JPH09101320A - Flow velocity measuring method and measuring apparatus therefor - Google Patents

Flow velocity measuring method and measuring apparatus therefor

Info

Publication number
JPH09101320A
JPH09101320A JP25768495A JP25768495A JPH09101320A JP H09101320 A JPH09101320 A JP H09101320A JP 25768495 A JP25768495 A JP 25768495A JP 25768495 A JP25768495 A JP 25768495A JP H09101320 A JPH09101320 A JP H09101320A
Authority
JP
Japan
Prior art keywords
signal
flow velocity
magnetic field
distance
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25768495A
Other languages
Japanese (ja)
Inventor
Kaneyuki Oota
金幸 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25768495A priority Critical patent/JPH09101320A/en
Publication of JPH09101320A publication Critical patent/JPH09101320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To cancel effect of changes in distance and waving by a method wherein a magnetic field with more than one frequency signals overlapped is excited to a moving conductive object to be measured and magnetic field components corresponding to the respective frequency components are detected to measure the flow velocity of the object to be measured based on a signal thereof. SOLUTION: At an exciting circuit 110, signals involving two frequencies f1 and f2 from oscillators 111 and 112 are overlapped each other by an adder 113 and supplied as exciting current to an exciting winding 102 of a magnetic sensor head 100 through a power amplifier 114. A detection circuit 120 finds a flow velocity signal through a bandpass filter 121 and a phase detector 122 from a differential signal of outputs of two detection windings 103 and 104. A waving correction circuit 125 multiplies a high frequency difference signal, obtained through a bandpass filter 126 and a phase detector 127 from a differential signal of outputs of the detection windings 103 and 104, by a coefficient with an amplifier 128 to find a waving correction signal and the results are subtracted from a flow rate signal detected by the detection circuit 120 by an arithmetic device 129 to cancel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は連続鋳造プロセスにおい
て溶鋼を鋳込む鋳型内溶鋼流の表面の流速を測定する流
速測定方法及びその測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow velocity measuring method and a measuring apparatus for measuring the flow velocity on the surface of a molten steel flow in a mold into which molten steel is cast in a continuous casting process.

【0002】[0002]

【従来の技術】連続鋳造ラインにおいては、図8に示さ
れるように溶鋼3はタンディッシュ1よりノズル2を通
して銅製の鋳型4中に注ぎ込まれて鋳造される。鋳型4
中に注ぎ込まれた溶鋼は、鋳型壁面に当たり上昇流7と
下降流8とに分かれる。上昇流は表面で流れ9a,9b
を作るが、ここで表面の溶鋼流動の左右のバランスが崩
れると、図示のように渦11が発生し溶鋼表面上に撒い
たパウダー5を巻き込んでしまう。また、表面の溶鋼流
動が過大になると、図示のように溶鋼表面のパウダーの
一部10を削り込んでしまう。
2. Description of the Related Art In a continuous casting line, molten steel 3 is poured from a tundish 1 through a nozzle 2 into a copper mold 4 for casting, as shown in FIG. Mold 4
The molten steel poured inside hits the wall surface of the mold and is divided into an upflow 7 and a downflow 8. Upflow flows on the surface 9a, 9b
However, if the left-right balance of the molten steel flow on the surface is lost, a vortex 11 is generated as shown in the drawing, and the powder 5 sprinkled on the molten steel surface is entrained. Further, when the molten steel flow on the surface becomes excessive, a part 10 of the powder on the molten steel surface is scraped as shown in the figure.

【0003】何れの場合においても、鋳片中に介在物が
捕捉されることになり、製品欠陥の原因となる。このよ
うな理由から鋳型内溶鋼流動を安定化させることは極め
て重要な課題となっており、特に、溶鋼表面近傍の流速
を連続的に計測することが強く求められていた。
In any case, inclusions are trapped in the slab, causing product defects. For these reasons, stabilizing the molten steel flow in the mold has become an extremely important issue, and in particular, continuous measurement of the flow velocity near the surface of the molten steel has been strongly demanded.

【0004】従来の溶鋼表面近傍の流速の計測は、例え
ば特開平5−60774号公報に記載されているような
接触型の計測が主であった。これは、図9に示されるよ
うにファインセラミック製の棒12を溶鋼14に浸漬し
て、その棒が溶鋼流動により受ける圧力Fを、受圧セン
サ13により検出して、流速を測定するものである。し
かし、この方法では、高温の溶鋼にセラミックス製の棒
12を浸漬させるため、長時間の連続測定が不可能なも
のであった。
The conventional measurement of the flow velocity near the surface of molten steel has mainly been a contact type measurement as described in, for example, JP-A-5-60774. In this, as shown in FIG. 9, a fine ceramic rod 12 is immersed in molten steel 14 and the pressure F received by the molten steel flow is detected by a pressure sensor 13 to measure the flow velocity. . However, in this method, since the ceramic rod 12 is immersed in high temperature molten steel, continuous measurement for a long time is impossible.

【0005】これに対し、磁気を用いて非接触で流体の
速度を計測できることも知られている。これは、図10
に示されるように均等な磁場中で導体15が動くと、そ
の導体中にE=v×Bなる速度起電力が生じ、この速度
起電力により、導体中に渦電流Jvが誘起され、導体1
5上に誘導磁場Bvが発生して、元の磁場は導体の速度
方向に引きずられるようにBからB′へと歪むという、
磁場が導体の運動により歪む効果(以下、磁場の速度効
果という)を利用したものであり、この歪みの程度は導
体の速度に対応して変化するので、歪み量を測ることに
より対象導体の速度を計測することができる。
On the other hand, it is also known that the velocity of a fluid can be measured in a non-contact manner using magnetism. This is shown in FIG.
When the conductor 15 moves in a uniform magnetic field as shown in FIG. 1, a velocity electromotive force of E = v × B is generated in the conductor, and this velocity electromotive force induces an eddy current Jv in the conductor, so that the conductor 1
An induced magnetic field Bv is generated on the magnetic field 5, and the original magnetic field is distorted from B to B ′ so as to be dragged in the velocity direction of the conductor.
The effect of the magnetic field being distorted by the motion of the conductor (hereinafter referred to as the velocity effect of the magnetic field) is used. The degree of this distortion changes according to the speed of the conductor. Can be measured.

