JPH02207955A - Method for detecting drift stream of molten steel in mold at the time of continuously casting - Google Patents

Method for detecting drift stream of molten steel in mold at the time of continuously casting

Info

Publication number
JPH02207955A
JPH02207955A JP2738489A JP2738489A JPH02207955A JP H02207955 A JPH02207955 A JP H02207955A JP 2738489 A JP2738489 A JP 2738489A JP 2738489 A JP2738489 A JP 2738489A JP H02207955 A JPH02207955 A JP H02207955A
Authority
JP
Japan
Prior art keywords
mold
molten steel
short
cooling water
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2738489A
Other languages
Japanese (ja)
Inventor
Masaru Washio
勝 鷲尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2738489A priority Critical patent/JPH02207955A/en
Publication of JPH02207955A publication Critical patent/JPH02207955A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To detect drift stream of molten steel in a mold and to reduce content of non-metallic inclusion in continuous cast slab by obtaining difference of conductive heat quantities of cooling water at both short sides of the mold at the time of pouring the molten steel into the mold for continuous casting with a submerged nozzle. CONSTITUTION:At the time of pouring the molten steel into the mold in a continuous casting apparatus with the submerged nozzle 2, molten steel discharging holes 3A, 3B in the submerged nozzle 2 are arranged toward both short sides 1A, 1B of the mold. Further, in both short short sides 1A, 1B of the mold, inlets 5A, 5B and outlets 6A, 6B for cooling water are arranged, respectively, to cool the short sides 1A, 1B of the mold. When the hole diameter of the discharging hole 3A comes to small by sticking of the non-metallic inclusion, such as alumina, more quantity of the molten steel from the discharging hole 3B flows out into the mold in priority and the conductive heat quantity at the short side 1B of the mold comes to more than that at the short side 1A. This is obtd. with temp. difference at the inlets and outlets for cooling water and the drift stream degree of the molten steel in the mold, that is the content of the non-metallic inclusion of alumina, etc., in the molten steel, is decided according to the difference and by eliminating the drift stream of the molten steel, the non-metallic inclusion quantity in the continuous cast slab is reduced and the quality is improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、連続鋳造時の鋳型内における溶鋼偏流の検知
方法に係り、詳しくは、連続鋳造時において鋳型内に浸
漬ノズルにより鋳込まれる溶鋼流の偏流を検知する方法
に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for detecting the drift of molten steel in a mold during continuous casting. This invention relates to a method for detecting drift in a flow.

〈従来の技術〉 一般に、連続鋳造における溶鋼中の非金属介在物は、溶
鋼の注入流によって鋳片内部まで持ち込まれ、その大部
分は場面上に浮上するが、残りの一部は鋳片内にそのま
ま捕捉される。この捕捉される非金属介在物の量は、鋳
込み時の鋳片内溶鋼流によって大きく変化することが知
られており、浸漬ノズルから吐出される溶鋼流が広い範
囲にわたって大きく、かつ、深くなればなるほど増加す
る傾向にある。
<Prior art> In general, non-metallic inclusions in molten steel during continuous casting are carried into the slab by the injection flow of molten steel, and most of them float to the surface, while the remaining part remains inside the slab. is captured as is. It is known that the amount of nonmetallic inclusions that are trapped varies greatly depending on the flow of molten steel in the slab during pouring. I see, there is a tendency to increase.

したがって、連続鋳造において、浸漬ノズルから吐出さ
れる溶鋼流が鋳片内に深く達しないように、鋳型両短片
側に向けて浸漬ノズルは側方に吐出孔を有する形状とさ
れ、しかも、鋳型内t’atlA表面に浮遊する表面被
覆用フラックスを巻き込まぬように、前記吐出孔は若干
下向きとされて使用されている。
Therefore, in continuous casting, in order to prevent the molten steel flow discharged from the immersion nozzle from reaching deep into the slab, the immersion nozzle is shaped to have a discharge hole on the side toward both short sides of the mold. The discharge hole is used so as to face slightly downward so as not to involve the surface coating flux floating on the t'atlA surface.

