JPH05297012A - Method and device for measuring of meniscus flow velocity of molten metal - Google Patents
Method and device for measuring of meniscus flow velocity of molten metalInfo
- Publication number
- JPH05297012A JPH05297012A JP9684392A JP9684392A JPH05297012A JP H05297012 A JPH05297012 A JP H05297012A JP 9684392 A JP9684392 A JP 9684392A JP 9684392 A JP9684392 A JP 9684392A JP H05297012 A JPH05297012 A JP H05297012A
- Authority
- JP
- Japan
- Prior art keywords
- flow velocity
- primary coil
- molten metal
- flow
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、自由表面を有する溶融
金属の自由表面直下の流速の測定に関し、特に該流速を
非接触で連続測定する方法および装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to measurement of a flow velocity of a molten metal having a free surface just below the free surface, and more particularly to a method and an apparatus for continuously measuring the flow velocity in a non-contact manner.
【0002】[0002]
【従来技術】溶融金属の精錬や鋳造を行う際に、製品品
質や反応効率の観点から溶融金属の流動は重要な制御対
象因子となる。特に、精錬フラックスや保温材等との接
触界面である自由表面の流速は重要であり、この流速を
適正に制御することにより良好な精錬や鋳造等が行え
る。2. Description of the Related Art When refining or casting molten metal, the flow of molten metal is an important control target factor from the viewpoint of product quality and reaction efficiency. Particularly, the flow velocity of the free surface, which is the contact interface with the refining flux and the heat insulating material, is important, and proper refining and casting can be performed by properly controlling this flow velocity.
【0003】一般に溶融金属は高温であり、通常のピト
ー管等の流速センサを用いての流速計測は、凝固による
管の詰まり等の諸問題が生じ不可能である。In general, molten metal is at a high temperature, and flow velocity measurement using a normal flow velocity sensor such as a Pitot pipe cannot cause various problems such as clogging of the pipe due to solidification.
【0004】このため、例えば「鉄と鋼’82−S92
0」や特開昭59−104512号公報等に見られるよ
うに、自由表面を通して溶融金属中にロッドを浸漬し、
該ロッドが受ける動圧をロッドの支持アームに設置され
た歪ゲージにより検出する流速計測方法が提案されてい
る。しかしながらこの方法は、ロッドを直接溶融金属に
浸漬する必要があるために、金属の凝固付着や溶損等に
よるロッドの変形が避けられない。For this reason, for example, "Iron and Steel '82 -S92.
0 "and JP-A-59-104512, the rod is immersed in the molten metal through the free surface,
A flow velocity measuring method has been proposed in which the dynamic pressure received by the rod is detected by a strain gauge installed on a support arm of the rod. However, in this method, since the rod needs to be directly immersed in the molten metal, deformation of the rod due to solidification adhesion of the metal, melting loss, etc. is unavoidable.
【0005】非接触の流速センサーとしては特願平1−
134329号に見られる様に、メニスカス直上に流れ
方向と平行に1次コイル、その両側に2次コイルを配置
し、各2次コイルに生じた起電力差からメニスカス流速
を検出する溶接金属のメニスカス流速測定法が本願発明
者等の一部によって先に提案されている。As a non-contact flow velocity sensor, Japanese Patent Application No. 1-
As seen in No. 134329, a meniscus of a weld metal, in which a primary coil is arranged directly above the meniscus in parallel with the flow direction and secondary coils are arranged on both sides of the primary coil, and the meniscus flow velocity is detected from the electromotive force difference generated in each secondary coil. A velocity measurement method has been previously proposed by some of the inventors of the present application.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、この起
電力差方法では流速に対し生じる起電力差が小さいとい
う問題があった。このため、センサーとメニスカス面と
の面間距離を短くする必要があり、センサーと湯面との
距離確保が難しい。また、上記欠点を解消する為のコイ
ル巻き数の増加は、センサーのコンパクト化という点で
難しい。However, this electromotive force difference method has a problem that the electromotive force difference with respect to the flow velocity is small. For this reason, it is necessary to shorten the surface distance between the sensor and the meniscus surface, and it is difficult to secure the distance between the sensor and the molten metal surface. Further, it is difficult to increase the number of coil windings in order to eliminate the above-mentioned drawbacks in terms of downsizing the sensor.