【0006】このような磁気を用いて非接触で速度を計
測する装置として、特開平2−311766号公報に記
載されているものがあった。これは、図11(a)に示
されるように、溶鋼18の流れと平行配置された1次コ
イル19に交流電流を供給して溶鋼面と平行な交流磁場
17を溶鋼表面に印加し、その水平方向の両側に2つの
2次コイル20a,20bを配置したものである。そし
て、2次コイル20a,20bにより対象面と平行な磁
場を検出するようになっている。
[0006] As an apparatus for non-contact measurement of velocity using such magnetism, there is one described in Japanese Patent Application Laid-Open No. 2-311766. As shown in FIG. 11 (a), an alternating current is supplied to a primary coil 19 arranged in parallel with the flow of molten steel 18 to apply an alternating magnetic field 17 parallel to the molten steel surface to the molten steel surface. Two secondary coils 20a and 20b are arranged on both sides in the horizontal direction. The secondary coils 20a and 20b detect a magnetic field parallel to the target surface.

【0007】この2次コイル20a,20bによる検出
動作は、まず、導体が静止しているときには図11
(a)に示されるように、磁場は1次コイル19を挟ん
で対象となり、2つの2次コイル20a,20bの起電
力に差はなく出力は0となる。また、導体が動いている
場合には、図11(b)に示されるように、磁場の速度
効果により磁場は導体の速度方向に歪み、励磁コイル1
9を挟んで対称でなくなるため、2つの2次コイル20
a,20bに生じる起電力に差が生じ、磁場の歪み量、
即ち速度に対応した信号が2つの2次コイルの出力電圧
の差として得られる。そして、この2次コイル20a,
20bの出力電圧の差に基づいて、導体の速度を求める
ようになっている。
The detection operation by the secondary coils 20a and 20b is as shown in FIG. 11 when the conductor is stationary.
As shown in (a), the magnetic field is a target across the primary coil 19, and there is no difference in electromotive force between the two secondary coils 20a and 20b, and the output is zero. When the conductor is moving, the magnetic field is distorted in the velocity direction of the conductor due to the velocity effect of the magnetic field, as shown in FIG.
Since there is no symmetry with 9 in between, two secondary coils 20
a, a difference in the electromotive force generated in 20b, the amount of distortion of the magnetic field,
That is, a signal corresponding to the speed is obtained as the difference between the output voltages of the two secondary coils. Then, the secondary coil 20a,
The speed of the conductor is calculated based on the difference in the output voltage of 20b.

【0008】また、磁気を用いて非接触で速度を計測す
る方法では、装置と測定対象物体との距離により速度感
度が変化するが、例えば特開平4−89573号公報で
は、装置と測定対象物体との距離を、対象面と平行な磁
場を検出する2次コイルの片方の出力電圧により測定
し、補正を行っていた。
Further, in the non-contact method of measuring velocity using magnetism, the velocity sensitivity changes depending on the distance between the device and the object to be measured. For example, in Japanese Patent Laid-Open No. 4-89573, the device and object to be measured are measured. The distance between and was measured by the output voltage of one of the secondary coils for detecting the magnetic field parallel to the target surface, and correction was performed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、従来の
磁気を用いた非接触の速度測定方法は、以下のような問
題点があった。 1)測定対象面と平行な磁場を検出する2次コイルの片
方の出力電圧を測定し、距離による速度感度変化の補正
を行う方法においては、距離検出感度が十分でなく、補
正後の流速検出精度も悪くなる。即ち、距離検出精度を
高めるためには周波数を高くする必要があるが、流速信
号を高めるためには周波数を低くする必要があり、両者
は同時に成立しないという問題点があった。 2)また、交流励磁では測定対象面には−dB/dtか
らなる渦電流も生じ、それによる磁場も検出巻線が検出
することになる。図12(a)に示されるように、測定
対象面が平行な場合には2つの検出巻線でその起電力は
等しく、差分をとることにより0となる。しかし、図1
2(b)に示されるように、測定対象面に波があると、
2つの検出巻線で測定対象面との距離に差が出るため、
差をとっても0にならず、信号が変化してしまう。
However, the conventional non-contact velocity measuring method using magnetism has the following problems. 1) In the method of measuring the output voltage of one side of the secondary coil that detects the magnetic field parallel to the surface to be measured and correcting the speed sensitivity change depending on the distance, the distance detection sensitivity is not sufficient and the corrected flow velocity detection The accuracy is also poor. That is, it is necessary to increase the frequency in order to increase the distance detection accuracy, but it is necessary to decrease the frequency in order to increase the flow velocity signal. 2) Further, in the AC excitation, an eddy current of −dB / dt is generated on the surface to be measured, and the magnetic field due to the eddy current is also detected by the detection winding. As shown in FIG. 12A, when the surfaces to be measured are parallel to each other, the electromotive forces of the two detection windings are equal to each other, and the electromotive force becomes 0 by taking the difference. However, FIG.
As shown in 2 (b), if there is a wave on the surface to be measured,
Since there is a difference in the distance from the measurement target surface between the two detection windings,
Even if the difference is taken, it does not become 0, and the signal changes.