通常のスラブ連鋳機においては、浸漬ノズルは鋳型の中
央にその吐出孔は鋳型の短片側に向けられるように配置
され、吐出孔から吐出されるtgtlA流は鋳型内の貯
留溶鋼中を流れる間にその速度を減少し、鋳型の短片側
壁面への衝突によって反転流となる。この反転流は、一
方は場面側に向かう上昇流になり、他方は下方に向かう
下降流となって、この間に大きく減速される結果、上昇
流は湯面上のフラックスを渦中に巻き込むことなく、ま
た、下降流は鋳片中に深く到達しないようにして鋳片品
質を高める鋳造が行われている。
In a normal continuous slab caster, the submerged nozzle is placed in the center of the mold with its discharge hole directed toward the short side of the mold, and the tgtlA stream discharged from the discharge hole flows through the molten steel stored in the mold. The velocity of the flow decreases, and the flow becomes reversed due to collision with the short side wall of the mold. One side of this reversal flow becomes an upward flow toward the surface, and the other becomes a downward flow, and as a result of being greatly decelerated during this time, the upward flow does not involve the flux on the surface of the hot water in the vortex. Furthermore, casting is performed to improve the quality of the slab by preventing the downward flow from reaching deep into the slab.

しかしながら、浸漬ノズルの再吐出孔からの溶鋼流が均
等である場合は問題がないが、浸漬ノズル上のスライデ
ィングノズルの絞り開度や鋳込み速度などにより浸漬ノ
ズルを下降する溶鋼流動にゆらぎを生じた場合、あるい
は浸漬ノズルの内壁にアルミナなどの非金属介在物の付
着が増加した場合などには、吐出孔の均等関係がくずれ
、いずれか一方の吐出孔からの溶鋼流動が強くなり、い
わゆる偏流が生じることになる。
However, if the molten steel flow from the re-discharge hole of the immersion nozzle is uniform, there is no problem, but the flow of molten steel descending through the immersion nozzle may fluctuate depending on the throttle opening of the sliding nozzle on the immersion nozzle, the casting speed, etc. If non-metallic inclusions such as alumina increase on the inner wall of the immersion nozzle, the uniform relationship between the discharge holes will be disrupted, and the flow of molten steel from one of the discharge holes will become stronger, resulting in so-called uneven flow. will occur.

この偏流が生じると、鋳型内溶鋼流の内、強い流動を生
じた側は上昇流あるいは下降流が強くなる結果、フラッ
クスの巻き込みあるいは鋳片内部深くまで下降流が達す
ることによる内部品質の悪化を生じる。したがって、鋳
型内の溶鋼の流動状況を検知することは鋳造スラブなど
の品質を高める上で重要な要素の一つである。
When this drift occurs, the upward flow or downward flow of the molten steel flow in the mold becomes stronger on the side where the strong flow occurs, resulting in flux entrainment or deterioration of internal quality due to the downward flow reaching deep inside the slab. arise. Therefore, detecting the flow state of molten steel in the mold is one of the important factors in improving the quality of cast slabs and the like.

このような溶鋼流の偏流の発生を検知する方法としては
、従来、例えば特開昭62−197255号公報に開示
されているような浸漬ノズルと鋳型各類片との間にそれ
ぞれ渦流式レベル計を各2個配設して、それらのレベル
値の偏差から偏流を検出する方法が提案されている。
Conventionally, as a method for detecting the occurrence of such a drift in the molten steel flow, an eddy current level meter has been installed between a submerged nozzle and each piece of the mold, as disclosed in Japanese Patent Laid-Open No. 62-197255. A method has been proposed in which two of these are arranged and drift is detected from the deviation of their level values.

〈発明が解決しようとする課題〉 しかしながら、渦流レベル計を短片側に取付けることは
、その操作性やハンドリングが難しいばかりではなく、
渦流レベル計を制御用に別個に設置することにより設備
コストを増大するという問題があった。
<Problem to be solved by the invention> However, installing the eddy current level meter on the short side not only makes it difficult to operate and handle;
There is a problem in that installing an eddy current level meter separately for control increases equipment costs.

本発明は、上記のような課題を解決する連続鋳造時の鋳
型内における溶鋼偏流の検知方法を提供することを目的
とする。
An object of the present invention is to provide a method for detecting drifting of molten steel in a mold during continuous casting, which solves the above-mentioned problems.

〈課題を解決するための手段〉 本発明は、連続鋳造時の鋳型内における溶鋼偏流を検知
する方法であって、鋳型の両短片側を冷却する冷却水の
入側温度と出側温度とをそれぞれ測定し、両短片におけ
る入側温度測定値と出側温度測定値との温度差を求め、
該温度差をもとに鋳型内溶鋼流の偏流を検知することに
より、上記目的を達成しようとするものである。
<Means for Solving the Problems> The present invention is a method for detecting drifting of molten steel in a mold during continuous casting, in which the inlet temperature and the outlet temperature of cooling water for cooling both short sides of the mold are determined. Measure each, find the temperature difference between the inlet temperature measurement value and the outlet temperature measurement value on both short pieces,
The purpose is to achieve the above object by detecting the drift of the molten steel flow in the mold based on the temperature difference.