【0007】本発明は自由表面直下に流れを有する溶融
金属において、メニスカス部の流速をさらに精度良く計
測可能な測定方法、および、精度良く計測可能なコンパ
クトな測定装置を提供することを目的とする。An object of the present invention is to provide a measuring method capable of measuring the flow velocity of the meniscus portion more accurately in a molten metal having a flow just below the free surface, and a compact measuring device capable of measuring it with high precision. ..
【0008】[0008]
【課題を解決するための手段】上記目的を達成するた
め、本発明の測定方法では、自由表面直下に流れを有す
るメニスカス直上にその流れ方向と垂直に1次コイル、
流れ方向と垂直に2次コイルを該1次コイルをはさんで
両側に配置し、1次コイルに交流電流を印加して磁力線
を形成し、自由表面直下の流れによる磁力線の歪みによ
って現われ流速に対応する、2次コイル間の起電力の位
相差、から該流速を検出する。In order to achieve the above object, according to the measuring method of the present invention, a primary coil is provided immediately above a meniscus having a flow just below a free surface and perpendicular to the flow direction,
Secondary coils are arranged on both sides of the primary coil perpendicularly to the flow direction, alternating current is applied to the primary coil to form lines of magnetic force, which appear due to the distortion of the lines of magnetic force due to the flow just below the free surface, resulting in a flow velocity. The flow velocity is detected from the corresponding phase difference of the electromotive force between the secondary coils.
【0009】また、このような検出を行う本発明の装置
は、1次コイル(1);該1次コイル(1)の両側に備わる第
1および第2の2次コイル(2a,2b);前記1次コイル(1)
に接続された交流電源(7);および、前記第1の2次コ
イル(2a)の起電力(Ea)と、前記第2の2次コイル(2b)の
起電力(Eb)との位相差(Δφ)を、溶融金属の流速(v)を
表わす電気信号に変換する手段(18);を備える。なおカ
ッコ内の記号は、図面を参照して後述する実施例の対応
要素又は対応事項に付したものである。The apparatus of the present invention for performing such detection is a primary coil (1); first and second secondary coils (2a, 2b) provided on both sides of the primary coil (1); The primary coil (1)
An AC power supply (7) connected to the; and a phase difference between the electromotive force (Ea) of the first secondary coil (2a) and the electromotive force (Eb) of the second secondary coil (2b). A means (18) for converting (Δφ) into an electric signal representing the flow velocity (v) of the molten metal. The symbols in parentheses are used for corresponding elements or corresponding matters in the embodiments described later with reference to the drawings.
【0010】[0010]
【作用】本発明による溶融金属のメニスカス流速測定の
原理を図面に基づいて説明する。図1および図2を参照
されたい。これらの図面において、1は1次コイル、2
aおよび2bは2次コイル、3は溶融金属表面、4は磁
力線、5,6aおよび6bは鉄心を示す。2次コイル2
aおよび2bは巻数が等しく、流れ方向と垂直に1次コ
イル1をはさんで両側に配置されている。鉄心5,6
a,6bはコイル1,2a,2b内に存在する磁力の透
磁率を増加させる作用を持つ。The principle of measuring the meniscus flow velocity of molten metal according to the present invention will be described with reference to the drawings. Please refer to FIG. 1 and FIG. In these drawings, 1 is a primary coil, 2
Reference numerals a and 2b denote secondary coils, 3 a molten metal surface, 4 magnetic lines of force, and 5a and 6b iron cores. Secondary coil 2
a and 2b have the same number of turns, and are arranged on both sides of the primary coil 1 with the primary coil 1 perpendicular to the flow direction. Iron core 5,6
The a and 6b have the function of increasing the permeability of the magnetic force existing in the coils 1, 2a and 2b.
【0011】このような構成では、溶融金属自由表面3
の直下に溶融金属の流れが無い場合には、1次コイル1
に交流電流を流すと、図1に示すように左右対称な磁力
線4が誘導され、2次コイル2aに誘起される起電力E
aと2次コイル2bに誘起される起電力Ebとは等し
く、1次コイル1に印加される電圧に対する、2次コイ
ル2aおよび2bに誘起される起電力EaおよびEbそ
れぞれの位相差φaおよびφbは等しい。すなわち、2
次コイル2aおよび2bに誘起される起電力Eaおよび
Ebの位相差Δφ=φb−φaは零である。In such a structure, the molten metal free surface 3
If there is no flow of molten metal directly below the
When an alternating current is applied to the electromotive force E, an electromotive force E induced in the secondary coil 2a is induced by the symmetrical magnetic field lines 4 as shown in FIG.
a is equal to the electromotive force Eb induced in the secondary coil 2b, and the phase difference φa and φb of the electromotive forces Ea and Eb induced in the secondary coils 2a and 2b with respect to the voltage applied to the primary coil 1 are equal. Are equal. Ie 2
The phase difference Δφ = φb−φa between the electromotive forces Ea and Eb induced in the next coils 2a and 2b is zero.
