JP2007098400A - Continuous casting apparatus and method for measuring flowing rate - Google Patents

Continuous casting apparatus and method for measuring flowing rate Download PDF

Info

Publication number
JP2007098400A
JP2007098400A JP2005287454A JP2005287454A JP2007098400A JP 2007098400 A JP2007098400 A JP 2007098400A JP 2005287454 A JP2005287454 A JP 2005287454A JP 2005287454 A JP2005287454 A JP 2005287454A JP 2007098400 A JP2007098400 A JP 2007098400A
Authority
JP
Japan
Prior art keywords
molten steel
water
flow velocity
continuous casting
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005287454A
Other languages
Japanese (ja)
Other versions
JP4700466B2 (en
Inventor
Takehiko Fuji
健彦 藤
Hiroshi Harada
寛 原田
Manabu Kuninaga
学 國永
Noboru Hasegawa
昇 長谷川
Masanobu Hayakawa
昌伸 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005287454A priority Critical patent/JP4700466B2/en
Publication of JP2007098400A publication Critical patent/JP2007098400A/en
Application granted granted Critical
Publication of JP4700466B2 publication Critical patent/JP4700466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve a flowing rate measuring accuracy of the molten steel by avoiding the bad effect caused by the thickness of solidified shell. <P>SOLUTION: A continuous casting apparatus 300 is provided with a mold 102 composed of one pair of water-cooled long wall sides, one pair of water-cooled short wall sides held to the interval of the one pair of water-cooled long wall sides and being adjustable to the casting width by parallel shifting with the one pair of water-cooled long wall sides, and a pouring nozzle 110 for pouring the molten steel into the casting space formed with the one pair of water-cooled long wall sides and the one pair of water-cooled short wall sides. This continuous casting apparatus is characterize by further including a flowing rate measuring part 310 for molten steel, fixed to the outer side surface of the water-cooled short wall side and composed of a primary coil 500 for generating AC magnetic field and a secondary coil 510 crossing at the right angle to the primary coil in the center axis and measuring the magnetic field with the primary coil and the magnetic field generated with the fluidity of the molten steel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,連続鋳造装置,流速測定方法にかかり,例えば,鋼の連続鋳造の鋳型において,溶鋼の流速を検出する流速測定部を備えた連続鋳造装置,流速測定方法に関する。   The present invention relates to a continuous casting apparatus and a flow velocity measuring method, and, for example, to a continuous casting apparatus and a flow velocity measuring method provided with a flow velocity measuring unit that detects a flow velocity of molten steel in a continuous casting mold of steel.

一般に,鋼の連続鋳造は,注入ノズルを介して水冷の鋳型内に溶鋼を注入し,モールドパウダーと称される潤滑剤と鋳型の振動により溶鋼を潤滑しながら連続的に凝固・引き抜いて実施される。   In general, continuous casting of steel is performed by injecting molten steel into a water-cooled mold through an injection nozzle and continuously solidifying and drawing the molten steel while lubricating the molten steel with a lubricant called mold powder and vibration of the mold. The

例えば,鋳型が1対の水冷長辺と1対の水冷短辺で構成される場合,注入ノズルによって注入された溶鋼は,水冷短辺側の面(以下,短辺面と言う。)に衝突し,溶鋼プール内でメニスカス(湯面)に向かう流れと,溶鋼プール下方に向かう流れの2つに分岐される。この2つの吐出口からの上下の流れは,水冷長辺側の面(以下,長辺面と言う。)から見ると4つの大きな渦を形成している。   For example, when the mold is composed of a pair of water-cooled long sides and a pair of water-cooled short sides, the molten steel injected by the injection nozzle collides with the surface on the water-cooled short side (hereinafter referred to as the short side surface). In the molten steel pool, it is branched into two flows: a flow toward the meniscus (molten surface) and a flow toward the bottom of the molten steel pool. The upper and lower flows from the two discharge ports form four large vortices when viewed from the surface on the long side of the water cooling (hereinafter referred to as the long side surface).

鋼の連続鋳造において,上記溶鋼の流れは,溶鋼中に含まれる非金属介在物の流れを支配しており,この溶鋼の流れ自体,重要な制御対象である。上記溶鋼の流れが,凝固シェルに捕捉される位置によって,鋳片表面のキズの原因となったり,あるいは鋳片の内部に不純物が運ばれて欠陥を生じたりする。   In the continuous casting of steel, the flow of molten steel dominates the flow of non-metallic inclusions contained in the molten steel, and the flow of molten steel itself is an important control target. Depending on the position where the molten steel flow is trapped by the solidified shell, it may cause scratches on the surface of the slab, or impurities may be carried inside the slab and cause defects.

特に,上記の流れの内,長辺面側から見た左右非対称の流れは偏流と呼ばれ,鋳片の内部への介在物の侵入量や大きさを増したり,あるいはメニスカス部の流速が片側で大きくなることにより,メニスカスに潤滑剤として存在するパウダーを巻き込み,鋳片内部に輸送する等の問題を生む原因となる。従って,従来より偏流の検出と制御が必要とされている。   In particular, of the above flows, the asymmetrical flow seen from the long side is called a drift, and the amount and size of inclusions in the slab are increased, or the flow velocity of the meniscus is increased on one side. As a result of this increase, the powder that exists as a lubricant in the meniscus is entrained and transported into the slab. Therefore, it is necessary to detect and control the current drift.

従来から,メニスカスの短辺面側の上昇流がメニスカスに到達した際に生ずるメニスカスの盛り上がりを左右で測定し,運動エネルギーを位置エネルギーと等しいとして偏流を算出する方法や,歪みゲージを漬けた耐火物棒で構成される流速測定部を直接溶鋼に浸漬する方法,さらには,鋳型の銅板に埋設した熱電対の温度差から流動のアンバランスを逆算する方法等が検出手段として知られている。   Conventionally, the rise of the meniscus on the short side of the meniscus is measured from the left and right when the meniscus rises and the kinetic energy is equal to the potential energy. Known detection means include a method of directly immersing a flow velocity measuring unit composed of a rod in molten steel, and a method of back-calculating the flow imbalance from the temperature difference of a thermocouple embedded in the copper plate of the mold.

また,交流磁場を利用して溶鋼の流速を検出する技術も開発されている(例えば,特許文献1)。   Moreover, the technique which detects the flow velocity of molten steel using an alternating magnetic field is also developed (for example, patent document 1).

特開2002―336945号公報JP 2002-336945 A

上記の従来技術におけるメニスカスの盛り上がりを測定する方法や流速を直接測定する方法は,メニスカスの流動の左右アンバランスを知ることは可能としても,鋳片の内部欠陥にかかわる下降流を直接知り得る手段とはならない。   The method of measuring the meniscus swell and the method of directly measuring the flow velocity in the prior art described above is a means of directly knowing the downflow related to the internal defect of the slab, although it is possible to know the left-right imbalance of the meniscus flow. It will not be.

また,熱電対による方法は,メニスカスのみではなく比較的下方の情報を得ることができるが,溶鋼がメニスカスより下降するにつれて凝固シェルが鋳型と乖離し,その接触状態が常時変化するので,溶鋼の流れを正確に把握し難いという問題があった。さらに,より根本的な問題として,メニスカスから下降するに従って凝固シェルが次第に厚くなり,溶鋼との接触が要求される方法では流速を測定できないという問題があった。   In addition, the thermocouple method can obtain not only the meniscus but also relatively lower information. However, as the molten steel descends from the meniscus, the solidified shell dissociates from the mold and the contact state changes constantly. There was a problem that it was difficult to grasp the flow accurately. Furthermore, a more fundamental problem is that the solidified shell gradually becomes thicker as it descends from the meniscus, and the flow velocity cannot be measured by a method that requires contact with molten steel.

