JPS619966A - Estimating method of amount of molten steel remaining in ladle - Google Patents

Estimating method of amount of molten steel remaining in ladle

Info

Publication number
JPS619966A
JPS619966A JP13272084A JP13272084A JPS619966A JP S619966 A JPS619966 A JP S619966A JP 13272084 A JP13272084 A JP 13272084A JP 13272084 A JP13272084 A JP 13272084A JP S619966 A JPS619966 A JP S619966A
Authority
JP
Japan
Prior art keywords
molten steel
ladle
amount
magnetic field
change point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13272084A
Other languages
Japanese (ja)
Other versions
JPS6257427B2 (en
Inventor
Mutsumi Marutani
丸谷 睦
Shoichi Hiwasa
章一 日和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13272084A priority Critical patent/JPS619966A/en
Publication of JPS619966A publication Critical patent/JPS619966A/en
Publication of JPS6257427B2 publication Critical patent/JPS6257427B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/186Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using electric, magnetic, sonic or ultrasonic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To estimate the amt. of the molten steel remaining in a ladle in real time with high accuracy with the change point of the induced magnetic field point according to the outflow of the molten steel as a reference position by disposing an excitation coil and magnetic field intensity detecting coil on the wall surface of the ladle so as to face each other and detecting the above-mentioned change point. CONSTITUTION:The induced magnetic field intensity of the excitation coil 14 in the outflow process of the molten steel 5 in the ladle 1 is measured by the detecting coil 15. At least the two change points among the change points of the magnetic field intensity i.e., the points A, B, C of the time when the molten steel surface 11 arrives at the top and bottom ends of the coils 14, 15 and the zero amt. of the molten steel remaining in the ladle 1 are detected and are stored in a calculator 20. The outflow rate of the molten steel 5 between the two points B and C is measured or determined by calculation (the amt. of the steel remaining at the change point C is zero) and the amt. of the molten steel at the point B is stored in the calculator 20 for the purpose of the succeeding measurement. The amt. of the above-mentioned steel 5 at the point B is preferably corrected by the estimated rate of erosion of furnace wall refractories 3 and is used as the estimated reference value at the point B in the next measurement.

Description

【発明の詳細な説明】 この発明は鋼の連続鋳造に使用される取鍋の如く、底部
に溶鋼流出口を設けた取鍋内の溶鋼残量を推定する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for estimating the remaining amount of molten steel in a ladle having a molten steel outlet at the bottom, such as a ladle used in continuous steel casting.

一般に鋼の連続鋳造においては、第1図に示すように取
l111の底部に設けられた溶鋼流出口2にスライディ
ングゲート3およびロングノズル4を取付けておき、取
鍋内の溶鋼5を、前記スライディングゲート3およびロ
ングノズル4を経てタンディツシュ6に注入し、さらに
タンディツシュ6内の溶鋼をモールド7に注入して鋳込
み、鋳片8とするのが通常である。
Generally, in continuous steel casting, a sliding gate 3 and a long nozzle 4 are attached to the molten steel outlet 2 provided at the bottom of the ladle as shown in FIG. Usually, the molten steel is injected into a tundish 6 through a gate 3 and a long nozzle 4, and then the molten steel in the tundish 6 is injected into a mold 7 and cast into a slab 8.

上述のような鋼の連続鋳造においては、取鍋1内の溶鋼
がなくなれば、別の取鍋と交換して連続鋳造を継続する
。しかるに取鍋1内の溶鋼5の湯面にはスラグ9が存在
し、取鍋内溶鋼の流出末期にはスラブも流出を開始する
から、取鍋内の溶鋼が完全になくなってからスライディ
ングゲート3を閉じれば、取鍋内のスラグ9もタンディ
ツシュ6内に流入してモールド7を通じ鋳片8内に侵入
し、鋳片の内部欠陥の原因となるおそれがある。
In the continuous casting of steel as described above, when the molten steel in the ladle 1 runs out, it is replaced with another ladle and continuous casting is continued. However, slag 9 exists on the surface of the molten steel 5 in the ladle 1, and at the end of the outflow of the molten steel in the ladle, the slab also starts to flow out, so the sliding gate 3 is opened only after the molten steel in the ladle is completely gone. If the ladle is closed, the slag 9 in the ladle may also flow into the tundish 6 and enter the slab 8 through the mold 7, causing internal defects in the slab.