【0012】しかし、溶融金属自由表面3の直下に溶融
金属の流れがあると、1次コイル1を流れる交流電流に
より誘導された磁界中を溶融金属が動くために、溶融金
属に誘導電流が生じ、この誘導電流によってもたらされ
る磁界により、図2に示すように、溶融金属3と磁心
5,6a,6bの間の磁力線は、溶融金属の流れの下流
側へ歪む。このため、上流側に配置された2次コイル2
aに誘起される起電力Eaと下流側に配置された2次コ
イル2bに誘起される起電力Ebにレベル差を生じると
共に、図6に示すように、1次コイル1の電圧Epの変
化に対する2次コイル2aの起電力Eaの変化と、2次
コイル2bの起電力Ebの変化に位相差Δφ=φb−φ
aを生じる。However, if there is a flow of the molten metal directly below the free surface 3 of the molten metal, the molten metal moves in the magnetic field induced by the alternating current flowing through the primary coil 1, so that an induced current is generated in the molten metal. As shown in FIG. 2, the magnetic field produced by the induced current causes the magnetic lines of force between the molten metal 3 and the magnetic cores 5, 6a, 6b to be distorted to the downstream side of the molten metal flow. Therefore, the secondary coil 2 arranged on the upstream side
A level difference occurs between the electromotive force Ea induced in a and the electromotive force Eb induced in the secondary coil 2b arranged on the downstream side, and as shown in FIG. A phase difference Δφ = φb−φ between a change in the electromotive force Ea of the secondary coil 2a and a change in the electromotive force Eb of the secondary coil 2b.
yields a.
【0013】そこで、流速が既知でかつ2次コイル2a
および2bと自由表面との距離が一定の溶融金属に関し
て、2次コイル2aに誘起される起電力Eaと2次コイ
ル2bに誘起される起電力Ebとの位相差Δφ=φb−
φaを測定したところ、図3に示すようなグラフが得ら
れた。これに示される様に、溶融金属のメニスカス流速
vと各2次コイル2a,2bの起電力Ea,Ebの位相
(例えば1次コイル1の印加電圧に対する位相差φa,
φb)とは一義的な対応関係にある。つまり、予め、こ
の種のグラフを用意しておけば、あるいは、この種の関
係で位相(φa,φb)を溶融金属流速vに変換する信
号変換器を用意しておけば、各2次コイル2a,2bの
起電力Ea,Ebの位相(φa,φb)を検出すること
により、溶融金属自由表面下の流速vを非接触で計測で
きる。特に、この場合は、図3のグラフで示されるよう
に両者がほぼ比例関係にあるので、測定処理例えば位相
(φa,φb)から流速vへの変換が一層簡略化し、精
度も高い。Therefore, the flow velocity is known and the secondary coil 2a
And a molten metal having a constant distance between 2b and the free surface, a phase difference Δφ = φb− between the electromotive force Ea induced in the secondary coil 2a and the electromotive force Eb induced in the secondary coil 2b.
When φa was measured, a graph as shown in FIG. 3 was obtained. As shown in this figure, the meniscus flow velocity v of the molten metal and the phases of the electromotive forces Ea and Eb of the respective secondary coils 2a and 2b (for example, the phase difference φa with respect to the applied voltage of the primary coil 1;
φb) has a unique correspondence. That is, if a graph of this kind is prepared in advance, or a signal converter for converting the phase (φa, φb) into the molten metal flow velocity v is prepared in this kind of relation, each secondary coil By detecting the phases (φa, φb) of the electromotive forces Ea and Eb of 2a and 2b, the flow velocity v below the free surface of the molten metal can be measured without contact. Particularly, in this case, as shown in the graph of FIG. 3, the two are in a substantially proportional relationship, so that the measurement process, for example, the conversion from the phase (φa, φb) to the flow velocity v is further simplified and the accuracy is high.