本発明は,従来の溶鋼の流速検出が有する上記問題点に鑑みてなされたものであり,本発明の目的は,凝固シェルの厚みによる,溶鋼の流速検出精度が悪化するという弊害を回避し,溶鋼の流速測定精度を高めることが可能な,新規かつ改良された連続鋳造装置,流速測定方法を提供することである。   The present invention has been made in view of the above-mentioned problems of conventional molten steel flow velocity detection, and the object of the present invention is to avoid the adverse effect that the flow velocity detection accuracy of molten steel deteriorates due to the thickness of the solidified shell, It is to provide a new and improved continuous casting apparatus and flow velocity measuring method capable of increasing the flow velocity measurement accuracy of molten steel.

上記課題を解決するために,本発明によれば,1対の水冷長辺と,上記1対の水冷長辺に狭持され上記1対の水冷長辺と平行に移動して鋳造幅を調整可能な1対の水冷短辺と,上記1対の水冷長辺と1対の水冷短辺とによって形成される鋳造空間内に溶鋼を注入する注入ノズルと,からなる鋳型を備えた連続鋳造装置であって,交流磁場を生成する1次コイルと,中心軸が上記1次コイルと直交し,上記1次コイルによる磁場と上記溶鋼の流動とによって生じる磁場を測定する2次コイルと,からなり,上記水冷短辺の外側面に固定される溶鋼の流速測定部を備えることを特徴とする,連続鋳造装置が提供される。   In order to solve the above-described problems, according to the present invention, the casting width is adjusted by moving in parallel with the pair of water-cooled long sides sandwiched between the pair of water-cooled long sides and the pair of water-cooled long sides. Continuous casting apparatus comprising a mold comprising: a pair of possible water-cooled short sides; and an injection nozzle for injecting molten steel into a casting space formed by the pair of water-cooled long sides and the pair of water-cooled short sides. A primary coil for generating an alternating magnetic field, and a secondary coil for measuring a magnetic field generated by a magnetic field generated by the primary coil and a flow of the molten steel, with a central axis orthogonal to the primary coil. A continuous casting apparatus is provided, comprising a flow rate measuring unit for molten steel fixed to the outer surface of the water-cooled short side.

かかる構成により,上記一対の水冷短辺の内側に流れる溶鋼の流速(流動速度)を高精度かつ細かい分解能で検出することが可能となる。   With this configuration, it is possible to detect the flow velocity (flow velocity) of the molten steel flowing inside the pair of water-cooled short sides with high accuracy and fine resolution.

また,上記1次コイルに流す交流電流の周波数f[Hz]は,
f≦1/{πμ((√σCu)dCu+(√σFe)dFe
(ここで,dCu:鋳型銅板厚み[m],
Fe=k√(H/v):凝固シェル厚み[m]
σCu:鋳型銅板の電気伝導度[S/m],
σFe:鋼の電気伝導度[S/m],
H:メニスカス(湯面)から流速測定部の高さ中心までの鉛直距離[m],
:鋳造速度[m/min],
k:凝固定数[m/min1/2],
μ:透磁率[H/m]である。)
で表されるとしても良い。かかる構成により,流速検出に適した交流電流の周波数fを導出することが可能となる。
Further, the frequency f [Hz] of the alternating current flowing through the primary coil is
f ≦ 1 / {πμ ((√σ Cu ) d Cu + (√σ Fe ) d Fe ) 2 }
(Where d Cu : mold copper plate thickness [m],
d Fe = k√ (H / v c ): solidified shell thickness [m]
σ Cu : Electric conductivity [S / m] of the mold copper plate,
σ Fe : electrical conductivity of steel [S / m],
H: Vertical distance [m] from the meniscus (water surface) to the center of the height of the flow velocity measurement unit,
v c : casting speed [m / min],
k: coagulation constant [m / min 1/2 ],
μ: Magnetic permeability [H / m]. )
It may be expressed as With this configuration, it is possible to derive the frequency f of the alternating current suitable for detecting the flow velocity.

上記流速測定部は,上記1対の水冷短辺の外側面にそれぞれ固定されるとしても良い。かかる構成により,長辺面から見た左右の流動を総合的に観測することができ,左右の偏流,アンバランス等を検出し,より正確な溶鋼の流動制御を実施できる。   The flow velocity measuring unit may be fixed to the outer surfaces of the pair of water-cooled short sides. With this configuration, it is possible to comprehensively observe the left and right flows as viewed from the long side surface, and to detect left and right drifts, unbalances, etc., and to perform more accurate control of the molten steel flow.

また,上記課題を解決するために,本発明によれば,上記連続鋳造装置を用いて,鋳型内を流動する溶鋼の流速を測定する流速測定方法であって,上記鋳型の外側面において,交流磁場を生成し,上記交流磁場と上記溶鋼の流動とによって生じる磁場を測定することを特徴とする,流速測定方法が提供される。   In order to solve the above problems, according to the present invention, there is provided a flow rate measuring method for measuring a flow rate of molten steel flowing in a mold using the continuous casting apparatus, wherein an alternating current is applied to an outer surface of the mold. There is provided a flow velocity measuring method characterized by generating a magnetic field and measuring a magnetic field generated by the alternating magnetic field and the flow of the molten steel.

また,上記連続鋳造装置に設けられる流速測定部を単独の装置として提供することもできる。   Moreover, the flow velocity measuring part provided in the said continuous casting apparatus can also be provided as an independent apparatus.

以上説明したように本発明によれば,凝固シェルの厚みによって,測定対象としての溶鋼まで離隔し,その溶鋼の流速を正確に測定できない,という弊害を回避でき,溶鋼の流速測定精度を高め,偏流等の鋳片内部状態を正確に把握し,鋳片に欠陥が生じる可能性があるかどうかを予測でき,また,流動制御によって鋳片の品質の改善が可能となる。   As described above, according to the present invention, it is possible to avoid the adverse effect that the molten steel as a measurement object is separated by the thickness of the solidified shell and the flow velocity of the molten steel cannot be measured accurately, and the flow velocity measurement accuracy of the molten steel is improved. By accurately grasping the internal state of the slab such as drift, it is possible to predict whether or not there is a possibility of defects in the slab, and the quality of the slab can be improved by flow control.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

(第1の実施形態:連続鋳造装置における流速測定部の上下配置)
図6は,従来の連続鋳造装置100における溶鋼の流れを説明するための模式図である。鋼の連続鋳造において,連続鋳造装置100内の溶鋼プール108に浸漬された状態で使用される注入ノズル110は,例えば,連続鋳造装置100の鋳型102が1対の水冷長辺と,該1対の水冷長辺に狭持され,該1対の水冷長辺と平行に移動して鋳造幅を調整可能な1対の水冷短辺とで構成される場合,1つの流入口112と2つの吐出口114とから形成される。かかる流入口112は注入ノズル110上方に円筒形に形成され,吐出口114は鋳型長辺に平行し,傾斜を有して開口される。
(First Embodiment: Vertical arrangement of flow velocity measuring unit in continuous casting apparatus)
FIG. 6 is a schematic diagram for explaining the flow of molten steel in the conventional continuous casting apparatus 100. In continuous casting of steel, the injection nozzle 110 used in a state of being immersed in the molten steel pool 108 in the continuous casting apparatus 100 includes, for example, a mold 102 of the continuous casting apparatus 100 and a pair of water-cooled long sides. In the case of being constituted by a pair of water-cooled short sides that can be adjusted in the casting width by moving in parallel with the pair of water-cooled long sides, And an outlet 114. The inflow port 112 is formed in a cylindrical shape above the injection nozzle 110, and the discharge port 114 is opened with an inclination parallel to the long side of the mold.