【0010】本発明は、このような問題点を解決するた
めになされたものであり、測定対象物の流速を距離が変
化したり波立ちがあっても精度良く測定することを可能
にした流速測定方法及びその測定装置を提供することを
目的とする。
The present invention has been made in order to solve such a problem, and it is possible to accurately measure the flow velocity of a measuring object even if the distance changes or there is a wave. An object of the present invention is to provide a method and a measuring device therefor.

【0011】[0011]

【課題を解決するための手段】本発明の一つの態様に係
る流速測定方法は、移動する導電性の測定対象物に対し
て、2以上の周波数信号を重ねた磁場を励磁する工程
と、それぞれの周波数成分に対応した磁場成分を検出す
る工程と、その検出された各磁場成分の信号に基づい
て、測定対象物の流速を測定する工程とを有する。本発
明の他の態様に係る流速測定方法は、移動する導電性の
測定対象物体に対して、低い周波数と高い周波数とから
なる2つの周波数信号を重ねた磁場を励磁する工程と、
それぞれの周波数成分に対応した磁場成分を検出する工
程と、低い周波数信号に対応した磁場成分の信号に基づ
いて、測定対象物の流速を測定する工程と、高い周波数
信号に対応した磁場成分の信号に基づいて波立ち補正信
号を求め、測定対象物の流速から波立ち補正信号を減算
して波立ち補正後の流速を求める工程と、高い周波数信
号に対応した磁場成分の信号に基づいて測定対象物に対
する距離を求める工程と、波立ち補正後の流速を距離に
より補正し、距離による補正後の流速を求める工程とを
有する。
A flow velocity measuring method according to one aspect of the present invention includes a step of exciting a magnetic field in which two or more frequency signals are superimposed on a moving conductive object to be measured, and Of detecting the magnetic field component corresponding to the frequency component of, and measuring the flow velocity of the measurement object based on the detected signal of each magnetic field component. A flow velocity measuring method according to another aspect of the present invention includes a step of exciting a magnetic field in which two frequency signals composed of a low frequency and a high frequency are superimposed on a moving conductive measurement target object,
The step of detecting the magnetic field component corresponding to each frequency component, the step of measuring the flow velocity of the measuring object based on the signal of the magnetic field component corresponding to the low frequency signal, and the signal of the magnetic field component corresponding to the high frequency signal The step of obtaining the ripple correction signal based on, and subtracting the ripple correction signal from the flow velocity of the measurement target to obtain the flow velocity after the ripple correction, and the distance to the measurement target based on the signal of the magnetic field component corresponding to the high frequency signal. And a step of correcting the flow velocity after ripple correction by the distance and obtaining the flow velocity after correction by the distance.

【0012】本発明の他の態様に係る流速測定装置は、
励磁装置及び1対の検出装置を有し、移動する導電性の
測定対象物体に対して対向配置される磁気センサヘッド
と、低い周波数と高い周波数とからなる2つの周波数信
号を重ねた励磁電流を前記励磁巻線に供給する励磁回路
と、1対の検出巻線の差信号の内、低い周波数信号に対
応した磁場成分の信号を抽出して流速を検出する検出回
路と、1対の検出巻線の差信号の内、高い周波数信号に
対応した磁場成分の信号を抽出して波立ち補正信号を求
め、検出回路の流速から波立ち補正信号を減算して波立
ち補正後の流速を求める波立ち補正回路と、1対の検出
巻線の和信号の内、高い周波数信号に対応した磁場成分
の信号を抽出して測定対象物に対する距離を求め、波立
ち補正後の流速を距離により補正し、距離による補正後
の流速を求める距離変動補正回路とを有する。
A flow velocity measuring device according to another aspect of the present invention is
A magnetic sensor head that has an exciting device and a pair of detecting devices and is arranged to face a moving conductive object to be measured, and an exciting current that overlaps two frequency signals of a low frequency and a high frequency. An exciting circuit for supplying to the exciting winding, a detecting circuit for detecting a flow velocity by extracting a signal of a magnetic field component corresponding to a low frequency signal from a difference signal of the pair of detecting windings, and a pair of detecting windings. A ripple correction circuit that extracts the signal of the magnetic field component corresponding to a high frequency signal from the line difference signals to obtain a ripple correction signal, and subtracts the ripple correction signal from the flow velocity of the detection circuit to obtain the ripple corrected flow velocity. From the sum signal of the pair of detection windings, the signal of the magnetic field component corresponding to the high frequency signal is extracted to obtain the distance to the measurement object, the flow velocity after waviness correction is corrected by the distance, and after correction by the distance Distance to find the flow velocity of And a variation correction circuit.

【0013】[0013]

【発明の実施の形態】次に、本発明の測定原理を、流速
検出原理、距離検出原理、距離変化による感度変化の補
正の原理、及び波立ちによる信号変化の補正の原理の項
に分けて説明する。 (a)流速検出原理 本発明においては、磁気センサヘッド100は、図2に
示されるように、U型の磁性体コア101の中央部に巻
回された励磁巻線102と、2つの脚にそれぞれ巻回さ
れた2つの検出巻線103,104とを備えている。な
お、検出巻線103と104とは逆向きの磁場を検出す
るように巻かれている。この磁気センサヘッド100を
移動する導電性の測定対象物200の上に、対象面に対
し検出巻線103,104の中心軸が垂直で、且つ検出
巻線103,104の並びが導体の移動方向と平行とな
るように配置する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the measurement principle of the present invention will be described by dividing it into the sections of flow velocity detection principle, distance detection principle, correction principle of sensitivity change due to distance change, and correction principle of signal change due to ripple. To do. (A) Flow Rate Detection Principle In the present invention, as shown in FIG. 2, the magnetic sensor head 100 includes an excitation winding 102 wound around the center of a U-shaped magnetic core 101 and two legs. Two detection windings 103 and 104 each wound are provided. The detection windings 103 and 104 are wound so as to detect a magnetic field in the opposite direction. On the conductive measurement object 200 that moves the magnetic sensor head 100, the central axes of the detection windings 103 and 104 are perpendicular to the target surface, and the detection windings 103 and 104 are arranged in the moving direction of the conductor. Place it so that it is parallel to.