【0014】[0014]
実施例1 図4に、本発明の溶融金属の流速測定装置の第1実施例
を示した。この装置は、1次コイル1、2次コイル2
a,2b、および、これらのコイルを巻回した鉄心5,
2a,2bを図1に示すように組合せた流速測定端1
2、交流電源7、および、流速検出回路18でなる。流
速検出回路18はこの第1実施例では、位相角検出器8
a,8b、ゼロクロス検出器17、および、流速演算器
9よりなる。なお、1次コイル1,2次コイル2aおよ
び2bは同軸に巻回されており、2次コイル2aと2b
は巻数が等しく、2次コイル2aは溶融金属の流れに対
して1次コイル1の上流側に、2次コイル2bは下流側
に、それぞれ流れ方向に垂直に配置される。Example 1 FIG. 4 shows a first example of the molten metal flow velocity measuring apparatus of the present invention. This device has a primary coil 1, a secondary coil 2
a, 2b, and an iron core 5 around which these coils are wound,
Flow velocity measuring end 1 in which 2a and 2b are combined as shown in FIG.
2, AC power supply 7, and flow velocity detection circuit 18. In the first embodiment, the flow velocity detection circuit 18 is the phase angle detector 8
a, 8b, a zero-cross detector 17, and a flow velocity calculator 9. The primary coil 1, the secondary coils 2a and 2b are coaxially wound, and the secondary coils 2a and 2b are
Have the same number of turns, the secondary coil 2a is arranged on the upstream side of the primary coil 1 with respect to the flow of the molten metal, and the secondary coil 2b is arranged on the downstream side thereof in a direction perpendicular to the flow direction.
【0015】交流電源7は1次コイル1に接続されてお
り、そこに数アンペア程度の交流電流を流して磁界4
(図1)を生じさせる。流速検出回路18のゼロクロス
検出器17は、1次コイル1に印加される電圧のゼロク
ロス点でゼロクロスパルスPzp(図6)を発生し、こ
れを位相角検出器8a,8bおよび9に与える。The AC power supply 7 is connected to the primary coil 1, and an AC current of about several amperes is passed through the AC power supply 7 to generate a magnetic field 4.
(Fig. 1). The zero cross detector 17 of the flow velocity detection circuit 18 generates a zero cross pulse Pzp (FIG. 6) at the zero cross point of the voltage applied to the primary coil 1, and supplies it to the phase angle detectors 8a, 8b and 9.
【0016】位相角検出器8a,8bはそれぞれ、コイ
ル2a,2bの誘起電圧Ea,Ebのノイズを除去する
フィルタ回路,誘起電圧Ea,Ebを増幅する増幅器,
増幅された誘起電圧のゼロクロス点でゼロクロスパルス
Pza,Pzb(図6)を発生するゼロクロスパルス発
生器,1次コイル印加電圧のゼロクロス点で発生するゼ
ロクロスパルスPzpが到来すると計時を開始するカウ
ンタ、および、誘起電圧Ea,Ebのゼロクロス点で発
生するゼロクロスパルスPza,Pzbに応答してカウ
ンタの計時値(φa,φb)をラッチする出力ラッチを
含み、これらの出力ラッチを介して、計時値(φa,φ
b)を流速演算器9に与える。The phase angle detectors 8a and 8b are respectively a filter circuit for removing noise of the induced voltages Ea and Eb of the coils 2a and 2b, an amplifier for amplifying the induced voltages Ea and Eb,
A zero-cross pulse generator that generates zero-cross pulses Pza and Pzb (FIG. 6) at the zero-cross point of the amplified induced voltage, a counter that starts timing when the zero-cross pulse Pzp that occurs at the zero-cross point of the primary coil applied voltage arrives, and , And an output latch that latches the clock value (φa, φb) of the counter in response to the zero-cross pulses Pza and Pzb generated at the zero-cross points of the induced voltages Ea and Eb, and the clock value (φa , Φ
b) is given to the flow velocity calculator 9.
【0017】流速演算器9は、1次コイル印加電圧のゼ
ロクロス点で発生するゼロクロスパルスPzpに応答し
て計時値(φa,φb)を取込む入力ラッチ,入力ラッ
チのデ−タより、2次コイル2aの誘起電圧Eaと2次
コイル2bの誘起電圧Ebとの位相差Δφ=φb−φa
を演算し、これを図3に示す関係で溶融金属の流速vを
示す電気信号に変換する位相差/流速変換器、および、
流速vを示す電気信号をラッチする出力ラッチを含み、
この出力ラッチを介して流速信号(v)を出力する。The flow velocity calculator 9 is an input latch that takes in the measured values (φa, φb) in response to a zero-cross pulse Pzp generated at the zero-cross point of the voltage applied to the primary coil. Phase difference between induced voltage Ea of coil 2a and induced voltage Eb of secondary coil 2b Δφ = φb−φa
And a phase difference / flow velocity converter for converting this into an electric signal indicating the flow velocity v of the molten metal in the relationship shown in FIG.