なお、前記温度差を抜熱量差としてもよい。Note that the temperature difference may be a difference in the amount of heat removed.

〈作 用〉 以下に、本発明の原理について、第1図を用いて説明す
る。
<Function> The principle of the present invention will be explained below using FIG. 1.

図に示すように、浸漬ノズル2は鋳型lの中央に配置さ
れ、その吐出孔3A、3Bはそれぞれ鋳型1の両短片I
A、IB側に向けられて左右対称に設けられており、吐
出孔3A、3Bから吐出される溶鋼流は矢視F、 G方
向に均等に流出して、スラブ4が鋳造される。また、短
片IA、IB側を冷却する冷却水は、それぞれ、供給管
5A、5Bを介して温度Ta+ (”C)、T□(°C
)で供給され、排出管6A、6Bを介して温度Taa(
”c)。
As shown in the figure, the immersion nozzle 2 is arranged at the center of the mold 1, and its discharge holes 3A and 3B are connected to both short pieces I of the mold 1, respectively.
They are symmetrically provided facing the A and IB sides, and the molten steel flow discharged from the discharge holes 3A and 3B flows out equally in the directions of arrows F and G, and a slab 4 is cast. In addition, the cooling water for cooling the short pieces IA and IB is supplied through supply pipes 5A and 5B at temperatures Ta+ (''C) and T□ (°C), respectively.
), and the temperature Taa (
”c).

T1゜(’Cンで排出される。なお、短片IA、IBに
それぞれ供給する冷却水の流fi V a  (It 
/a+in)Vm  (j!/a+in)が同じ(VA
−Vm ) であるとする。
The cooling water flow fi V a (It
/a+in)Vm (j!/a+in) is the same (VA
-Vm).

いま、吐出孔3A側にアル延すなどの非金属介在物の付
着が増加して詰まり現象を生じて、溶鋼が吐出孔3B側
から優先的に流出するとすると、鋳型1の短片IB側に
は常に熱いtg鋼が供給されることになるから、短片I
B側の抜熱量が大となる。
Now, suppose that the adhesion of non-metallic inclusions such as aluminum to the discharge hole 3A side increases and a clogging phenomenon occurs, and molten steel preferentially flows out from the discharge hole 3B side. Since hot TG steel will always be supplied, short piece I
The amount of heat removed from the B side is large.

すなわち、このときの短片IB側の冷却水の温度差ΔT
m  (−Ts。−T、りは、短片IAの温度差ΔTA
  (−TA−Tag)よりも大きくなる。このことか
ら、これらの温度差ΔTa、 ΔTmを下記(1)式を
用いて比較することにより、短片IA。
That is, the temperature difference ΔT of the cooling water on the short piece IB side at this time
m (-Ts.-T, ri is the temperature difference ΔTA of the short piece IA
(-TA-Tag). From this, by comparing these temperature differences ΔTa and ΔTm using the following equation (1), the short piece IA can be calculated.

IBのいずれに溶鋼流の偏流が生じているかを判定する
ことができるのである。
It is possible to determine in which part of the IB the molten steel flow is drifting.

ΔTl−ΔT、−ΔTA −・−・−・−・     
−・・・・・(1)そこで、吐出孔3A側に非金属介在
物6の付着が増加して詰まり現象を生じたときの(11
式で示す温度差ΔTと、連鋳後のスラブのスカーフィン
グ後において検出された短片IAとIB側のそれぞれの
表面ブローホール数LA  (個/rrf)、  L、
  (個/ボ)との差ΔL (−Ll −L、 )との
関係を調査してみたところ、第2図のような結果が得ら
れた。
ΔTl−ΔT, -ΔTA −・−・−・−・
- (1) Therefore, when the adhesion of non-metallic inclusions 6 increases on the discharge hole 3A side and a clogging phenomenon occurs, (11
The temperature difference ΔT shown by the formula and the number of surface blowholes LA (pcs/rrf) on the short pieces IA and IB sides detected after scarfing of the slab after continuous casting, L,
When we investigated the relationship between the difference ΔL (-Ll -L, ) and (pieces/bo), we obtained the results shown in Figure 2.