上記注入ノズル110に注入された溶鋼120は,短辺面に衝突し,溶鋼プール108内でメニスカス(湯面)に向かう流れと,下降する流れの2つに分岐する。2つの吐出口からの上下の流れによって,溶鋼プール108内に4つの大きな渦122が形成される。また,溶鋼120は,溶鋼プール108を下降するにつれ,表面が冷却されて凝固シェル124となる。   The molten steel 120 injected into the injection nozzle 110 collides with the short side surface and branches into two flows, a flow toward the meniscus (molten surface) and a descending flow in the molten steel pool 108. Four large vortices 122 are formed in the molten steel pool 108 by the vertical flow from the two discharge ports. Further, as the molten steel 120 descends the molten steel pool 108, the surface is cooled and becomes a solidified shell 124.

鋼の連続鋳造において,上記溶鋼120の流れは,溶鋼中に含まれる非金属介在物の流れを支配しており,この溶鋼の流れ自体,重要な制御対象である。上記溶鋼120の流れが,凝固シェル124に捕捉される位置によって,表面のキズの原因となったり,あるいは鋳片の内部に運ばれて欠陥を生じたりする。特に,上記の流れの内,長辺面側から見た左右非対称の流れは偏流と呼ばれ,その偏流の検出と制御が必要である。従来,このように溶鋼の流速の検出を行う流速測定部130は,図6で示す連続鋳造装置100下方に,鋳型102と別体に設置されていた。   In continuous casting of steel, the flow of the molten steel 120 dominates the flow of non-metallic inclusions contained in the molten steel, and this molten steel flow itself is an important control target. Depending on the position where the flow of the molten steel 120 is captured by the solidified shell 124, it may cause scratches on the surface, or it may be carried into the slab and cause defects. In particular, among the above flows, the asymmetrical flow seen from the long side is called drift, and it is necessary to detect and control the drift. Conventionally, the flow rate measuring unit 130 for detecting the flow rate of molten steel as described above has been installed separately from the mold 102 below the continuous casting apparatus 100 shown in FIG.

この様に,上記流速測定部130を連続鋳造装置100の短辺面外側に配することにより,左右の偏流を測定することは可能である。しかし,連続鋳造装置100の下方に取り付けていた従来の流速測定部130は,溶鋼120との間に所定厚みを有する凝固シェルが存在しているため,溶鋼120の正確な流速の検出に適していなかった。   In this way, by arranging the flow velocity measuring unit 130 outside the short side surface of the continuous casting apparatus 100, it is possible to measure the left and right drifts. However, the conventional flow velocity measuring unit 130 attached below the continuous casting apparatus 100 is suitable for detecting the accurate flow velocity of the molten steel 120 because a solidified shell having a predetermined thickness exists between the molten steel 120 and the molten steel 120. There wasn't.

図7は,上記流速測定部130の位置による流速の検出の問題を説明するための模式図である。かかる模式図は,図6に示した連続鋳造装置100の下方を抜き出している。図7を参照すると,連続鋳造装置100の溶鋼プール108内において,溶鋼120は,流速vで連続鋳造装置100底面に向かって移動し,その移動の過程で周囲温度の降下に基づいて流速の遅い凝固シェル124となる。特に,図7に示したような連続鋳造装置100下方(底面側),即ちメニスカスから離れた位置では,溶鋼120と比較して凝固シェル124の厚みが次第に増してくる。   FIG. 7 is a schematic diagram for explaining the problem of the detection of the flow velocity depending on the position of the flow velocity measuring unit 130. In this schematic diagram, the lower part of the continuous casting apparatus 100 shown in FIG. 6 is extracted. Referring to FIG. 7, in the molten steel pool 108 of the continuous casting apparatus 100, the molten steel 120 moves toward the bottom surface of the continuous casting apparatus 100 at a flow velocity v, and the flow velocity is slow based on a drop in ambient temperature during the movement process. A solidified shell 124 is obtained. In particular, the thickness of the solidified shell 124 gradually increases as compared with the molten steel 120 below (on the bottom side) the continuous casting apparatus 100 as shown in FIG.

本来,流速測定部130で検出すべき流速は,溶鋼プール108の内側を流れる溶鋼120の流速vである。その流速vを測定するために流速測定部130から出力される磁場(磁束)Bは,連続鋳造装置100の側壁を貫通して溶鋼プール108内に浸透する。しかし,溶鋼プール108内においては,溶鋼120の下降と,凝固シェル124の下降といった主に2種類の移動が存在する。流速測定部130は,溶鋼120の流速vと凝固シェル124の流速,即ち鋳造速度vとを合成した流速を検出するが,両速度v,vを分解することはできない。従って,溶鋼120の正確な流速vは測定できないこととなる。 Originally, the flow velocity to be detected by the flow velocity measuring unit 130 is the flow velocity v of the molten steel 120 flowing inside the molten steel pool 108. A magnetic field (magnetic flux) B output from the flow velocity measurement unit 130 to measure the flow velocity v penetrates the molten steel pool 108 through the side wall of the continuous casting apparatus 100. However, in the molten steel pool 108, there are mainly two types of movements such as the lowering of the molten steel 120 and the lowering of the solidified shell 124. Flow rate measurement unit 130, the flow rate of the flow velocity v and the solidified shell 124 of the molten steel 120, that is, to detect the synthesized velocity and casting speed v c, it can not be resolved both velocity v, v c. Therefore, the accurate flow velocity v of the molten steel 120 cannot be measured.

上記溶鋼120の流速を測定する上で弊害になるのは,流速測定部130と溶鋼120との間に介在する凝固シェル124,特にその凝固シェル124の厚みである。従って,上記課題を解決するため,流速測定部の位置を連続鋳造装置100上方,即ち,凝固シェル124がまだ厚くなっていないメニスカス側に移動させる。具体的には,鋳型102内に設置される。   What is detrimental in measuring the flow rate of the molten steel 120 is the thickness of the solidified shell 124 interposed between the flow rate measuring unit 130 and the molten steel 120, particularly the solidified shell 124. Therefore, in order to solve the above problem, the position of the flow velocity measuring unit is moved above the continuous casting apparatus 100, that is, to the meniscus side where the solidified shell 124 is not yet thick. Specifically, it is installed in the mold 102.

図1は,本実施形態の連続鋳造装置300における溶鋼の流れを説明するための模式図である。かかる連続鋳造装置300は,図6に示したのと同様,注入ノズル110から吐出された溶鋼120が4つの大きな渦122を形成する。溶鋼120は,溶鋼プール108下方に移動するにつれ,表面から凝固シェル124に変化する。   FIG. 1 is a schematic diagram for explaining the flow of molten steel in the continuous casting apparatus 300 of the present embodiment. In the continuous casting apparatus 300, the molten steel 120 discharged from the injection nozzle 110 forms four large vortices 122, as shown in FIG. As the molten steel 120 moves below the molten steel pool 108, it changes from the surface to the solidified shell 124.

図1においては,流速測定部310が連続鋳造装置100の鋳型102の側壁に埋設されている。図1に示す流速測定部310の位置は,メニスカスからの距離も短いため,凝固シェル124の幅はまだ厚くなっておらず,流速測定部310に測定される溶鋼120の流速vを正確に検出することが可能となる。   In FIG. 1, the flow velocity measuring unit 310 is embedded in the side wall of the mold 102 of the continuous casting apparatus 100. Since the position of the flow velocity measuring unit 310 shown in FIG. 1 is short from the meniscus, the width of the solidified shell 124 is not yet thick, and the flow velocity v of the molten steel 120 measured by the flow velocity measuring unit 310 is accurately detected. It becomes possible to do.

