開 昭59−151003(JP,A) 特開 昭57−139603(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 7/00 - 7/34 102 B22D 11/00 - 11/22 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Nakajima 4-2-2 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (72) Inventor Motoki Nakajima Kannon-Shimmachi 4 in Nishi-ku, Hiroshima-shi, Hiroshima No. 6-22, Mitsubishi Heavy Industries, Ltd. Hiroshima Laboratory (56) References JP-A-59-151003 (JP, A) JP-A-57-139603 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 7/ 00-7/34 102 B22D 11/00-11/22

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連続鋳造鋳片に鋳片進行方向と直角な方
向に互いに異なった少なくとも2つの周波数の磁界を印
加し、同磁界によって鋳片内部の未凝固部に生じた渦電
流に基づく電圧を検出し、同電圧の比から凝固厚さを求
めることを特徴とする鋳片の凝固厚さ測定方法。
1. A magnetic field of at least two different frequencies is applied to a continuous cast slab in a direction perpendicular to a slab advancing direction, and a voltage based on an eddy current generated in an unsolidified portion inside the slab by the magnetic field. And measuring the solidification thickness from the ratio of the same voltage.
【請求項2】 C型コア,同コアに巻いた励磁コイル及
び前記コア先端のNS両磁極を囲むように巻いたサーチ
コイルを有し、NS極を鋳片進行方向と直角な方向に向
けて配設した流速センサと、 前記励磁コイルに異なった周波数の交流を印加する電源
と、 前記サーチコイルからの異なった周波数の出力から凝固
厚さを演算する手段と、 を具備したことを特徴とする鋳片の凝固厚さ測定装置。
2. A C-shaped core, an exciting coil wound around the core, and a search coil wound so as to surround both NS poles at the tip of the core, wherein the NS pole is directed in a direction perpendicular to the direction of slab travel. And a power supply for applying an alternating current of a different frequency to the excitation coil, and a means for calculating a solidification thickness from an output of a different frequency from the search coil. A device for measuring the solidification thickness of cast slabs.
【請求項3】 請求項2において、前記コアに巻いたギ
ャップ検出用コイルと、同コアと前記鋳片間のギャップ
の変化により生じる前記サーチコイルの出力の変化を、
前記ギャップ検出用コイルからの出力により補正する手
段と、を具備したことを特徴とする鋳片の凝固厚さ測定
装置。
3. The method according to claim 2, wherein a change in output of the search coil caused by a change in the gap detection coil wound around the core and a change in the gap between the core and the slab is obtained.
A means for correcting with an output from the gap detecting coil.
【請求項4】 請求項2または3において、前記鋳片内
部の未凝固部を攪拌する手段を具備したことを特徴とす
る鋳片の凝固厚さ測定装置。
4. The apparatus for measuring the solidified thickness of a slab according to claim 2, further comprising means for stirring an unsolidified portion inside the slab.
JP07105598A 1995-04-28 1995-04-28 Method and apparatus for measuring cast solidification thickness Expired - Fee Related JP3082828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07105598A JP3082828B2 (en) 1995-04-28 1995-04-28 Method and apparatus for measuring cast solidification thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07105598A JP3082828B2 (en) 1995-04-28 1995-04-28 Method and apparatus for measuring cast solidification thickness

Publications (2)

Publication Number Publication Date
JPH08304008A JPH08304008A (en) 1996-11-22
JP3082828B2 true JP3082828B2 (en) 2000-08-28

Family

ID=14411939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07105598A Expired - Fee Related JP3082828B2 (en) 1995-04-28 1995-04-28 Method and apparatus for measuring cast solidification thickness

Country Status (1)

Country Link
JP (1) JP3082828B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807393A (en) * 2015-04-02 2015-07-29 哈尔滨东安发动机(集团)有限公司 Vortex thickness measuring probe
CN104897040A (en) * 2015-06-17 2015-09-09 苏州福德电子科技有限公司 Automobile paint thickness measuring apparatus and method

Also Published As

Publication number Publication date
JPH08304008A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
JP3082828B2 (en) Method and apparatus for measuring cast solidification thickness
EP0979696A1 (en) Continuous casting apparatus using a molten metal level gauge
JP4582564B2 (en) Magnetic flux measuring device
JP3307170B2 (en) Flow velocity measuring method and its measuring device, continuous casting method and its device
JPS62276454A (en) Method for detecting foreign matter in ferromagnetic body
JPH08211085A (en) Flow velocity measuring device
JP3575264B2 (en) Flow velocity measuring method and device
Kim et al. Level meter for the electromagnetic continuous casting of steel billet
JPS60133955A (en) Method for electromagnetic stirring in continuous casting
JPH08211086A (en) Method and device for measuring flow velocity
JP2008057990A (en) Flow rate estimation method and flow rate control method for molten steel
JPH08327647A (en) Current velocity measuring apparatus
JPH08211084A (en) Flow velocity measuring device
JP2714437B2 (en) Method and apparatus for measuring meniscus flow velocity of molten metal
JP3233804B2 (en) Eddy current anemometer
JP2000304725A (en) Method for measuring thickness of transformation layer of steel material
JPH10333745A (en) Position detection sensor for automatic traveling device
JPS61224009A (en) Automatic steering device of unmanned car
JPH0933554A (en) Non-contact flow-velocity detector
JPS6324789B2 (en)
JPH09101320A (en) Flow velocity measuring method and measuring apparatus therefor
JPH0789681B2 (en) Levitation coil displacement detector
JP2000146994A (en) Method and apparatus for measurement of flow velocity
JP2004166326A (en) Linear motor carrier
JPS60166152A (en) Detection of moving speed of molten with electrostatic stirring of unsolidified molten steel of continuous casting billet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000523

LAPS Cancellation because of no payment of annual fees