ぞこで従来一般には取鍋内の溶鋼残量が少なくなったこ
とを操作員が経験的に判別してスライディングゲート3
を閉じることにより取鍋内スラグの流出を防ぐことが行
なわれていた。しかしながら実際には取鍋内の溶鋼量は
目視し得ないから、取鍋中の溶鋼が少なくなったことは
、現実には取鍋内のスラグ9がロングノズル4を通じて
タンディジツユ6内に侵入し始めた時点以降でなければ
判断できない。そのため上述のような経験に頼った操業
においては、スラグがタンディツシュ6内に流入して結
果的に鋳片の内部欠陥をもたらすことを殆んど避は得な
かったのが実情である。さらに実際の取鍋内においては
溶鋼とスラグとが完全に分離しているわけではなく、あ
る程度混合状態にあるから、鋳片の品質を良好に保つた
めには、取鍋サイズや品質要求に応じて1〜20トン程
度の範囲で溶鋼を取鍋中に残したままスライディングゲ
ートを閉じる必要がある。
Conventionally, an operator would empirically determine that the remaining amount of molten steel in the ladle was low and then open the sliding gate 3.
By closing the ladle, the slag in the ladle was prevented from flowing out. However, in reality, the amount of molten steel in the ladle cannot be visually observed, so the fact that the amount of molten steel in the ladle has decreased actually means that the slag 9 in the ladle has started to enter the tandy pipe 6 through the long nozzle 4. It cannot be determined until after that point. Therefore, in the operation based on experience as described above, it is almost inevitable that slag will flow into the tundish 6 and result in internal defects in the slab. Furthermore, in the actual ladle, the molten steel and slag are not completely separated, but are mixed to some extent, so in order to maintain good quality of the slab, it is necessary to adjust the ladle size and quality requirements. It is necessary to close the sliding gate while leaving the molten steel in the ladle in the range of about 1 to 20 tons.

そこで従来から何らかのデータに基いて取鍋内の溶鋼残
量を推定し、その推定した溶鋼残留量に基いてスライデ
ィングゲートを閉じる方法が考えられており、またその
方法を実施するために取鍋内溶鋼残留量を推定する方法
が従来からいくつか提案されている。しかしながら従来
提案されている取鍋的溶鋼残量推定方法は、いずれも精
度が低く、実用化するには不充分なものであった。
Therefore, a method of estimating the amount of molten steel remaining in the ladle based on some data and closing the sliding gate based on the estimated amount of molten steel remaining has been considered. Several methods have been proposed to estimate the amount of remaining molten steel. However, all of the conventionally proposed methods for estimating the remaining amount of molten steel in a ladle have low accuracy and are insufficient for practical use.

すなわち従来の取鍋的溶鋼残量推定方法としては、先ず
第1には、溶鋼精錬工程における溶鋼の取鍋ごとの生産
量の推定値を基準とし、実績鋳造量を差し引いて取鍋内
の溶鋼残量を算出する方法が提案されているが、この場
合、実際には精錬工程での溶鋼生産急のばらつきが大き
いため、取鍋自溶tj4Il推定値の精度も低くならざ
るを得ない。
In other words, the conventional method for estimating the remaining amount of molten steel in a ladle is to first calculate the amount of molten steel in the ladle by subtracting the actual casting amount based on the estimated production amount of molten steel for each ladle in the molten steel refining process. A method of calculating the remaining amount has been proposed, but in this case, the accuracy of the estimated value of ladle self-melting tj4Il is inevitably low, since there is actually a large variation in the production of molten steel in the refining process.

また第2の方法として、クレーン秤量器により取鍋を秤
量し、空の状態での取鍋重量を差し引いて取鍋内の初期
溶鋼量を算出し、その量から実績鋳造量を差し引いて取
鍋内溶鋼残量を推定する方法がある。しかながら取鍋内
には溶鋼のほか相当量のスラグが存在し、そのためこの
方法の場合スラグの分だけ誤差が生じる。またスラグ量
を推定してその分を差し引くことも考えられるが、スラ
グ層は操業上のばらつきが大きく、正確な推定は困it
である。
The second method is to weigh the ladle with a crane weigher, subtract the weight of the empty ladle to calculate the initial amount of molten steel in the ladle, and subtract the actual casting amount from that amount to calculate the amount of molten steel in the ladle. There is a method to estimate the amount of internal molten steel remaining. However, in addition to the molten steel, there is a considerable amount of slag in the ladle, and therefore, in this method, an error occurs due to the amount of slag. It is also possible to estimate the amount of slag and subtract it, but the slag layer varies widely during operation, and accurate estimation is difficult.
It is.