【0014】ここで励磁巻線102に交流電流を供給
し、対象面に対し垂直な磁場を作る。この時、図2
(a)のように導体200が停止していれば、磁気セン
サヘッド100が左右対称の形状をしているため、励磁
磁場は左右の検出巻線位置では、大きさは等しく逆向き
で、各検出巻線の出力の差をとると「0」となる。そし
て、導体が動くと、図2(b)のようにその流速に対応
して導体中に発生する渦電流により磁場が歪み、各検出
巻線位置での磁束の垂直成分に差が出て、各検出巻線の
差信号が変化する。この変化量は測定対象物の流速に対
応しており、この変化量から、測定対象物の流速を測定
することができる。またこの時、速度効果による磁束の
歪み量は、流れの下流側と上流側の検出巻線とでは符号
が同じで、磁気センサヘッド100からの直接磁場は、
大きさが同じで符号が逆なため、2つの検出巻線10
3,104の出力の差をとれば、余分な信号のみを除外
することができ、流速に対応した歪み量のみをS/N良
く検出することが可能となる。
An alternating current is supplied to the excitation winding 102 to create a magnetic field perpendicular to the target surface. At this time, FIG.
If the conductor 200 is stopped as shown in (a), since the magnetic sensor head 100 has a bilaterally symmetrical shape, the exciting magnetic fields are equal in magnitude and opposite in direction at the left and right detection winding positions. The difference between the outputs of the detection windings is “0”. Then, when the conductor moves, the magnetic field is distorted by the eddy current generated in the conductor corresponding to the flow velocity as shown in FIG. 2B, and a difference occurs in the vertical component of the magnetic flux at each detection winding position, The difference signal of each detection winding changes. This change amount corresponds to the flow velocity of the measurement target, and the flow velocity of the measurement target can be measured from this change amount. At this time, the distortion amount of the magnetic flux due to the velocity effect has the same sign in the detection windings on the downstream side and the upstream side of the flow, and the direct magnetic field from the magnetic sensor head 100 is
The two detection windings 10 have the same size but opposite signs.
By taking the difference between the outputs of 3 and 104, it is possible to exclude only the extra signal, and it is possible to detect only the distortion amount corresponding to the flow velocity with good S / N.

【0015】(b)距離検出原理 −dB/dtからなる渦電流により生じる誘導磁場は距
離によって変化するので、その誘導磁場を検出すること
により距離検出ができる。磁気センサヘッド100と測
定対象物200との距離lと検出巻線103の出力とは
図4(a)に示されるような特性となる。なお、ここで
は、励磁巻線102に供給する交流電流の周波数fは6
14Hzである。ところで、流速に対応した磁場歪み信
号は、Bv=K1×v×B(K1:比例定数)であるか
ら、周波数が高いと渦電流により測定対象物の中の磁場
が弱まるため、周波数が高いと弱まる。図5(a)は、
励磁電流の周波数fに対する速度信号(Vv ・f0
f)の大きさを示した特性図であり、速度信号は周波数
が高くなると急激に小さくなっていることが分かる。な
お、図5(a)において、Vv は検出巻線103と10
4の差電圧であり、f0 は基準周波数である。ここでは
基準周波数f0 を14Hzとして正規化している。
(B) Distance Detection Principle-The induced magnetic field generated by the eddy current composed of dB / dt changes depending on the distance. Therefore, the distance can be detected by detecting the induced magnetic field. The distance 1 between the magnetic sensor head 100 and the measurement object 200 and the output of the detection winding 103 have characteristics as shown in FIG. Here, the frequency f of the alternating current supplied to the excitation winding 102 is 6
It is 14 Hz. By the way, since the magnetic field distortion signal corresponding to the flow velocity is Bv = K1 × v × B (K1: proportional constant), if the frequency is high, the magnetic field in the measurement object is weakened by the eddy current, so that the frequency is high. Weaken. FIG. 5 (a)
Speed signal (V v · f 0 / for the frequency f of the exciting current)
It is a characteristic diagram showing the magnitude of f), and it can be seen that the velocity signal sharply decreases as the frequency increases. In FIG. 5A, V v is the detection windings 103 and 10
4 is the differential voltage, and f 0 is the reference frequency. Here, the reference frequency f 0 is normalized to 14 Hz.

【0016】また、渦電流による磁場は、Be=−K2
・dB/dt(K2:比例定数)で表わされ、周波数に
比例して増加する。図5(b)は励磁電流の周波数fに
対する距離信号(Ve ・f0 /f)の大きさを示した特
性図であり、距離信号は周波数に比例して大きくなって
いることが分かる。従って、励磁電流の周波数が高い
程、流速信号が小となり、距離信号が大となっており、
距離計としての性質が強くなり、距離のみを検出するこ
とができる。
The magnetic field due to the eddy current is Be = -K2
-It is expressed by dB / dt (K2: proportional constant) and increases in proportion to frequency. FIG. 5B is a characteristic diagram showing the magnitude of the distance signal (V e · f 0 / f) with respect to the frequency f of the exciting current, and it can be seen that the distance signal increases in proportion to the frequency. Therefore, the higher the excitation current frequency, the smaller the flow velocity signal and the greater the distance signal.
The property as a rangefinder becomes stronger, and only distance can be detected.