この図かられかるように、表面ブローホール数の差ΔL
と両短片IA、IBの冷却水温度差ΔTとの間にはよい
相関がみられる。すなわち、短片IB側に溶鋼流の偏流
があると、その吐出速度がみかけ上大きくなるため、浸
漬ノズルから吹き込む」「ガスの気泡やアルミナなどの
非金属介在物を巻き込む状態となり、短片IB側のスラ
ブ表面性状が悪くなるのである。
As can be seen from this figure, the difference in the number of surface blowholes ΔL
There is a good correlation between the temperature difference ΔT of the cooling water between the short pieces IA and IB, and the cooling water temperature difference ΔT. In other words, if there is a drift of the molten steel flow on the short piece IB side, the discharge speed will apparently increase, so it will be blown from the submerged nozzle, and non-metallic inclusions such as gas bubbles and alumina will be drawn in, causing the flow of the molten steel on the short piece IB side. The surface quality of the slab deteriorates.

なお、上記の説明では両短片IA、IBの冷却水!IV
x 、Vmが等しいとしたが、本発明はこれに限定され
るものではなく、両者が異なる場合においても、一方の
短片の温度例えばΔT、をΔT、・ (Vl/VA)と
して補正を施すことにより、同様の関係を求めることが
できる。
In addition, in the above explanation, the cooling water for both short pieces IA and IB! IV
Although it is assumed that x and Vm are equal, the present invention is not limited to this, and even if the two are different, the temperature of one short piece, for example ΔT, can be corrected by setting ΔT, · (Vl/VA). A similar relationship can be found by

また、ここでは、表面ブローホール数の差ΔLを知るた
めに温度差ΔTの値を用いたが、このΔTの代わりに、
両短片IA、IBの抜熱量Q^。
In addition, here, the value of the temperature difference ΔT was used to find out the difference ΔL in the number of surface blowholes, but instead of this ΔT,
Amount of heat removed from both short pieces IA and IB Q^.

Qm (kcai、/ nl ・h)を下記(2)、 
(3)式でそれぞれ求め、それらの抜熱量差ΔQを(4
)式を用いて求めるようにしても同様の関係が得られる
ことはいうまでもない。
Qm (kcai, / nl ・h) is expressed as (2) below,
(3), and the difference in heat removal ΔQ is (4
) It goes without saying that a similar relationship can be obtained by using the equation.

QA−ΔTA  ’ Wb  ・C/SA    −・
(2)Qs =ΔT、・W、−C/S、・−・・・・−
−−−−一・・・(3)ここで、 WA、W、、短片IA、IBの冷却水流量(kg/h) ;短片IA、IBの表面積(nf) ;冷却水比熱(kca 1 / kg ・”C)−Q、
          −・・・−(4)S^、SI ΔQ−Q。
QA-ΔTA' Wb ・C/SA −・
(2) Qs = ΔT, ・W, −C/S, ・・・・・・−
----1... (3) Here, WA, W, cooling water flow rate of short pieces IA, IB (kg/h); surface area of short pieces IA, IB (nf); specific heat of cooling water (kca 1 / kg・”C)-Q,
-...-(4) S^, SI ΔQ-Q.

〈実施例〉 〔実施例1〕 厚さ:  260nnX幅: 1200mmのサイズの
スラブを鋳込み速度: 1,3 m/sinで7.5m
の長さを鋳造して供試材lとし、その後同−条件で50
0mの長さを鋳込んで供試材2とした。それらの鋳込み
時の冷却水の温度差およびスカーフィング後のスラブの
表面ブローホール数の測定結果を第1表に示した。
<Example> [Example 1] A slab with a size of thickness: 260 nn x width: 1200 mm was poured at a speed of 7.5 m at 1.3 m/sin.
The length of was cast to obtain a test material L, and then 50 mm was cast under the same conditions.
A length of 0 m was cast to obtain sample material 2. Table 1 shows the measurement results of the temperature difference of the cooling water during casting and the number of blowholes on the surface of the slab after scarfing.

第   1   表 供試材2の鋳込み終了後に、鋳込みを中断して浸漬ノズ
ルを観察したところ、前出第1図で示した短片IA側の
吐出孔3Aに詰まり現象がみられ、その閉塞率(全吐出
孔の面積に対する閉塞面積の割合)は28%であった。
Table 1 After the casting of sample material 2 was completed, the casting was interrupted and the immersion nozzle was observed. As a result, a clogging phenomenon was observed in the discharge hole 3A on the short piece IA side shown in Fig. 1 above, and the blockage rate ( The ratio of the blocked area to the total area of the discharge holes was 28%.