An output latch for latching an electrical signal indicative of the flow velocity v,
The flow velocity signal (v) is output via this output latch.
【0018】このような流速測定装置は、例えば、溶鋼
の連続鋳造モールド内におけるメニスカス流速の測定に
利用される。図5を参照して一例を説明する。これにお
いて、10はタンディッシュ、11は浸漬ノズル、12
は流速測定端(1〜6:詳細は図1)、13はメニスカ
ス流(上昇して溶融金属面と略平行に流れる反転流)、
14はモールド、15は鋳片内の凝固シェル、16は厚
さが約50mmのパウダー層、をそれぞれ示している。Such a flow velocity measuring device is used, for example, to measure the meniscus flow velocity in a continuous casting mold of molten steel. An example will be described with reference to FIG. In this, 10 is a tundish, 11 is a dipping nozzle, 12
Is a flow velocity measuring end (1 to 6: details in FIG. 1), 13 is a meniscus flow (reverse flow that rises and flows substantially parallel to the molten metal surface),
Reference numeral 14 is a mold, 15 is a solidified shell in a slab, and 16 is a powder layer having a thickness of about 50 mm.
【0019】流速測定端12は、コイル1,2a,2b
の軸を浸漬ノズル11から水冷モールド14内に供給さ
れた溶鋼の反転流13の流れる方向と垂直にして、2次
コイル2aが該流れの上流に、2次コイル2bが下流に
なる(図2の態様)ように、タンディシュ10の底部に
吊設してある(他の態様では、メニスカス直上に配置し
ても良い。) これにおいて、タンディッシュ10の容量を60tonと
し、温度1550℃の低炭アルミキルド鋼を、吐出口径70m
m、吐出角度45°の逆Y型浸漬ノズル10を介して、水
冷銅モールド14に注入し、引抜速度1.8/minに
て、厚さ250mm×幅1400mmのサイズの鋳片を連続し
て鋳造した。この間、流速測定端12の1次コイル1
に、5A,2kHzの交流電流を流して磁場を形成させ
つつ、メニスカスからの流速測定端12の高さを種々変
化させた。The flow velocity measuring end 12 includes coils 1, 2a and 2b.
The axis of is perpendicular to the flow direction of the reverse flow 13 of molten steel supplied from the immersion nozzle 11 into the water-cooled mold 14, and the secondary coil 2a is upstream of the flow and the secondary coil 2b is downstream (FIG. 2). As described above), the tundish 10 is hung at the bottom (in other embodiments, it may be arranged directly above the meniscus.) In this, the capacity of the tundish 10 is set to 60 tons, and the temperature of the low coal of 1550 ° C. Aluminum killed steel, discharge port diameter 70m
m, through a reverse Y-type dipping nozzle 10 with a discharge angle of 45 °, was poured into a water-cooled copper mold 14 and continuously cast a slab of 250 mm in thickness and 1400 mm in width at a drawing speed of 1.8 / min. .. During this time, the primary coil 1 of the flow velocity measuring end 12
Further, the height of the flow velocity measuring end 12 from the meniscus was changed variously while an alternating current of 5 A and 2 kHz was applied to form a magnetic field.
【0020】一方、比較例では、本願発明者の一部が先
に提案した特願平1−134329に示される、メニス
カス直上に流れ方向と平行に1次コイル、その両側に2
次コイルを配置し、各2次コイルに生じた起電力差から
メニスカス流速を検出する方法にて、上述と同一鋳造条
件及び同一交流電流を流して磁場を形成させつつ、メニ
スカスからの高さを種々変化させ、安定して流速測定が
可能な上限の面間距離を求めた。この結果を表1に示
す。この表1には、流速測定に用いた装置の1次コイル
及び2次コイルのコイル巻き数を併せて示す。On the other hand, in the comparative example, a part of the inventor of the present application has previously proposed Japanese Patent Application No. 1-134329, in which a primary coil is provided directly above the meniscus in parallel with the flow direction and two coils are provided on both sides of the primary coil.