【0017】そして、本発明においては、流速信号及び
距離信号をそれぞれ次のように位相設定をして検出す
る。流速信号については、周波数が低ければ、励磁磁場
すなわち励磁電流と−90度ずれた位相の成分を検出す
るものとし(磁場信号としては0度であるがコイルで検
出しているので−90度ずれる。)、高い周波数ではそ
の測定対象物の中の励磁磁場位相が渦電流により変化す
るのでその都度調整する。そして、距離信号について
は、周波数が低ければ、励磁磁場すなわち励磁電流と0
度の位相の成分を検出し、高い周波数ではその測定対象
物の中の励磁磁場位相が渦電流により変化するのでその
都度調整する。
In the present invention, the flow velocity signal and the distance signal are detected by setting the phases as follows. Regarding the flow velocity signal, if the frequency is low, it is assumed that the magnetic field, that is, the component of the phase that is deviated by -90 degrees from the excitation current is detected (the magnetic field signal is 0 degrees, but is detected by the coil, so it is deviated by -90 degrees). ), At high frequencies, the excitation magnetic field phase in the object to be measured changes due to eddy currents, so adjustment is made each time. For the distance signal, if the frequency is low, the exciting magnetic field, that is, the exciting current and 0
The phase component of the degree is detected, and the exciting magnetic field phase in the object to be measured changes at a high frequency because the eddy current changes it.

【0018】(c)距離変化による感度変化の補正の原
理 磁気センサヘッド100と測定対象200との距離が変
わると、図4(b)に示されるように、流速に対する感
度が変化する。なお、図4(b)は流速1m/secに
対する感度を示している。従って、高い周波数の信号か
ら図4(a)の特性から距離を計算し(計算に際しては
左右の検出巻線の平均距離を算出するため、左右の検出
巻線の出力電圧の和を用いる。)、低い周波数の信号で
流速を検出し、高い周波数の信号で検出した距離信号を
図4(b)の校正曲線に適用して感度を補正すればよい
ことが分かる。
(C) Principle of Correction of Sensitivity Change Due to Distance Change When the distance between the magnetic sensor head 100 and the measurement object 200 changes, the sensitivity to the flow velocity changes as shown in FIG. 4 (b). Note that FIG. 4B shows the sensitivity to a flow velocity of 1 m / sec. Therefore, the distance is calculated from the characteristics of FIG. 4A from the high frequency signal (the sum of the output voltages of the left and right detection windings is used in order to calculate the average distance between the left and right detection windings). It can be seen that the flow velocity is detected with a low frequency signal and the distance signal detected with a high frequency signal is applied to the calibration curve of FIG. 4B to correct the sensitivity.

【0019】(d)波立ちによる信号変化を補正する原
理 測定対象面に波があると、2つの検出巻線は測定対象面
との距離に差がでる。このため、各検出巻線に生じる距
離に関係する渦電流磁場に差が出て、ノイズとなる。ま
た、周波数が高い程、渦電流が増すため、同じ波立ちで
も各検出巻線に生じる信号差は大きくなる。
(D) Principle of Correcting Signal Change Due to Rippling When there is a wave on the measurement target surface, the two detection windings have a difference in distance from the measurement target surface. Therefore, there is a difference in the eddy current magnetic field related to the distance generated in each detection winding, which causes noise. In addition, since the eddy current increases as the frequency increases, the signal difference generated in each detection winding increases even with the same wave.

【0020】図6(b)(c)は波立ちがあった場合の
出力例を示した特性図である。図6(b)に示されるよ
うに、低い周波数の場合には、速度信号が大で、波立ち
ノイズが小となっている。そして、図6(c)に示され
るように、高い周波数の場合には速度信号が小で、波立
ちノイスが大である。しかし、双方の波立ちのパターン
は同じである。なお、このときの位相は、低い周波数で
は流速信号が最大となる位相に設定し、高い周波数では
波立ちによる信号変化のパターンが低い周波数の信号と
一致する位相を選択している。このように波立ちのパタ
ーンが同じなので、2つの周波数の信号に適当な係数を
掛け、引き算すればノイズをキャンセルすることができ
る。
FIGS. 6 (b) and 6 (c) are characteristic diagrams showing an output example when there is a ripple. As shown in FIG. 6B, in the case of a low frequency, the velocity signal is large and the ripple noise is small. Then, as shown in FIG. 6C, in the case of a high frequency, the velocity signal is small and the ripple noise is large. However, the pattern of ripples on both sides is the same. The phase at this time is set to a phase in which the flow velocity signal becomes maximum at a low frequency, and at a high frequency, a phase in which a signal change pattern due to ripples matches a signal at a low frequency is selected. Since the wave pattern is the same as described above, noise can be canceled by multiplying signals of two frequencies by appropriate coefficients and subtracting the signals.