なお、このときの短片1B側の吐出孔3Bの閉塞率は5
%であった。
In addition, the blockage rate of the discharge hole 3B on the short piece 1B side at this time is 5.
%Met.

この第1表かられかるように、詰まりのない状態でのブ
ローホール数は約1個/rrrであるから、たとえ吐出
孔3A側が閉塞して溶鋼流が吐出孔3B側に集中したと
しても、スラブ表面における双方のブローホール数の合
計は約2個/ポであると想定される筈である。しかし、
実際には吐出孔3B側の溶鋼流が増大した場合は、その
ために発生する欠陥が吐出流の増加率に対して指数関数
的に増加し、非常に悪い結果をもたらすことをこの表は
示しているのである。
As can be seen from Table 1, the number of blowholes in a non-clogged state is approximately 1/rrr, so even if the discharge hole 3A side is blocked and the molten steel flow is concentrated on the discharge hole 3B side, The total number of both blowholes on the slab surface should be assumed to be approximately 2/po. but,
In reality, this table shows that when the molten steel flow on the discharge hole 3B side increases, the defects that occur due to this increase exponentially with the rate of increase in the discharge flow, resulting in very bad results. There is.

〔実施例■〕[Example ■]

連続鋳造における両短片間の冷却水温度差ΔTが0.5
°C以下の厚さ=260噛×幅: 1000〜1350
胴のサイズでスループット:3.5〜4.OL /bi
nのスラブ25本を供試材3とし、温度差ΔTが2.5
〜3゜5°Cの厚さ:260mmX幅: 1010〜1
380mmのサイズでスループット:3−5〜4.OL
/winのスラブ12本を供試材4として、これらを熱
間圧延した後、酸洗処理を施して欠陥状況をチエツクし
た。
Cooling water temperature difference ΔT between both short pieces in continuous casting is 0.5
Thickness below °C = 260 bites x width: 1000-1350
Throughput by body size: 3.5-4. OL/bi
Sample material 3 is 25 slabs of n, and the temperature difference ΔT is 2.5.
~3°5°C Thickness: 260mmX Width: 1010~1
Throughput at 380mm size: 3-5~4. OL
Twelve slabs of /win were used as sample material 4, and after hot rolling, they were subjected to pickling treatment and checked for defects.

その結果、供試材3のコイル欠陥長さ不良率が平均で3
.8%であったが、供試材4の場合は12.4%もあり
、そのうち10%以上のコイルが2本も発生して格落ち
になった。
As a result, the coil defect length defect rate of sample material 3 was 3 on average.
.. It was 8%, but in the case of sample material 4, it was 12.4%, and among them, two coils with 10% or more occurred and were downgraded.

〈発明の効果〉 以上説明したように、本発明によれば、既設の鋳型冷却
水の温度差を用いるのみでよいから、簡便でかつ安価に
鋳型内の溶鋼流の偏流を検出することができる。さらに
、これによって、製品品質の判定が容易になるから、製
品の歩留り向上に寄与することが可能である。
<Effects of the Invention> As explained above, according to the present invention, it is only necessary to use the temperature difference of the existing mold cooling water, so it is possible to easily and inexpensively detect the drift of the molten steel flow in the mold. . Furthermore, this makes it easier to determine product quality, which can contribute to improving product yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の原理を示す説明図、第2図は、鋳型
両短片冷却水の温度差とスラブの表面ブローホール数の
差の関係を示す特性図である。 l・・;鋳型、IA、IB・・・短片、  2・・・浸
漬ノズル、  3・・・吐出孔、  4・・・スラブ、
  5・・・供給管、  6・・・排出管。 特許出願人   川崎製鉄株式会社
FIG. 1 is an explanatory diagram showing the principle of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between the temperature difference in the cooling water of both mold strips and the difference in the number of blowholes on the surface of the slab. l...; mold, IA, IB... short piece, 2... immersion nozzle, 3... discharge hole, 4... slab,
5... Supply pipe, 6... Discharge pipe. Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 1、連続鋳造時の鋳型内における溶鋼偏流を検知する方
法であって、鋳型の両短片側を冷却する冷却水の入側温
度と出側温度とをそれぞれ測定し、両短片における入側
温度測定値と出側温度測定値との温度差を求め、該温度
差をもとに鋳型内溶鋼流の偏流を検知することを特徴と
する連続鋳造時の鋳型内における溶鋼偏流の検知方法。 2、前記温度差を抜熱量差としたことを特徴とする請求
項1記載の連続鋳造時の鋳型内における溶鋼偏流の検知
方法。
[Claims] 1. A method for detecting drifting of molten steel in a mold during continuous casting, which measures the inlet and outlet temperatures of cooling water that cools both short sides of the mold, and A method of uneven flow of molten steel in a mold during continuous casting, characterized by determining the temperature difference between an inlet temperature measurement value and an outlet temperature measurement value of a short piece, and detecting the uneven flow of molten steel in the mold based on the temperature difference. Detection method. 2. The method for detecting drifting of molten steel in a mold during continuous casting according to claim 1, wherein the temperature difference is a difference in amount of heat removed.
JP2738489A 1989-02-08 1989-02-08 Method for detecting drift stream of molten steel in mold at the time of continuously casting Pending JPH02207955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2738489A JPH02207955A (en) 1989-02-08 1989-02-08 Method for detecting drift stream of molten steel in mold at the time of continuously casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2738489A JPH02207955A (en) 1989-02-08 1989-02-08 Method for detecting drift stream of molten steel in mold at the time of continuously casting