By arranging the secondary coils and detecting the meniscus flow velocity from the electromotive force difference generated in each secondary coil, the height from the meniscus is increased while forming the magnetic field by applying the same casting conditions and the same alternating current as above. Various changes were made to obtain the upper limit interfacial distance that enables stable flow velocity measurement. The results are shown in Table 1. Table 1 also shows the number of coil turns of the primary coil and the secondary coil of the apparatus used for measuring the flow velocity.
【0021】[0021]
【表1】 [Table 1]
【0022】表1に示すように本発明によれば、面間距
離が400mmまで安定して流速測定が可能であり、かつ
コイル巻数が大巾に低減できるので、装置のコンパクト
化が可能である。As shown in Table 1, according to the present invention, the flow velocity can be stably measured up to the face-to-face distance of 400 mm, and the number of coil turns can be greatly reduced, so that the apparatus can be made compact. ..
【0023】実施例2 図7に、本発明の溶融金属の流速測定装置の第2実施例
を示す。この装置の流速測定端12の構成は、上述の第
1実施例と同様であり図1に示すものである。この第2
実施例では、流速検出回路18の構成が上述の第1実施
例のものと少々異なっており、図7に示す流速検出回路
18は、ゼロクロス検出器8az,8bzおよび流速演
算器9cpを含む。Second Embodiment FIG. 7 shows a second embodiment of the molten metal flow velocity measuring device of the present invention. The structure of the flow velocity measuring end 12 of this device is the same as that of the above-mentioned first embodiment and is shown in FIG. This second
In the embodiment, the structure of the flow velocity detection circuit 18 is slightly different from that of the first embodiment described above, and the flow velocity detection circuit 18 shown in FIG. 7 includes zero cross detectors 8az and 8bz and a flow velocity calculator 9cp.
【0024】ゼロクロス検出器8azおよび8bzはそ
れぞれ、コイル2a,2bの誘起電圧Ea,Ebのノイ
ズを除去するフィルタ回路,誘起電圧Ea,Ebを増幅
する増幅器,増幅された誘起電圧のゼロクロス点でゼロ
クロスパルスPza,Pzb(図6)を発生するゼロク
ロスパルス発生器を含み、それぞれゼロクロスパルスP
zaおよびPzbを流速演算器9cpに与える。The zero-cross detectors 8az and 8bz respectively include a filter circuit for removing noise in the induced voltages Ea and Eb of the coils 2a and 2b, an amplifier for amplifying the induced voltages Ea and Eb, and a zero-cross point at the zero-cross point of the amplified induced voltages. It includes a zero-cross pulse generator for generating pulses Pza and Pzb (FIG. 6), each of which is a zero-cross pulse P.
Za and Pzb are given to the flow velocity calculator 9cp.
【0025】流速演算器9cpは、ゼロクロスパルスP
zaに応答して計時を開始するカウンタおよびゼロクロ
スパルスPzbに応答してカウンタの計時値(Δφ=φ
b−φa)をラッチする内部ラッチ、内部ラッチが保持
する計時値(Δφ=φb−φa)を図3に示す関係で溶
融金属の流速vを示す電気信号に変換する位相差/流速
変換器、および、流速vを示す電気信号をラッチする出
力ラッチを含み、この出力ラッチを介して流速信号
(v)を出力する。The flow velocity calculator 9cp has a zero-cross pulse P
The counter that starts clocking in response to za and the clocked value of the counter in response to zero-cross pulse Pzb (Δφ = φ
b-φa), an internal latch for latching, and a phase difference / flow velocity converter for converting the time value (Δφ = φb-φa) held by the internal latch into an electric signal indicating the flow velocity v of the molten metal in the relationship shown in FIG. And an output latch that latches an electric signal indicating the flow velocity v, and outputs the flow velocity signal (v) via this output latch.
【0026】[0026]
【発明の効果】以上説明したとおり、本発明においては
電磁気的作用を利用した非接触による流速測定が行われ
る為、測定装置への金属の付着、あるいは装置の溶損と
いう不具合が防止され、長時間の安定した連続測定が可
能になり、例えば、連続鋳造等においては流速信号
(v)に基づいてモ−ルド(14)へのタンディッシュ
(10)からの溶鋼供給速度を制御して非金属介在物の
少ない良好な鋳片の製造が可能となる。また、本発明に
基づく装置は、非接触であるために流速測定端(12)
がコンパクトになり、設備費が安価であり、かつ、メン
テナンスも容易で長寿命である。As described above, in the present invention, since the non-contact flow velocity measurement utilizing the electromagnetic effect is performed, the problem of metal adhesion to the measuring device or melting damage of the device can be prevented, It becomes possible to perform continuous measurement with stable time. For example, in continuous casting or the like, the molten steel supply rate from the tundish (10) to the mold (14) is controlled based on the flow velocity signal (v) to control non-metal. It is possible to manufacture a good slab with few inclusions. In addition, the device according to the present invention is non-contact, so that the flow velocity measuring end (12) is
Is compact, the equipment cost is low, the maintenance is easy, and the service life is long.