ところで,連鋳工程と圧延工程とが直結する直接プロセスにおいては,連鋳機からの出片順が圧延機での圧延順となる必要がある。従って,鋳造中においても鋳片幅を変更する必要が生じる。このような理由から,溶鋼段階においても鋳片の幅を調整しつつ,鋳片を送出する構成がとられる。   By the way, in the direct process in which the continuous casting process and the rolling process are directly connected, it is necessary that the order of the strips from the continuous casting machine becomes the rolling order in the rolling mill. Therefore, it is necessary to change the slab width even during casting. For this reason, the slab is sent out while adjusting the width of the slab even at the molten steel stage.

図8は,鋳片幅が変更される連続鋳造装置100と従来の流速測定部130との関係を説明するための模式図である。かかる連続鋳造装置100から送出される鋳片は,鋳型に連結されたシリンダ412によって,幅の狭い鋳片を製造する際に内側に絞られ,幅の広い鋳片を製造する際に拡幅される。 FIG. 8 is a schematic diagram for explaining the relationship between the continuous casting apparatus 100 in which the slab width is changed and the conventional flow velocity measuring unit 130. The slab delivered from the continuous casting apparatus 100 is squeezed inward when a narrow slab is manufactured, and widened when a wide slab is manufactured by a cylinder 412 connected to a mold. .

従来の流速測定部130は,連続鋳造装置100の幅変更壁410辺りに設置されていた。しかし,鋳片の幅の変動に伴って幅変更壁410も変動するので,流速測定部130の設置箇所として適切ではなかった。従って,従来の流速測定部130は,上部鋳型102の側壁に掛止される。かかる構成では,幅変更壁410による幅変更に伴って,流速測定部130と溶鋼120との距離aが変化してしまう。従って,流速vを測定する上で,検出値の補正を要するため,測定精度の点でさらに問題があった。   The conventional flow velocity measuring unit 130 is installed around the width changing wall 410 of the continuous casting apparatus 100. However, since the width changing wall 410 also fluctuates with fluctuations in the width of the slab, it is not appropriate as an installation location of the flow velocity measuring unit 130. Therefore, the conventional flow velocity measuring unit 130 is hooked on the side wall of the upper mold 102. In such a configuration, the distance a between the flow velocity measuring unit 130 and the molten steel 120 changes as the width is changed by the width changing wall 410. Therefore, when the flow velocity v is measured, the detection value needs to be corrected, which causes a further problem in terms of measurement accuracy.

図1において,本実施形態による流速測定部310は固定された鋳型102短辺内に埋設されるため,鋳片の幅変更に伴う連続鋳造装置300の幅変更壁の幅変動があったとしても,溶鋼120との距離は変動せず,流速vの測定に影響が出ない。従って,上述したような距離の変動による補正や相対的な傾きの補正等を行う必要がない。   In FIG. 1, since the flow velocity measuring unit 310 according to the present embodiment is embedded in the short side of the fixed mold 102, even if the width of the width changing wall of the continuous casting apparatus 300 is changed due to the change in the width of the slab. , The distance to the molten steel 120 does not change and does not affect the measurement of the flow velocity v. Therefore, it is not necessary to perform correction based on the variation in distance and correction of relative inclination as described above.

(第2の実施形態:連続鋳造装置における流速測定部の平面上の配置)
上述した流速測定部310は,磁場(磁束)Bを発生し,溶鋼120の連続鋳造装置300下方に向かう流動に応じて誘導的に生成される磁場B’を検出し,流速を求めている。
(2nd Embodiment: Arrangement | positioning on the plane of the flow-speed measurement part in a continuous casting apparatus)
The flow velocity measuring unit 310 described above generates a magnetic field (magnetic flux) B, detects the magnetic field B ′ that is inductively generated in accordance with the flow of the molten steel 120 toward the bottom of the continuous casting apparatus 300, and obtains the flow velocity.

図2は,溶鋼120の流速の検出の原理を示す説明図である。ここでは,連続鋳造装置300の鋳型102に対して,流速測定部310としての1次コイル500と2次コイル510とが配置される。また,連続鋳造装置300の鋳型102内では溶鋼120が流速vで流れている。   FIG. 2 is an explanatory diagram showing the principle of detection of the flow velocity of the molten steel 120. Here, a primary coil 500 and a secondary coil 510 serving as the flow velocity measuring unit 310 are arranged with respect to the mold 102 of the continuous casting apparatus 300. Further, the molten steel 120 flows at a flow velocity v in the mold 102 of the continuous casting apparatus 300.

1次コイル500に交流電流Iを流すと磁場Bが発生し,この磁場Bは,鋳型102の側壁を貫通する。その磁場Bが,溶鋼120の流動(流速v)と干渉し合って誘導電流Iが図示の方向に発生する。誘導電流Iはさらに磁場B’を生成する。 When an alternating current I 1 is passed through the primary coil 500, a magnetic field B is generated, and this magnetic field B penetrates the side wall of the mold 102. The magnetic field B interferes with the flow (flow velocity v) of the molten steel 120, and the induced current Iu is generated in the direction shown in the figure. The induced current I u further generates a magnetic field B ′.

2次コイル510には,1次コイル500が直接作る磁場Bによる誘導電流と,上記溶鋼120中の干渉により発生する誘導電流Iが作る誘導磁場B’による誘導電流とが合わさった電流が流れる。ここでは,1次コイル500と2次コイル510との位置関係が分かっているため,1次コイル500による2次コイルの誘導電流は導出できるので,差分を計算することによって誘導磁場B’による誘導電流を抽出することができる。かかる電流値を,予め検量した値を用いて流速vに換算することができる。 The secondary coil 510 receives a current that is a combination of the induced current caused by the magnetic field B directly produced by the primary coil 500 and the induced current caused by the induced magnetic field B ′ produced by the induced current I u generated by the interference in the molten steel 120. . Here, since the positional relationship between the primary coil 500 and the secondary coil 510 is known, the induced current of the secondary coil by the primary coil 500 can be derived. Therefore, the induction is induced by the induced magnetic field B ′ by calculating the difference. Current can be extracted. Such a current value can be converted into a flow velocity v using a value calibrated in advance.

上記1次コイル500に流す交流電流の周波数は,上記1次コイル500と測定すべき溶鋼120との距離によって定まる。かかる距離が長いと,1次コイル500に流す交流電流の周波数に制限がかかる。   The frequency of the alternating current flowing through the primary coil 500 is determined by the distance between the primary coil 500 and the molten steel 120 to be measured. If this distance is long, the frequency of the alternating current flowing through the primary coil 500 is limited.

交流電流の周波数が小さくなると流速測定部310からの出力ゲインが下がり,それに伴って,2次コイルでの検出信号も小さくなり,検出した信号が所望の信号であるかノイズであるかが判断できなくなる。ここで,所定の出力ゲインを維持するために,流速測定部310の1次コイル500および2次コイル510の捲数を増やすこともできるが,これは,流速測定部310の巨大化を招き,占有体積やコストが問題となる。   When the frequency of the alternating current decreases, the output gain from the flow velocity measuring unit 310 decreases, and accordingly, the detection signal at the secondary coil also decreases, and it can be determined whether the detected signal is a desired signal or noise. Disappear. Here, in order to maintain a predetermined output gain, the number of primary coils 500 and secondary coils 510 of the flow velocity measuring unit 310 can be increased, but this leads to an increase in the flow velocity measuring unit 310, Occupied volume and cost become a problem.