【0021】本発明の測定原理が明らかになったところ
で、次に、本発明の実施の形態の一例を説明する。図1
は本発明の実施の形態の一例に係る流速測定装置の構成
を示すブロック図である。この流速測定装置は、磁気セ
ンサヘッド100、励磁回路110、検出回路120、
波立ち補正回路125及び距離変動補正回路130から
構成される。励磁回路110は、低い周波数f1の信号
を発生する発振器111、高い周波数f2の信号を発生
する発振器112、発振器111の出力と発振器112
の出力とを加算する加算器113、及びその加算結果を
増幅してそれを磁気センサヘッド100の励磁巻線10
2に励磁電流として供給する電力増幅器114から構成
されている。検出回路120は、減算器115において
減算された磁気センサヘッド100の検出巻線103,
104の出力の差信号の内、周波数f1の成分を通過さ
せるバンドパスフィルタ121、及び、バンドパスフィ
ルタ121の出力を発振器111の周波数f1の信号に
て位相検波する位相検波器122から構成されている。
Now that the measurement principle of the present invention has been clarified, an example of an embodiment of the present invention will be described. FIG.
FIG. 1 is a block diagram showing a configuration of a flow velocity measuring device according to an example of an embodiment of the present invention. This flow velocity measuring device includes a magnetic sensor head 100, an excitation circuit 110, a detection circuit 120,
It is composed of a ripple correction circuit 125 and a distance variation correction circuit 130. The excitation circuit 110 includes an oscillator 111 that generates a signal of a low frequency f1, an oscillator 112 that generates a signal of a high frequency f2, an output of the oscillator 111 and an oscillator 112.
And an output of the exciting coil 10 of the magnetic sensor head 100 for amplifying the addition result.
2 is composed of a power amplifier 114 which supplies the exciting current to the second amplifier 2. The detection circuit 120 includes the detection winding 103 of the magnetic sensor head 100, which is subtracted by the subtractor 115,
Of the difference signal of the output of 104, a bandpass filter 121 that passes a component of frequency f1 and a phase detector 122 that phase-detects the output of the bandpass filter 121 with a signal of frequency f1 of an oscillator 111. There is.

【0022】波立ち補正回路125は、減算器115の
出力の内、周波数f2の成分を通過させるバンドパスフ
ィルタ126、バンドパスフィルタ126の出力を発振
器112の周波数f2の信号にて位相検波する位相検波
器127、位相検波器127の出力に所定の係数を掛け
て波立ち補正信号を出力する増幅器128、及び検出器
120の出力から増幅器128の出力(波立ち補正信
号)を引き算する減算器129から構成されている。ま
た、距離変動補正回路130は、加算器116において
加算された磁気センサヘッド100の検出巻線103,
104の出力の内、周波数f2の成分を通過させるバン
ドパスフィルタ131、バンドパスフィルタ131の出
力を発振器112の周波数f2の信号にて位相検波する
位相検波器132、波立ち補正回路125の出力及び位
相検波回器132の出力をそれぞれデジタル信号に変換
するA/D変換器133、並びA/D変換器133を介
して入力されてきた信号に所定の演算処理を施して測定
対象物の流速を求めるコンピュータ134から構成され
ている。
The crest correction circuit 125 phase-detects the output of the band-pass filter 126 and the output of the band-pass filter 126 of the output of the subtractor 115 with the frequency f2 component by the signal of the frequency f2 of the oscillator 112. And an amplifier 128 for multiplying the output of the phase detector 127 by a predetermined coefficient to output a ripple correction signal, and a subtracter 129 for subtracting the output of the amplifier 128 (ripple correction signal) from the output of the detector 120. ing. Further, the distance variation correction circuit 130 includes the detection windings 103 of the magnetic sensor head 100 added by the adder 116,
Of the output of 104, a bandpass filter 131 that passes a component of frequency f2, a phase detector 132 that phase-detects the output of the bandpass filter 131 with a signal of frequency f2 of the oscillator 112, and the output and phase of the ripple correction circuit 125. A / D converter 133 for converting the output of the wave detector 132 into a digital signal, and a predetermined arithmetic processing is applied to the signals input through the A / D converter 133 to obtain the flow velocity of the measurement object. It is composed of a computer 134.

【0023】図1の流速測定装置においては、励磁回路
110において、発振器111,112からの2つの周
波数f1,f2に係る信号が加算器113により重ね合
わされてそれが電力増幅器114を介して磁気センサヘ
ッド100の励磁巻線102に励磁電流として供給され
る。そして、検出回路120は2つの検出巻線103,
104の出力の差信号からバンドパスフイルタ121及
び位相検波器122を介して流速信号を求める。波立ち
補正回路125は、2つの検出巻線103,104の出
力の差信号からバンドパスフイルタ126及び位相検波
器127を介して得られた高周波差信号を増幅器128
により適当に係数倍した波立ち補正信号を求め、減算器
129により検出回路120により検出された流速信号
から波立ち補正信号を引き算して、波立ちの影響をキャ
ンセルする。距離変動補正回路130は、波立ち補正後
の流速信号と高周波和信号とをA/D変換器133によ
りA/D変換してコンピュータ134に取り込んで補正
演算をする。即ち、高周波和信号に図4(a)の特性を
適用して平均距離を算出し、波立ち補正後の流速信号に
図4(b)の特性を適用して距離による感度変化を補正
する。
In the flow velocity measuring apparatus of FIG. 1, in the excitation circuit 110, the signals related to the two frequencies f1 and f2 from the oscillators 111 and 112 are superposed by the adder 113, and the signals are passed through the power amplifier 114 to the magnetic sensor. It is supplied to the exciting winding 102 of the head 100 as an exciting current. Then, the detection circuit 120 has two detection windings 103,
From the difference signal of the output of 104, the flow velocity signal is obtained via the bandpass filter 121 and the phase detector 122. The ripple correction circuit 125 amplifies the high frequency difference signal obtained from the difference signal between the outputs of the two detection windings 103 and 104 via the band pass filter 126 and the phase detector 127 into the amplifier 128.
Thus, the ripple correction signal appropriately multiplied by the coefficient is obtained, and the ripple correction signal is subtracted from the flow velocity signal detected by the detection circuit 120 by the subtractor 129 to cancel the influence of the ripple. The distance variation correction circuit 130 A / D-converts the flow velocity signal and the high-frequency sum signal after the ripple correction by the A / D converter 133 and fetches them into the computer 134 to perform a correction calculation. That is, the characteristic of FIG. 4A is applied to the high frequency sum signal to calculate the average distance, and the characteristic of FIG. 4B is applied to the flow velocity signal after the ripple correction to correct the sensitivity change due to the distance.