Publications (1)

Publication Number Publication Date
JPH02207955A true JPH02207955A (en) 1990-08-17

Family

ID=12219553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2738489A Pending JPH02207955A (en) 1989-02-08 1989-02-08 Method for detecting drift stream of molten steel in mold at the time of continuously casting

Country Status (1)

Country Link
JP (1) JPH02207955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098400A (en) * 2005-09-30 2007-04-19 Nippon Steel Corp Continuous casting apparatus and method for measuring flowing rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098400A (en) * 2005-09-30 2007-04-19 Nippon Steel Corp Continuous casting apparatus and method for measuring flowing rate
JP4700466B2 (en) * 2005-09-30 2011-06-15 新日本製鐵株式会社 Continuous casting apparatus and flow velocity measuring method

Similar Documents

Publication Publication Date Title
JP6358178B2 (en) Continuous casting method and mold cooling water control device
JP2011224583A (en) Method for determining centerline segregation of continuously cast slab
JP2009090309A (en) Continuous casting method for medium carbon steel preventing crack of slab by monitoring heat flux of mold copper plate
RU2520891C2 (en) Method of steel continuous casting and method of sheet steel production
JPH02207955A (en) Method for detecting drift stream of molten steel in mold at the time of continuously casting
JP3230513B2 (en) Method of estimating molten steel flow velocity in continuous casting mold, quality control method in continuous casting of steel, and continuous casting method of steel
JP2008238256A (en) Method for producing continuously cast slab and continuous caster
JPH105957A (en) Detecting method for fluid of molten steel in continuous casting mold and controlling method thereof
JP3649143B2 (en) Continuous casting method
CN115592083A (en) Bias flow detection method and device for submerged nozzle of slab crystallizer
JP3214374B2 (en) Continuous casting of steel
JP2009214150A (en) Surface defect-determining method for continuously cast slab and method for producing the same
KR100801116B1 (en) A nonuniform flow detection system of submerged entry nozzle in continuous casting mold with free surface height measurement
JP2001129645A (en) Immersion nozzle for continuous casting and continuous casting method
JPH04322859A (en) Method for controlling molten metal flow in continuous casting mold
JPH02137655A (en) Method for measuring fluctuation in molten steel surface and method for controlling such fluctuation
JPS619966A (en) Estimating method of amount of molten steel remaining in ladle
JPH02307656A (en) Continuous casting method
JP5020687B2 (en) Continuous casting method of slab steel with little center segregation
JP2012086249A (en) Method and device for detecting breakout in continuous casting
JP2010194548A (en) Method for estimating solidification shell thickness in continuous casting and apparatus therefor, and method for detecting breakout in continuous casting and apparatus therefor
Yao et al. Development of an experimental system for the study of the effects of electromagnetic stirring on mold heat transfer
JPH05337618A (en) Method for evaluating flow condition in inner part of mold for continuous casting
JPH04322858A (en) Method and device for restraining drifted flow in continuous casting mold
CN117300086A (en) Method for pre-judging casting blank longitudinal crack risk before production and continuous casting method based on pre-production