第3の方法としては、第2図に示すように取鍋1の上方
に距離センサ10を設置して溶鋼5の湯面レベル11を
検出し、溶#l量を算出する方法がある。しかしながら
溶鋼5の上面にはスラグ9が存在するため、この方法の
場合湯面レベル11を正しく検出できないことが多い。
A third method is to install a distance sensor 10 above the ladle 1 to detect the level 11 of the molten steel 5, as shown in FIG. 2, and calculate the amount of molten steel #1. However, since slag 9 is present on the upper surface of the molten steel 5, the molten metal level 11 cannot often be detected correctly in this method.

また仮にスラグ層を透過できるようなii磁波を距離セ
ンサ10に用いて場面レベル11を正しく検出できたと
しても、取!i!!耐火物の溶損の影響によって溶鋼量
の推定精度が低下する。すなわち取鍋耐大物の溶損が進
行すれば取鍋内容積が大きくなって、同じ場面レベルで
も溶IIIが大きくなり、したがって実際の溶鋼量との
誤差が大きくなる。
Furthermore, even if the distance sensor 10 were to use II magnetic waves that can pass through the slag layer to correctly detect the scene level 11, it would not be possible to detect the scene level 11 correctly! i! ! The accuracy of estimating the amount of molten steel decreases due to the effects of erosion of refractories. That is, as the ladle-resistant material progresses, the inner volume of the ladle becomes larger, and even at the same scene level, the melt III becomes larger, and therefore the error from the actual amount of molten steel becomes larger.

以上のように従来の取鍋的溶鋼残量推定方法はいずれも
実際の溶鋼量に対する誤差が大きく、そのため従来の推
定方法を用いてスライディングゲートの閉止タイミング
をとる場合には、安全サイドを見積って冬目の残留量で
スライディングゲートを閉じざるを得す、したがってス
クラップとなる量が多く、コスト高となる問題があった
As mentioned above, all of the conventional ladle-based methods for estimating the remaining amount of molten steel have large errors in relation to the actual amount of molten steel. Therefore, when determining the closing timing of the sliding gate using the conventional estimation method, it is necessary to estimate on the safe side. There was a problem in that the sliding gate had to be closed due to the residual amount of winter waste, which resulted in a large amount of scrap, resulting in high costs.

この発明は以上の事情に鑑みてなされたもので、取鍋内
のスラグの量や取鍋耐大物の溶損量に無関係に取鍋内の
溶鋼量を高精度で推定する方法を提供することを目的と
するものである。
This invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for estimating the amount of molten steel in a ladle with high accuracy, regardless of the amount of slag in the ladle or the amount of corrosion damage of large ladle-resistant materials. The purpose is to

すなわちこの発明の方法は、底部に溶鋼流出口が設けら
れた取鍋内の溶鋼残量を推定するにあたり、取鍋の相対
する壁面の耐火物に励磁コイルおよび磁界検出コイルを
対向配置しておき、励磁コイルから誘起される磁界の強
度を検出コイルで測定して、取鍋内溶鋼の流出過程にお
ける誘起磁界強度の少なくとも2つの変化点を検出し、
それらの変化点のうち第1の変化点から第2の変化点ま
での取鍋内溶鋼流出量を測定もしくは演算により求める
とともに第2の変化点における残鋼量を求め、その求め
られた流出量および残鋼量から第1の変化点における溶
#lIを定めておき、次回の測定時においては前記第1
の変化点を検知してその第1の変化点における前記溶鋼
口を基準として取鍋自溶銅銭−を推定することを特徴と
するものである。このように取鍋の壁面に配置した励磁
コイルの誘起磁界をその励磁コイルに対し対向配置した
検出コイルで測定して誘起磁界の変化点を検知し、その
変化点を基準位置として溶鋼残量を推定すれば、その変
化点はスラグの存在、スラグの量にほとんど影響を受け
ないため、スラグの影響による誤差を招くことなく、高
精度で溶鋼残量を推定することができる。また第1の変
化点における溶[1を次回の基準量として用いるに際し
て、炉@I!耐火物の取鍋1回使用時の溶重量でその基
準量[tを補正すれば、溶損の影響をほとんど受けるこ
となく溶W4残mを推定することができるのである。
In other words, the method of the present invention, when estimating the remaining amount of molten steel in a ladle with a molten steel outlet provided at the bottom, requires that an excitation coil and a magnetic field detection coil be placed facing each other on refractories on opposing walls of the ladle. , measuring the intensity of the magnetic field induced from the excitation coil with a detection coil to detect at least two changing points of the intensity of the induced magnetic field during the outflow process of molten steel in the ladle;
The amount of molten steel flowing out in the ladle from the first changing point to the second changing point among those changing points is determined by measurement or calculation, and the amount of remaining steel at the second changing point is determined, and the calculated amount of flowing out is determined. The melt #lI at the first change point is determined from the remaining steel amount, and the first
The present invention is characterized in that the ladle self-melting copper coin is estimated based on the molten steel opening at the first changing point by detecting a changing point. In this way, the induced magnetic field of the excitation coil placed on the wall of the ladle is measured by the detection coil placed opposite to the excitation coil, the change point of the induced magnetic field is detected, and the remaining amount of molten steel is determined using the change point as a reference position. If estimated, the change point is almost unaffected by the presence of slag and the amount of slag, so the remaining amount of molten steel can be estimated with high accuracy without causing errors due to the influence of slag. In addition, when using the melt [1 at the first change point as the next reference amount, the furnace @I! If the reference amount [t is corrected by the melt weight when a refractory ladle is used once, it is possible to estimate the remaining melt W4 m without being affected by melting loss.