【図1】 本発明の一実施例で採用する流速測定端12
の外観を示す正面図であり、流速測定端12直下の溶融
金属が静止している場合を示す。FIG. 1 is a flow velocity measuring end 12 used in an embodiment of the present invention.
3 is a front view showing the external appearance of the above, showing a case where the molten metal immediately below the flow velocity measuring end 12 is stationary.
【図2】 本発明の一実施例で採用する流速測定端12
の外観を示す正面図であり、流速測定端12直下の溶融
金属が流れている場合を示す。FIG. 2 is a flow velocity measuring end 12 used in an embodiment of the present invention.
FIG. 4 is a front view showing the appearance of the above, showing the case where the molten metal immediately below the flow velocity measuring end 12 is flowing.
【図3】 図2に示す溶融金属3の流速と、2次コイル
2a,2bに誘起される誘起電圧の位相差との関係を示
したグラフである。FIG. 3 is a graph showing the relationship between the flow velocity of the molten metal 3 shown in FIG. 2 and the phase difference of the induced voltages induced in the secondary coils 2a and 2b.
【図4】 本発明装置の第1実施例を示すブロック図で
ある。FIG. 4 is a block diagram showing a first embodiment of the device of the present invention.
【図5】 図4に示した第1実施例を組付けた連続鋳造
モ−ルド部の縦断面図である。5 is a longitudinal sectional view of a continuous casting mold part assembled with the first embodiment shown in FIG.
【図6】 図2に示す1次コイル1の印加電圧Epおよ
び2次コイル2a,2bの誘起電圧Ea,Ebの変化を
示すタイムチャ−トである。6 is a time chart showing changes in applied voltage Ep of primary coil 1 and induced voltages Ea and Eb of secondary coils 2a and 2b shown in FIG.
【図7】 本発明装置の第2実施例を示すブロック図で
ある。 1:1次コイル(1次コイル) 2a,2b:2次コイル(第1,第2の2次コイル) 3:溶融金属自由表面 4:磁力線 5:鉄心 6a,6b:鉄心 7:交流電源(交流電源) 8a,8b:位相角
検出器 9,9cp:流速演算器 10:タンディッシ
ュ 11:浸漬ノズル 12:流速測定端 13:メニスカス流れ 14:モールド 15:シェル 16:パウダー 17:ゼロクロス検出器 18:流速検出回路
(変換する手段)FIG. 7 is a block diagram showing a second embodiment of the device of the present invention. 1: Primary coil (primary coil) 2a, 2b: Secondary coil (first and second secondary coils) 3: Molten metal free surface 4: Magnetic field lines 5: Iron core 6a, 6b: Iron core 7: AC power supply ( AC power supply) 8a, 8b: Phase angle detector 9, 9cp: Flow velocity calculator 10: Tundish 11: Immersion nozzle 12: Flow velocity measuring end 13: Meniscus flow 14: Mold 15: Shell 16: Powder 17: Zero cross detector 18 : Flow velocity detection circuit (means for conversion)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺 地 伸 東海市東海町5−3 新日本製鐵株式会社 名古屋製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shin Shin Tera 5-3 Tokai-cho, Tokai City Nippon Steel Corporation Nagoya Steel Works
Claims (2)
上に、その流れ方向と垂直に1次コイル、流れ方向と垂
直に2次コイルを該1次コイルをはさんで両側に配置
し、1次コイルに交流電流を印加して磁力線を形成し、
自由表面直下の流れによる磁力線の歪により各2次コイ
ルに生じた起電力の位相差からメニスカス流速を検出す
る、溶融金属のメニスカス流速測定方法。1. A primary coil is disposed directly above a meniscus having a flow directly below a free surface, and a secondary coil is disposed perpendicularly to the flow direction, and secondary coils are disposed on both sides of the primary coil so as to sandwich the primary coil. Applying an alternating current to the coil to form lines of magnetic force,
A method for measuring the meniscus flow velocity of molten metal, which detects the meniscus flow velocity from the phase difference of the electromotive force generated in each secondary coil due to the distortion of magnetic field lines due to the flow just below the free surface.