しかし,上述した流速測定部310を連続鋳造装置100上方の鋳型102内に設置する構成により凝固シェル124の厚みが薄くなり,その分,1次コイル500と溶鋼120との距離が短くなる。従って,1次コイル500が生成する磁場Bが同じであっても,誘導磁場B’は大きくなり,測定精度が向上する。また,かかる設置位置では,連続鋳造装置100の下方と比較して,鋳型内の溶鋼の流速自体が大きいため必然的に検出量も大きくなり,測定精度がさらに向上する。   However, the thickness of the solidified shell 124 is reduced by the configuration in which the flow velocity measuring unit 310 described above is installed in the mold 102 above the continuous casting apparatus 100, and accordingly, the distance between the primary coil 500 and the molten steel 120 is shortened. Therefore, even if the magnetic field B generated by the primary coil 500 is the same, the induced magnetic field B 'increases and the measurement accuracy is improved. Further, at such an installation position, compared with the lower part of the continuous casting apparatus 100, the flow rate of the molten steel in the mold itself is large, so that the detection amount is inevitably increased, and the measurement accuracy is further improved.

上記1次コイル500と測定すべき溶鋼120との距離を検討する上で考慮すべきは,流速測定部310と溶鋼120との間に存在する,鋳型102の側壁の厚みと凝固シェル124の厚みが挙げられる。従って,凝固シェル124の厚みのみではなく,鋳型102の側壁の厚みも検討した。   Considering the distance between the primary coil 500 and the molten steel 120 to be measured, the thickness of the side wall of the mold 102 and the thickness of the solidified shell 124 existing between the flow velocity measuring unit 310 and the molten steel 120 should be considered. Is mentioned. Therefore, not only the thickness of the solidified shell 124 but also the thickness of the side wall of the mold 102 was examined.

例えば,鋳型銅板の厚みをdCu[m],凝固シェル124の厚みをdFe=k√(H/v)[m]とし(ただし,Hは,メニスカス(湯面)から流速測定部の高さ中心までの鉛直距離(高さ方向の距離)[m],vは鋳造速度[m/min],kは,凝固定数[m/min1/2]である。),流速測定部310の1次コイル500が銅板表面に発生する磁場をBとした場合,凝固シェルの内側,即ち溶鋼120と凝固シェルの界面に発生する磁場は,「第110・111回西山記念技術講座 鋼の凝固と鋳造プロセスの最近の進歩 社団法人日本鉄鋼協会編 平成61年1月16日発行 p123−127」によって以下の数式1で表される。 For example, the thickness of the mold copper plate is d Cu [m], and the thickness of the solidified shell 124 is d Fe = k√ (H / v c ) [m] (where H is the flow velocity measurement section from the meniscus (molten surface)). vertical distance to the height center (distance in the height direction) [m], v c is the casting speed [m / min], k is a coagulation constant [m / min 1/2].) , flow rate measurement unit When the magnetic field generated on the copper plate surface by the primary coil 500 of 310 is B 0 , the magnetic field generated inside the solidified shell, that is, at the interface between the molten steel 120 and the solidified shell is “110th and 111th Nishiyama Memorial Technology Course Steel Recent Progress in Solidification and Casting Processes of the Japan Iron and Steel Institute edited by the Japan Iron and Steel Institute (January 16, 1986, p123-127).

B=B×exp(−dCu/δCu)×exp(−dFe/δFe)=B×exp(−dCu/δCu−dFe/δFe) …(数式1)
ここで,
δCu=1/√(μσCuπf) …(数式2),
δFe=1/√(μσFeπf) …(数式3)
であり,σCuは銅板の電気伝導度[S/m]を,σFeは鋼の電気伝導度[S/m]を示している。
B = B 0 × exp (-d Cu / δ Cu) × exp (-d Fe / δ Fe) = B 0 × exp (-d Cu / δ Cu -d Fe / δ Fe) ... ( Equation 1)
here,
δ Cu = 1 / √ (μσ Cu πf) (Expression 2),
δ Fe = 1 / √ (μσ Fe πf) (Formula 3)
In and, sigma Cu is the electrical conductivity of the copper plate [S / m], σ Fe represents the electrical conductivity of the steel [S / m].

流速測定部310の1次コイル500が,凝固シェル124と溶鋼120の界面に発生する磁場Bの強さが十分であることは,表皮効果の考え方から,上式の指数関数的減衰の指標1/e(eは自然指数で2.71828…)以上になることで定義される。   The fact that the primary coil 500 of the flow velocity measuring unit 310 has a sufficient strength of the magnetic field B generated at the interface between the solidified shell 124 and the molten steel 120 is based on the index effect 1 of the above exponential decay from the viewpoint of the skin effect. / E (e is a natural index 2.71828 ...) or more.

図3は,表面からの距離qと磁場Bとの関係を示した説明図である。かかる図3を参照すると,表面からの距離qが深くなるほど浸透する磁場Bは低くなる。表皮深さがδであり,流速測定部310による流速の測定にB/e以上の磁場Bが必要な場合,交流磁場Bの周波数が制限される。 FIG. 3 is an explanatory diagram showing the relationship between the distance q from the surface and the magnetic field B. Referring to FIG. 3, the penetrating magnetic field B decreases as the distance q from the surface increases. When the skin depth is δ and the magnetic field B greater than or equal to B 0 / e is required for the flow velocity measurement by the flow velocity measuring unit 310, the frequency of the alternating magnetic field B is limited.

即ち,数式1を参照するとdCu/δCu+dFe/δFe≦1が条件となり,数式1に数式2,3を代入すると,
√(μπf)×((√σCu)dCu+(√σFe)dFe)≦1 …(数式4)
となり,
f≦1/{πμ((√σCu)dCu+(√σFe)dFe} …(数式5)
が導き出される。
That is, referring to Equation 1, d Cu / δ Cu + d Fe / δ Fe ≦ 1 is a condition, and when Equations 2 and 3 are substituted into Equation 1,
√ (μπf) × ((√σ Cu ) d Cu + (√σ Fe ) d Fe ) ≦ 1 (Formula 4)
And
f ≦ 1 / {πμ ((√σ Cu ) d Cu + (√σ Fe ) d Fe ) 2 } (Formula 5)
Is derived.

このように,コイルに与えることが可能な周波数の制限は,上記銅板の厚みや凝固シェル124の厚み(メニスカスからの距離)の変更に応じて変化する。即ち,第1の実施形態で説明したように,流速測定部310を連続鋳造装置300の上方に配置することで,凝固シェル124が比較的薄い領域で測定できる。鋳型102の壁厚は一般に,鋳型耐久性,鋳型剛性等や,所定時間使用後に行う改削量により決まり,通常は15〜50mm程度で一定となる。交流磁場Bの周波数は,数式5により決定される。   As described above, the limit of the frequency that can be given to the coil changes according to the change in the thickness of the copper plate and the thickness of the solidified shell 124 (distance from the meniscus). In other words, as described in the first embodiment, by arranging the flow velocity measuring unit 310 above the continuous casting apparatus 300, the solidified shell 124 can be measured in a relatively thin region. The wall thickness of the mold 102 is generally determined by the mold durability, mold rigidity, etc., and the amount of rework performed after use for a predetermined time, and is usually constant at about 15 to 50 mm. The frequency of the alternating magnetic field B is determined by Equation 5.