以下にこの発明の推定方法について第3図以降の図面を
参照して詳細に説明する。
The estimation method of the present invention will be explained in detail below with reference to the drawings from FIG. 3 onwards.

第3図はこの発明の方法を実施する状態の一例を示すも
のであって、鉄皮12に炉壁耐火物13を内張すしてな
る取鍋1の炉壁耐火物13中には、相互に相対する位置
に励磁コイル14および検出コイル15が対向状に埋込
まれている。励磁コイル14には、交流励磁電流発生器
16から供給された交流励磁N流が流れ、取鍋1内に交
流磁界を誘起させる。−力検出コイル15は、前記励磁
コイル14により誘起された磁界の検出コイル位置にお
ける磁界強度を起電力として検出する。
FIG. 3 shows an example of a state in which the method of the present invention is carried out, in which there is mutual interaction between the furnace wall refractories 13 of the ladle 1, which is formed by lining the iron shell 12 with the furnace wall refractories 13. An excitation coil 14 and a detection coil 15 are embedded in opposing positions at positions opposite to each other. An AC excitation N current supplied from an AC excitation current generator 16 flows through the excitation coil 14 to induce an AC magnetic field within the ladle 1 . - The force detection coil 15 detects the magnetic field intensity at the detection coil position of the magnetic field induced by the excitation coil 14 as an electromotive force.

ここで、励磁コイル14により取鍋1内に誘起された磁
界の分布は、取鍋内の溶鋼5の影響を強く受ける。一方
スラグ9も磁界分布に対し若干の影響を与えるが、溶鋼
5の影響に比較すれば格段に少なく、したがって取鍋内
の磁界分布はスラグ9が存在しない溶鋼5のみの場合と
実質的に同様の磁界分布となる。このように取鍋1内の
磁界分布は溶鋼5の影響を受け、その溶鋼5の場面レベ
ル11によって検出コイル15が検出する磁界強度が変
化する。
Here, the distribution of the magnetic field induced in the ladle 1 by the excitation coil 14 is strongly influenced by the molten steel 5 in the ladle. On the other hand, the slag 9 also has a slight effect on the magnetic field distribution, but it is much less than the effect of the molten steel 5, and therefore the magnetic field distribution in the ladle is substantially the same as in the case of only the molten steel 5 without the slag 9. The magnetic field distribution is as follows. In this way, the magnetic field distribution within the ladle 1 is influenced by the molten steel 5, and the magnetic field intensity detected by the detection coil 15 changes depending on the scene level 11 of the molten steel 5.

検出コイル15によって検出される磁界強度の変化を、
取消自溶l!45の排出に伴なう濡面レベル11の変化
と対応して第4図(A)〜(D)に示す。なお第4図(
△)〜(D)において、検出コイル15により検出され
る磁界強度による起電力を電圧計17の指針で示す。ま
たここで1illlVaコイル14と検出コイル15の
上端同士は同じレベルにあり、また上端同士も同じレベ
ルにあるものとする。
The change in magnetic field strength detected by the detection coil 15 is
Cancellation self-melting! FIGS. 4(A) to 4(D) show the changes in the wet surface level 11 due to the discharge of the liquid 45. In addition, Figure 4 (
In Δ) to (D), the electromotive force due to the magnetic field strength detected by the detection coil 15 is indicated by the pointer of the voltmeter 17. It is also assumed here that the upper ends of the 1illVa coil 14 and the detection coil 15 are at the same level, and that the upper ends are also at the same level.