第1および第2の2次コイル;前記1次コイルに接続さ
れた交流電源;および、 前記第1の2次コイルの起電力と、前記第2の2次コイ
ルの起電力との位相差を、溶融金属の流速を表わす電気
信号に変換する手段;を備える、溶融金属のメニスカス
流速測定装置。2. A primary coil; first and second secondary coils provided on both sides of the primary coil; an AC power source connected to the primary coil; and an electromotive force of the first secondary coil. And a means for converting the phase difference between the electromotive force of the second secondary coil and an electric signal representing the flow velocity of the molten metal;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9684392A JPH05297012A (en) | 1992-04-16 | 1992-04-16 | Method and device for measuring of meniscus flow velocity of molten metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9684392A JPH05297012A (en) | 1992-04-16 | 1992-04-16 | Method and device for measuring of meniscus flow velocity of molten metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05297012A true JPH05297012A (en) | 1993-11-12 |
Family
ID=14175798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9684392A Withdrawn JPH05297012A (en) | 1992-04-16 | 1992-04-16 | Method and device for measuring of meniscus flow velocity of molten metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05297012A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007098400A (en) * | 2005-09-30 | 2007-04-19 | Nippon Steel Corp | Continuous casting apparatus and method for measuring flowing rate |
KR101388773B1 (en) * | 2010-01-14 | 2014-04-23 | 도요타 지도샤(주) | Eddy current measuring sensor and inspection method using this eddy current measuring sensor |
-
1992
- 1992-04-16 JP JP9684392A patent/JPH05297012A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007098400A (en) * | 2005-09-30 | 2007-04-19 | Nippon Steel Corp | Continuous casting apparatus and method for measuring flowing rate |
JP4700466B2 (en) * | 2005-09-30 | 2011-06-15 | 新日本製鐵株式会社 | Continuous casting apparatus and flow velocity measuring method |
KR101388773B1 (en) * | 2010-01-14 | 2014-04-23 | 도요타 지도샤(주) | Eddy current measuring sensor and inspection method using this eddy current measuring sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ZA858227B (en) | Method and apparatus for detecting slag in a flowing molten metal | |
GB2142729A (en) | Method and apparatus for non-contact measurement of solidified shell of a metal casting having unsolidifed inner part | |
US4173299A (en) | Electromagnetic valve with slag indicator | |
JP3602096B2 (en) | Apparatus and method for measuring molten metal level in electromagnetic continuous casting | |
JPH05297012A (en) | Method and device for measuring of meniscus flow velocity of molten metal | |
JP2714437B2 (en) | Method and apparatus for measuring meniscus flow velocity of molten metal | |
JP2810511B2 (en) | Method and apparatus for measuring meniscus flow velocity of molten metal | |
JP2007152424A (en) | Method and device for detecting in-mold molten steel level in continuous casting apparatus | |
JPH08211084A (en) | Flow velocity measuring device | |
JP3233804B2 (en) | Eddy current anemometer | |
JPH05223653A (en) | Apparatus for measuring temperature of steel | |
JPS60133955A (en) | Method for electromagnetic stirring in continuous casting | |
JPH08327647A (en) | Current velocity measuring apparatus | |
JP3088917B2 (en) | Continuous casting method of molten metal | |
JPH09206906A (en) | Detection of unsteady bulging in continuous casting | |
JP3779809B2 (en) | Method and apparatus for continuous casting of molten metal | |
JP2916830B2 (en) | Flow control method of molten metal in continuous casting | |
JPH07276018A (en) | Method for detecting fluid condition of molten steel in nozzle | |
JP3546288B2 (en) | Flow velocity measuring method and device | |
JPH11304566A (en) | Method and device for detecting level of molten steel in immersion nozzle of continuous casting | |
JPS5913301B2 (en) | Molten steel passage slag detection device | |
JPS58176504A (en) | Measuring device of solidified thickness for ingot | |
JP4106919B2 (en) | Non-contact flow velocity measuring method and non-contact flow velocity measuring apparatus for molten metal | |
JPH11211741A (en) | Method and apparatus for measuring flow velocity | |
JPH09101320A (en) | Flow velocity measuring method and measuring apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990706 |