本実施形態においては,周波数fは約30Hz以下が例示できる。また,例えば,通常の操業における典型的な物性値(π=3.14,μ=4π×10―7,σCu=10,σFe=0.7×10,dCu=0.03,dFe=0.01)を用いて,上記数式5の計算を行うと23.8Hzとなる。銅板で損失する磁場を少なくするためには,周波数は低いほど良いので,交流磁場Bの周波数は,10Hz以下であることが望ましい。 In the present embodiment, the frequency f can be exemplified as about 30 Hz or less. Further, for example, typical physical property values in normal operation (π = 3.14, μ = 4π × 10 −7 , σ Cu = 10 7 , σ Fe = 0.7 × 10 6 , d Cu = 0.03 , with d Fe = 0.01), the 23.8Hz When the calculation of the equation 5. In order to reduce the magnetic field lost in the copper plate, the lower the frequency, the better. Therefore, the frequency of the alternating magnetic field B is desirably 10 Hz or less.

図4は,第2の実施形態における流速測定部310の水平面における位置を説明するための模式図である。ここで,鋳型102は,銅板710,720と,バックプレートとしてのステンレス板712,722とからなり,銅板710とステンレス板712で水冷長辺を,銅板720とステンレス板722で水冷短辺を形成する。かかる銅板710,720に囲まれた溶鋼プール108では,溶鋼120の回りを凝固した凝固シェル124が覆っている。また,流速測定部310は,上述したように,1次コイル500と2次コイル510とから構成される。   FIG. 4 is a schematic diagram for explaining the position on the horizontal plane of the flow velocity measuring unit 310 in the second embodiment. Here, the mold 102 includes copper plates 710 and 720 and stainless plates 712 and 722 as back plates. The copper plate 710 and the stainless plate 712 form a water-cooled long side, and the copper plate 720 and the stainless plate 722 form a water-cooled short side. To do. In the molten steel pool 108 surrounded by the copper plates 710 and 720, the solidified shell 124 that is solidified around the molten steel 120 is covered. Further, the flow velocity measuring unit 310 includes the primary coil 500 and the secondary coil 510 as described above.

鋳型102内において流速vで流れる溶鋼120は,流速測定部310の1次コイル500によって生成される磁場Bの干渉を受け,誘導電流Iを図示の方向に発生する。このとき,流速測定部310は,ステンレス722に埋設され,銅板720に触接して設置されるため,流速測定部310と溶鋼120との距離は非常に短くなる。また,銅板720に切削孔を形成し,上記流速測定部310をこの切削孔に埋設してさらに上記距離を短縮することもできる。 The molten steel 120 flowing at a flow velocity v in the mold 102 receives interference of the magnetic field B generated by the primary coil 500 of the flow velocity measuring unit 310 and generates an induced current Iu in the direction shown in the figure. At this time, since the flow velocity measuring unit 310 is embedded in the stainless steel 722 and installed in contact with the copper plate 720, the distance between the flow velocity measuring unit 310 and the molten steel 120 becomes very short. In addition, a cutting hole may be formed in the copper plate 720, and the flow velocity measuring unit 310 may be embedded in the cutting hole to further reduce the distance.

このように1次コイル500と測定すべき溶鋼120との距離が短くなると,1次コイル500に流す交流電流の周波数を低く設定しても十分な設定精度で流速を測定できる。また,交流電流の周波数を上げると,それに伴って出力(ゲイン)も増加し,2次コイル510が受信できる溶鋼120の流動による誘導電流も大きくなることから,S/N比が良好となり,流速の測定精度がより一層向上する。   As described above, when the distance between the primary coil 500 and the molten steel 120 to be measured is shortened, the flow velocity can be measured with sufficient setting accuracy even if the frequency of the alternating current flowing through the primary coil 500 is set low. Further, when the frequency of the alternating current is increased, the output (gain) increases accordingly, and the induced current due to the flow of the molten steel 120 that can be received by the secondary coil 510 also increases, so that the S / N ratio is improved and the flow velocity is increased. The measurement accuracy is further improved.

図5は,上記流速測定部310の鋳型102における配置をさらに詳細に説明するための横断面図である。ここでは,鋳型102のステンレス板722に1次コイル500が埋設され,さらに,1次コイル500内に,もしくは,隣接して,2次コイル510が設置されている。かかる2次コイル510は,1次コイル500とコイル中心軸が互いに直交している。   FIG. 5 is a cross-sectional view for explaining the arrangement of the flow velocity measuring unit 310 in the mold 102 in more detail. Here, the primary coil 500 is embedded in the stainless steel plate 722 of the mold 102, and the secondary coil 510 is further installed in or adjacent to the primary coil 500. In the secondary coil 510, the primary coil 500 and the coil central axis are orthogonal to each other.

図1および図4に示すような連続鋳造装置300の鋳型102を,幅1500mm,高さ800mm,キャビティー(鋳造空間)厚み250mmとし,流速測定部310を,メニスカスから150mm及び600mmの水冷短辺の外側面に配置した。連続鋳造装置300における注入ノズル110の角度を下向き25度に設定し,鋳造速度が1,1.3,1.5m/分である場合における,流速の実際測定値である信号値指数を測定した。ここでは,信号値指数が大きいほど,受信する信号レベルが高い(ゲインが高い)ことを示す。また,1次コイルに流した交流電流の周波数は,本実施例における物性値や鋳型銅板厚み等(π=3.14,μ=4π×10―7,σCu=10,σFe=0.7×10,dCu=0.03,dFe=0.01)より,数式5を用いて導き出した交流電流の周波数23.8Hz以下から5Hzを選択している。 The casting mold 102 of the continuous casting apparatus 300 as shown in FIGS. 1 and 4 has a width of 1500 mm, a height of 800 mm, and a cavity (casting space) thickness of 250 mm. Placed on the outer surface of the. The angle of the injection nozzle 110 in the continuous casting apparatus 300 was set to 25 degrees downward, and the signal value index, which is the actual measurement value of the flow velocity, was measured when the casting speed was 1,1.3, 1.5 m / min. . Here, the larger the signal value index, the higher the received signal level (higher gain). In addition, the frequency of the alternating current passed through the primary coil is the physical property value , the mold copper plate thickness, etc. (π = 3.14, μ = 4π × 10 −7 , σ Cu = 10 7 , σ Fe = 0 in this example). 7 × 10 6 , d Cu = 0.03, d Fe = 0.01), and 5 Hz is selected from the frequency of 23.8 Hz or less of the alternating current derived using Equation 5 .

また,従来の流速検出とも比較するため,連続鋳造装置300の下方に当たる,メニスカスから1.2mの位置に流速測定部を配置し,その1次コイルに周波数50Hzの交流電流を付与した。上記の測定結果を表1に示す。 Further, for comparison with conventional flow velocity detection, a flow velocity measurement unit was disposed at a position 1.2 m from the meniscus, which is below the continuous casting apparatus 300, and an alternating current with a frequency of 50 Hz was applied to the primary coil. The measurement results are shown in Table 1.

Figure 2007098400
Figure 2007098400

表1を参照すると,従来の流速測定部のデータ(信号値指数)は,ほぼノイズレベルであり,下降による流速が高い,例えば,鋳造速度1.5m/分の場合以外では測定が困難であることが理解される。それに対して,本実施形態の流速測定部では,出力(ゲイン)自体を大きくすることが可能であり,鋳造速度が低い1m/分の場合においても,信号値指数はノイズ信号レベルより遙かに高い信号レベルを示し,十分な精度かつ細かい分解能で測定できることが理解できる。 Referring to Table 1, the data (signal value index) of the conventional flow velocity measurement unit is almost noise level, and the flow velocity due to the descent is high, for example, it is difficult to measure except when the casting speed is 1.5 m / min. It is understood. On the other hand, in the flow velocity measurement unit of the present embodiment, the output (gain) itself can be increased, and the signal value index is much higher than the noise signal level even when the casting speed is low 1 m / min. It can be understood that it shows a high signal level and can be measured with sufficient accuracy and fine resolution.