【0024】図6は図1の測定装置において波立ちの影
響を排除した状態を図示したタイミングチャートであ
り、図の特性から波立ちの影響が排除されていることが
分かる。なお、図6において、(a)は実際の速度、
(b)は位相検波器122の出力、(c)は位相検波器
127の出力、(d)は減算器129の出力をそれぞれ
示している。
FIG. 6 is a timing chart showing a state in which the influence of ripples is eliminated in the measuring apparatus of FIG. 1, and it can be seen from the characteristics of the figure that the influence of ripples is eliminated. In FIG. 6, (a) is the actual speed,
(B) shows the output of the phase detector 122, (c) shows the output of the phase detector 127, and (d) shows the output of the subtractor 129, respectively.

【0025】図7は距離が変化した時の測定結果を示す
タイミングチャートである。距離補正により、流速信号
から距離による影響が排除されていることが分かる。
FIG. 7 is a timing chart showing the measurement results when the distance changes. It can be seen that the distance correction eliminates the influence of the distance from the flow velocity signal.

【0026】[0026]

【発明の効果】以上のように本発明によれば、2以上の
周波数信号を重ねた磁場を励磁し、それぞれの周波数成
分に対応した磁場成分を検出し、その検出された各磁場
成分の信号に基づいて、測定対象物の流速を測定するよ
うにしたので、異なった周波数信号に対応した磁場成分
信号が得られ、従って、距離が変化したり波立ちがあた
りしても補正することができ、精度良く流速を測定する
ことができる。
As described above, according to the present invention, a magnetic field in which two or more frequency signals are superposed is excited, the magnetic field components corresponding to the respective frequency components are detected, and the signals of the detected magnetic field components are detected. Based on the above, since the flow velocity of the measurement object is measured, magnetic field component signals corresponding to different frequency signals can be obtained, and therefore, even if the distance changes or a wave occurs, it can be corrected. The flow velocity can be measured accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例に係る流速測定装置
の回路構成を示すブロック図である。
FIG. 1 is a block diagram showing a circuit configuration of a flow velocity measuring device according to an example of an embodiment of the present invention.

【図2】本発明の磁気センサヘッドの構成を示した説明
図である。
FIG. 2 is an explanatory diagram showing a configuration of a magnetic sensor head of the present invention.

【図3】本発明の流速測定の原理を説明するための説明
図である。
FIG. 3 is an explanatory diagram for explaining the principle of flow velocity measurement according to the present invention.

【図4】磁気センサヘッドと測定対象物との距離と検出
巻線の出力電圧及び流速感度との関係を示した特性図
(校正図)である。
FIG. 4 is a characteristic diagram (calibration diagram) showing the relationship between the distance between the magnetic sensor head and the measurement object, the output voltage of the detection winding, and the flow velocity sensitivity.

【図5】周波数と速度信号及び距離信号との関係を示し
た特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a frequency, a speed signal, and a distance signal.

【図6】波立ちが有った場合の図1の測定装置における
動作波形を示したタイミングチャートである。
FIG. 6 is a timing chart showing operation waveforms in the measuring apparatus of FIG. 1 when there is a wave.

【図7】距離変動が有った場合の図1の測定装置におけ
る動作波形を示したタイミングチャートである。
7 is a timing chart showing operation waveforms in the measuring apparatus of FIG. 1 when there is a distance change.

【図8】連続鋳造を説明するための説明図である。FIG. 8 is an explanatory diagram for explaining continuous casting.

【図9】従来の接触式による高温液体金属の流速測定法
を説明するための説明図である。
FIG. 9 is an explanatory diagram for explaining a conventional contact-type high-temperature liquid metal flow velocity measuring method.

【図10】磁場の速度効果を説明するための説明図であ
る。
FIG. 10 is an explanatory diagram for explaining a velocity effect of a magnetic field.

【図11】従来の磁気による非接触式高温液体金属の流
速測定法を説明するための説明図である。
FIG. 11 is an explanatory view for explaining a conventional non-contact type high-temperature liquid metal flow velocity measuring method.