また,鋳造速度が同じ1.5m/分においてノズルの片側への詰まりが発生した鋳造における,左右短辺の流速(信号値指数),即ち偏流度合いを測定し,表2に示した。かかる表2の比較から分かるように,従来の連続鋳造装置では偏流度合いがノイズ信号レベルとほぼ同等であるため把握困難であるが,本実施形態の連続鋳造装置では明確に検出することができる。 Further, in the casting clogging of the one side of the nozzle occurs in the casting speed is the same 1.5 m / min, a flow rate of the right and left short side (signal value index), i.e. measuring the drift degree, shown in Table 2. As can be seen from the comparison in Table 2, it is difficult to grasp because the degree of drift is almost equal to the noise signal level in the conventional continuous casting apparatus, but it can be clearly detected in the continuous casting apparatus of this embodiment.

Figure 2007098400
Figure 2007098400

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば,上記の実施形態においては水冷短辺側にのみ流速測定部を設置する構成を述べているがかかる場合に限られず,水冷長辺側にも設置することが可能である。   For example, in the above-described embodiment, the configuration in which the flow velocity measuring unit is installed only on the water-cooled short side is described. However, the present invention is not limited to this, and can be installed on the water-cooled long side.

また,流速測定部として,例えば,図4,5の構成を述べているが,かかる場合に限られず,溶鋼の流動による磁場(磁束)を測定する構成を有す様々な方法をとることができる。   Moreover, although the structure of FIGS. 4 and 5 is described as the flow velocity measuring unit, for example, the present invention is not limited to this, and various methods having a structure for measuring a magnetic field (magnetic flux) due to the flow of molten steel can be taken. .

本発明は,連続鋳造装置,流速測定方法にかかり,例えば,鋼の連続鋳造の鋳型において,溶鋼の流速を検出する流速測定部を備えた連続鋳造装置,流速測定方法に適用可能である。   The present invention relates to a continuous casting apparatus and a flow velocity measuring method. For example, in a continuous casting mold of steel, the present invention is applicable to a continuous casting apparatus and a flow velocity measuring method provided with a flow velocity measuring unit that detects a flow velocity of molten steel.

連続鋳造装置における溶鋼の流れを説明するための模式図である。It is a schematic diagram for demonstrating the flow of the molten steel in a continuous casting apparatus. 溶鋼の流速の検出の原理を示す説明図である。It is explanatory drawing which shows the principle of the detection of the flow rate of molten steel. 表皮深さと磁場との関係を示した説明図である。It is explanatory drawing which showed the relationship between skin depth and a magnetic field. 第2の実施形態における流速測定部の水平面における位置を説明するための模式図である。It is a schematic diagram for demonstrating the position in the horizontal surface of the flow-velocity measurement part in 2nd Embodiment. 流速測定部の鋳型における配置をさらに詳細に説明するための横断面図である。It is a cross-sectional view for explaining the arrangement of the flow velocity measuring unit in the mold in more detail. 従来の連続鋳造装置における溶鋼の流れを説明するための模式図である。It is a schematic diagram for demonstrating the flow of the molten steel in the conventional continuous casting apparatus. 流速測定部の位置による流速の検出の問題を説明するための模式図である。It is a schematic diagram for demonstrating the problem of the detection of the flow velocity by the position of a flow velocity measurement part. 鋳片幅が変更される連続鋳造装置と従来の流速測定部との関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between the continuous casting apparatus from which slab width is changed, and the conventional flow velocity measurement part.

符号の説明Explanation of symbols

100,300 連続鋳造装置
102 鋳型
108 溶鋼プール
110 注入ノズル
120 溶鋼
124 凝固シェル
130,310 流速測定部
500 1次コイル
510 2次コイル
100, 300 Continuous casting apparatus 102 Mold 108 Molten steel pool 110 Injection nozzle 120 Molten steel 124 Solidified shell 130, 310 Flow rate measuring unit 500 Primary coil 510 Secondary coil

Claims (4)

1対の水冷長辺と,前記1対の水冷長辺に狭持され前記1対の水冷長辺と平行に移動して鋳造幅を調整可能な1対の水冷短辺と,前記1対の水冷長辺と前記1対の水冷短辺とによって形成される鋳造空間内に溶鋼を注入する注入ノズルと,からなる鋳型を備えた連続鋳造装置であって,
交流磁場を生成する1次コイルと,中心軸が前記1次コイルと直交し,前記1次コイルによる磁場と前記溶鋼の流動とによって生じる磁場を測定する2次コイルと,からなり,前記水冷短辺の外側面に固定される溶鋼の流速測定部を備えることを特徴とする,連続鋳造装置。
A pair of water-cooled long sides, a pair of water-cooled short sides that are sandwiched between the pair of water-cooled long sides and move parallel to the pair of water-cooled long sides and can adjust the casting width, and the pair of water-cooled long sides A continuous casting apparatus comprising a casting mold comprising an injection nozzle for injecting molten steel into a casting space formed by a water-cooled long side and the pair of water-cooled short sides,
A primary coil that generates an alternating magnetic field, and a secondary coil that measures the magnetic field generated by the magnetic field generated by the primary coil and the flow of the molten steel, with the central axis orthogonal to the primary coil, and the water-cooled short coil A continuous casting apparatus comprising a flow rate measuring unit for molten steel fixed to the outer side surface of the side.
前記1次コイルに流す交流電流の周波数f[Hz]は,
f≦1/{πμ((√σCu)dCu+(√σFe)dFe
(ここで,dCu:鋳型銅板厚み[m],
Fe=k√(H/v):凝固シェル厚み[m]
σCu:鋳型銅板の電気伝導度[S/m],
σFe:鋼の電気伝導度[S/m],
H:メニスカス(湯面)から流速測定部の高さ中心までの鉛直距離[m],
:鋳造速度[m/min],
k:凝固定数[m/min1/2],
μ:透磁率[H/m]である。)
で表されることを特徴とする,請求項1に記載の連続鋳造装置。
The frequency f [Hz] of the alternating current flowing through the primary coil is
f ≦ 1 / {πμ ((√σ Cu ) d Cu + (√σ Fe ) d Fe ) 2 }
(Where d Cu : mold copper plate thickness [m],
d Fe = k√ (H / v c ): solidified shell thickness [m]
σ Cu : Electric conductivity [S / m] of the mold copper plate,
σ Fe : electrical conductivity of steel [S / m],
H: Vertical distance [m] from the meniscus (water surface) to the center of the height of the flow velocity measurement unit,
v c : casting speed [m / min],
k: coagulation constant [m / min 1/2 ],
μ: Magnetic permeability [H / m]. )
The continuous casting apparatus according to claim 1, wherein
前記流速測定部は,前記1対の水冷短辺の外側面にそれぞれ固定されることを特徴とする,請求項1または2に記載の連続鋳造装置。   3. The continuous casting apparatus according to claim 1, wherein the flow velocity measuring units are respectively fixed to outer surfaces of the pair of water-cooled short sides. 請求項1〜3のいずれかに記載の連続鋳造装置を用いて,鋳型内を流動する溶鋼の流速を測定する流速測定方法であって,
前記鋳型の外側面において,交流磁場を生成し,前記交流磁場と前記溶鋼の流動とによって生じる磁場を測定することを特徴とする,流速測定方法。
A flow rate measurement method for measuring a flow rate of molten steel flowing in a mold using the continuous casting apparatus according to any one of claims 1 to 3,
A flow velocity measuring method, wherein an alternating magnetic field is generated on an outer surface of the mold, and a magnetic field generated by the alternating magnetic field and the flow of the molten steel is measured.
JP2005287454A 2005-09-30 2005-09-30 Continuous casting apparatus and flow velocity measuring method Active JP4700466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287454A JP4700466B2 (en) 2005-09-30 2005-09-30 Continuous casting apparatus and flow velocity measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005287454A JP4700466B2 (en) 2005-09-30 2005-09-30 Continuous casting apparatus and flow velocity measuring method

Publications (2)

Publication Number Publication Date
JP2007098400A true JP2007098400A (en) 2007-04-19
JP4700466B2 JP4700466B2 (en) 2011-06-15

Family

ID=38025855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287454A Active JP4700466B2 (en) 2005-09-30 2005-09-30 Continuous casting apparatus and flow velocity measuring method

Country Status (1)

Country Link
JP (1) JP4700466B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080792A (en) * 2013-10-22 2015-04-27 新日鐵住金株式会社 Continuous casting method of steel
JP2017035716A (en) * 2015-08-11 2017-02-16 新日鐵住金株式会社 Molten steel flow rate measurement method and device in immersion nozzle, tundish for continuous casting and continuous casting method of double layered cast slab
CN111812351A (en) * 2020-06-28 2020-10-23 上海大学 Method for measuring flow velocity of molten steel near surface of crystallizer
CN112496281A (en) * 2020-12-10 2021-03-16 东北大学 Split type electromagnetic semi-continuous casting crystallizer and application method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207955A (en) * 1989-02-08 1990-08-17 Kawasaki Steel Corp Method for detecting drift stream of molten steel in mold at the time of continuously casting
JPH02311766A (en) * 1989-05-27 1990-12-27 Nippon Steel Corp Method and apparatus for measuring flow velocity of meniscus of molten metal
JPH0332457A (en) * 1989-06-29 1991-02-13 Kawasaki Steel Corp Method for detecting channeling flow of molten steel in continuous casting mold
JPH0441061A (en) * 1990-06-07 1992-02-12 Nisshin Steel Co Ltd Method for changing width of cast slab in continuous casting of steel
JPH05297012A (en) * 1992-04-16 1993-11-12 Nippon Steel Corp Method and device for measuring of meniscus flow velocity of molten metal
JPH11179508A (en) * 1997-12-22 1999-07-06 Sumitomo Metal Ind Ltd Slab width change method in steel continuous casting method
JP2000162227A (en) * 1998-11-30 2000-06-16 Nkk Corp Method and apparatus for measurement of flow velocity
JP2000246413A (en) * 1999-03-03 2000-09-12 Nkk Corp Method for estimating flowing speed of molten steel in mold for continuous casting
JP2002336945A (en) * 2001-05-16 2002-11-26 Nippon Steel Corp Method for detecting drift of molten steel in continuous casting for steel and instrument for detecting drift

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207955A (en) * 1989-02-08 1990-08-17 Kawasaki Steel Corp Method for detecting drift stream of molten steel in mold at the time of continuously casting
JPH02311766A (en) * 1989-05-27 1990-12-27 Nippon Steel Corp Method and apparatus for measuring flow velocity of meniscus of molten metal
JPH0332457A (en) * 1989-06-29 1991-02-13 Kawasaki Steel Corp Method for detecting channeling flow of molten steel in continuous casting mold
JPH0441061A (en) * 1990-06-07 1992-02-12 Nisshin Steel Co Ltd Method for changing width of cast slab in continuous casting of steel
JPH05297012A (en) * 1992-04-16 1993-11-12 Nippon Steel Corp Method and device for measuring of meniscus flow velocity of molten metal
JPH11179508A (en) * 1997-12-22 1999-07-06 Sumitomo Metal Ind Ltd Slab width change method in steel continuous casting method
JP2000162227A (en) * 1998-11-30 2000-06-16 Nkk Corp Method and apparatus for measurement of flow velocity
JP2000246413A (en) * 1999-03-03 2000-09-12 Nkk Corp Method for estimating flowing speed of molten steel in mold for continuous casting
JP2002336945A (en) * 2001-05-16 2002-11-26 Nippon Steel Corp Method for detecting drift of molten steel in continuous casting for steel and instrument for detecting drift

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080792A (en) * 2013-10-22 2015-04-27 新日鐵住金株式会社 Continuous casting method of steel
JP2017035716A (en) * 2015-08-11 2017-02-16 新日鐵住金株式会社 Molten steel flow rate measurement method and device in immersion nozzle, tundish for continuous casting and continuous casting method of double layered cast slab
CN111812351A (en) * 2020-06-28 2020-10-23 上海大学 Method for measuring flow velocity of molten steel near surface of crystallizer
CN112496281A (en) * 2020-12-10 2021-03-16 东北大学 Split type electromagnetic semi-continuous casting crystallizer and application method
CN112496281B (en) * 2020-12-10 2022-03-25 东北大学 Split type electromagnetic semi-continuous casting crystallizer and application method

Also Published As

Publication number Publication date
JP4700466B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
KR101047826B1 (en) Control systems, computer program products, apparatus and methods
JP2015522428A (en) Slab quality prediction apparatus and method
WO2014079180A1 (en) Device and method for measuring flow rate near liquid steel surface
JP4700466B2 (en) Continuous casting apparatus and flow velocity measuring method
JP2008260045A (en) Solidification delay suppressing method
JP6524849B2 (en) Method and apparatus for measuring flow rate of molten steel in immersion nozzle, tundish for continuous casting and continuous casting method for multi-layer slab
JP5690230B2 (en) Method for measuring molten layer thickness of mold powder for continuous casting
JP5672909B2 (en) Molten steel flow velocity measuring method, molten steel flow velocity measuring apparatus, and continuous casting operation method
JP6862846B2 (en) Method and equipment for measuring the flow rate of molten steel in the immersion nozzle, tundish for continuous casting, and continuous casting method for multi-layer slabs.
JP2008260044A (en) Continuous casting method of steel slab for preventing breakout caused by solidification delay
JP2007152424A (en) Method and device for detecting in-mold molten steel level in continuous casting apparatus
JP4414609B2 (en) Method and apparatus for detecting drift in molten steel in continuous casting of steel
CN1330439C (en) Control system, computer program product, device and method
JPH0194201A (en) Method and apparatus for measuring thickness of molten slag
KR100801116B1 (en) A nonuniform flow detection system of submerged entry nozzle in continuous casting mold with free surface height measurement
JP4501892B2 (en) Method and apparatus for estimating molten metal temperature in continuous casting mold
JPH08211084A (en) Flow velocity measuring device
JP4398848B2 (en) Steel continuous casting mold flow velocity measuring apparatus and detection method
Krasilnikov et al. Local heat transfer through mold flux film and optimal narrow face taper adjustment
RU2763994C1 (en) Apparatus and method for controlling continuous casting
KR20130099289A (en) Device for predicting quality of plate in continuous casting and method therefor
JPH09168847A (en) Method for continuously casting steel
JP4499016B2 (en) Slab continuous casting method
JP5413054B2 (en) Method and apparatus for determining surface maintenance of slab during continuous casting
KR20210116577A (en) A method for controlling a continuous casting machine, a control device for a continuous casting machine, and a method for manufacturing a slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110304

R151 Written notification of patent or utility model registration

Ref document number: 4700466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350