【図12】波立ちが有った場合の動作を説明した説明図
である。
FIG. 12 is an explanatory diagram illustrating an operation when there is a ripple.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 移動する導電性の測定対象物に対して、
2以上の周波数信号を重ねた磁場を励磁する工程とそれ
ぞれの周波数成分に対応した磁場成分を検出する工程
と、 その検出された各磁場成分の信号に基づいて、測定対象
物の流速を測定する工程とを有することを特徴とする流
速測定方法。
1. For a moving conductive object to be measured,
A step of exciting a magnetic field in which two or more frequency signals are superimposed, a step of detecting a magnetic field component corresponding to each frequency component, and a flow velocity of a measurement target is measured based on the detected signal of each magnetic field component. A method of measuring flow velocity, comprising:
【請求項2】 移動する導電性の測定対象物に対して、
低い周波数と高い周波数とからなる2つの周波数信号を
重ねた磁場を励磁する工程と、 それぞれの周波数成分に対応した磁場成分を検出する工
程と前記の低い周波数信号に対応した磁場成分の信号に
基づいて、測定対象物の流速を求める工程と、 前記の高い周波数信号に対応した磁場成分の信号に基づ
いて波立ち補正信号を求め、前記測定対象物の流速から
波立ち補正信号を減算して波立ち補正後の流速を求める
工程と、 前記の高い周波数信号に対応した磁場成分の信号に基づ
いて測定対象物に対する距離を求める工程と、 前記波立ち補正後の流速を前記距離により補正し、距離
による補正後の流速を求める工程とを有することを特徴
とする流速測定方法。
2. With respect to a moving conductive object to be measured,
A step of exciting a magnetic field in which two frequency signals composed of a low frequency and a high frequency are superposed, a step of detecting a magnetic field component corresponding to each frequency component, and a signal of the magnetic field component corresponding to the low frequency signal Then, the step of obtaining the flow velocity of the measurement object, and obtaining the ripple correction signal based on the signal of the magnetic field component corresponding to the high frequency signal, after the ripple correction signal is subtracted from the flow velocity of the measurement object The step of obtaining the flow velocity of, the step of obtaining the distance to the measurement object based on the signal of the magnetic field component corresponding to the high frequency signal, the flow velocity after the waviness correction is corrected by the distance, And a step of obtaining a flow velocity, the flow velocity measuring method.
【請求項3】 励磁装置及び1対の検出装置を有し、移
動する導電性の測定対象物に対して対向配置される磁気
センサヘッドと、 低い周波数と高い周波数とからなる2つの周波数信号を
重ねた励磁電流を前記励磁巻線に供給する励磁回路と、 前記1対の検出巻線の差信号の内、前記低い周波数信号
に対応した磁場成分の信号を抽出して流速を検出する検
出回路と、 前記1対の検出巻線の差信号の内、前記の高い周波数信
号に対応した磁場成分の信号を抽出して波立ち補正信号
を求め、前記検出回路の流速から波立ち補正信号を減算
して波立ち補正後の流速を求める波立ち補正回路と、 前記1対の検出巻線の和信号の内、前記の高い周波数信
号に対応した磁場成分の信号を抽出して測定対象物に対
する距離を求め、前記波立ち補正後の流速を前記距離に
より補正し、距離による補正後の流速を求める距離変動
補正回路とを有することを特徴とする流速測定装置。
3. A magnetic sensor head, which has an exciting device and a pair of detecting devices and is arranged to face a moving conductive object to be measured, and two frequency signals consisting of a low frequency and a high frequency. An exciting circuit for supplying an overlapping exciting current to the exciting winding, and a detecting circuit for detecting a flow velocity by extracting a signal of a magnetic field component corresponding to the low frequency signal from the difference signal of the pair of detecting windings. Of the difference signals of the pair of detection windings, the signal of the magnetic field component corresponding to the high frequency signal is extracted to obtain the ripple correction signal, and the ripple correction signal is subtracted from the flow velocity of the detection circuit. A wave correction circuit that obtains a flow velocity after wave correction, and a signal of a magnetic field component corresponding to the high frequency signal is extracted from the sum signal of the pair of detection windings to obtain a distance to a measurement object, and The flow velocity after waviness correction Corrected by serial distance, velocity measuring apparatus characterized by having a length variation correction circuit for obtaining a flow rate corrected by distance.
JP25768495A 1995-10-04 1995-10-04 Flow velocity measuring method and measuring apparatus therefor Pending JPH09101320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25768495A JPH09101320A (en) 1995-10-04 1995-10-04 Flow velocity measuring method and measuring apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25768495A JPH09101320A (en) 1995-10-04 1995-10-04 Flow velocity measuring method and measuring apparatus therefor

Publications (1)

Publication Number Publication Date
JPH09101320A true JPH09101320A (en) 1997-04-15

Family

ID=17309677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25768495A Pending JPH09101320A (en) 1995-10-04 1995-10-04 Flow velocity measuring method and measuring apparatus therefor

Country Status (1)

Country Link
JP (1) JPH09101320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445583B1 (en) * 2001-08-23 2004-08-25 재단법인 포항산업과학연구원 Non-contact-type apparatus for measuring the velocity of a moving molten metal, and measuring method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445583B1 (en) * 2001-08-23 2004-08-25 재단법인 포항산업과학연구원 Non-contact-type apparatus for measuring the velocity of a moving molten metal, and measuring method therefor

Similar Documents

Publication Publication Date Title
JPS6057217A (en) Vortex type mold molten metal level meter
JPS6012265A (en) Method for measuring thickness of solidified layer
RU2194952C1 (en) Gear measuring level of molten metal in electromagnetic process of continuous casting and method measuring level of molten metal
JPH09101320A (en) Flow velocity measuring method and measuring apparatus therefor
JP3307170B2 (en) Flow velocity measuring method and its measuring device, continuous casting method and its device
JPH08211085A (en) Flow velocity measuring device
JP3575264B2 (en) Flow velocity measuring method and device
JPH08211084A (en) Flow velocity measuring device
JP5782202B1 (en) Eddy current mold level measuring apparatus and mold level measuring method
JPH05281063A (en) Measuring device for tension of steel material
JPH08327647A (en) Current velocity measuring apparatus
JPH08211086A (en) Method and device for measuring flow velocity
JP3546288B2 (en) Flow velocity measuring method and device
JP2000146994A (en) Method and apparatus for measurement of flow velocity
JPH09101321A (en) Flow velocity measuring method and measuring apparatus therefor
JP2714437B2 (en) Method and apparatus for measuring meniscus flow velocity of molten metal
JPH10104038A (en) Method and apparatus for measurement of flow velocity
JPH08304008A (en) Method and apparatus for measurement of solidification thickness of cast piece
JPH08327649A (en) Method and apparatus for measuring current velocity
KR100299445B1 (en) Apparatus and method for measuring transformation amount of high temperature hot-rolled steel plate
JPH0933554A (en) Non-contact flow-velocity detector
JPH05297012A (en) Method and device for measuring of meniscus flow velocity of molten metal
WO2016017028A1 (en) Eddy current-type mold level measurement device and mold level measurement method
JPH0242416B2 (en)
JP4456682B2 (en) Non-contact flow velocity detection method and apparatus