第4図(A)に示すように角面レベル11がコイル14
.15の上端よりも上方にある場合には、コイル14.
15の間が溶鋼5によって完全に遮断されるため、検出
コイル15が検出する磁界強度は小さい。すなわち励磁
コLル15からの直接の磁束(1次磁界)は検出コイル
15に到達せず、励磁コイル14から溶鋼5内に入りか
つその溶鋼5から溜洩した磁束(2次磁界19)のみが
検出コイル15に検出されるが、その2次磁界19は1
次磁界と比較して格段に弱いから、検出コイル15によ
る検出磁界強度の絶対レベルは低い。
As shown in FIG. 4(A), the corner level 11 is the coil 14.
.. 15, the coil 14.
15 is completely blocked by the molten steel 5, the magnetic field strength detected by the detection coil 15 is small. In other words, the direct magnetic flux (primary magnetic field) from the excitation coil 15 does not reach the detection coil 15, but only the magnetic flux (secondary magnetic field 19) that enters the molten steel 5 from the excitation coil 14 and leaks from the molten steel 5. is detected by the detection coil 15, but its secondary magnetic field 19 is 1
Since it is much weaker than the secondary magnetic field, the absolute level of the magnetic field strength detected by the detection coil 15 is low.

次に第4図(B)に示すように場面レベル11がコイル
14.15の上端よりも下方に下がった場合(但しコイ
ル14.15の下端よりは上方)には、励磁コイル14
からの1次磁界18の一部が検出コイル15によって検
出されるようになる。
Next, as shown in FIG. 4(B), when the scene level 11 falls below the upper end of the coil 14.15 (but above the lower end of the coil 14.15), the excitation coil 14
A part of the primary magnetic field 18 from the magnetic field 18 comes to be detected by the detection coil 15.

そして場面レベル11が下がるほど、励磁コイル14か
らの1次磁界強度は大きくなるから、場面レベル11の
低下に伴って検出コイル15の検出磁界強度は高くなる
。なおこの過程では励磁コイル14から溶鋼5を介して
の2次磁界19も検出コイル15によって検出される。
As the scene level 11 decreases, the primary magnetic field strength from the excitation coil 14 increases, so as the scene level 11 decreases, the detection magnetic field strength of the detection coil 15 increases. In this process, the secondary magnetic field 19 from the excitation coil 14 via the molten steel 5 is also detected by the detection coil 15.

このようにして、第4図<C>に示すように湯面レベル
11がコイル14.15の下端のレベルと同じレベルと
なった時点で1次磁界強度が最大となり、その後第4図
(D)に示す如く場面レベル11がコイル14.15の
下端よりも下がれば、1次磁界強度は不変であるが、溶
鋼が励磁コイル14および検出コイル15の双方から離
れることによって、2次磁界強度が次第に低下して行く
In this way, the primary magnetic field strength reaches its maximum when the hot water level 11 reaches the same level as the lower end of the coil 14.15, as shown in Fig. 4 (D). ), if the scene level 11 falls below the lower end of the coil 14.15, the primary magnetic field strength remains unchanged, but as the molten steel moves away from both the excitation coil 14 and the detection coil 15, the secondary magnetic field strength increases. It gradually decreases.

したがって第4図(C)に示すように湯面レベル11が
コイル14.15の下端に至った時点で検出コイル15
による検出磁界強度(起電力)が最大となり、その後は
検出磁界強度は次第に低下することになる。そして取f
s1内の溶鋼がなくなれば、それ以上検出コイル15に
よる検出磁界強度(起電力)は低下しない。
Therefore, as shown in FIG. 4(C), when the hot water level 11 reaches the lower end of the coil 14.15, the detection coil 15
The detected magnetic field strength (electromotive force) becomes maximum, and thereafter the detected magnetic field strength gradually decreases. And take f
Once the molten steel in s1 disappears, the magnetic field strength (electromotive force) detected by the detection coil 15 does not decrease any further.

以上のような湯面レベル11と検出コイル15の検出磁
界強度との関係をまとめれば、第5図のように表わせる
。第5図において横軸は検出コイル15の検出磁界強度
(起電力)をあられし、縦軸は溶#15の湯面レベル1
1をコイル14.15の位置と対応してあられす。
The relationship between the hot water level 11 and the magnetic field strength detected by the detection coil 15 as described above can be summarized as shown in FIG. In Fig. 5, the horizontal axis represents the detected magnetic field strength (electromotive force) of the detection coil 15, and the vertical axis represents the level 1 of the melt #15.
1 corresponds to the position of coil 14.15.

第5図からも明らかなように、湯面レベル11がコイル
14.15の上端よりも上方にある状態からコイル14
.15の上端に達するまでの間は検出コイル15の起電
力はほぼ一定の低いレベルにあり、湯面レベル11がコ
イル14.15の上端に達した時点(これを時点Aとす
る)からコイル14.15の下端に達するまでは検出コ
イル15の起電力が急激に増大し、コイル14.15の
下端に達した時点(これを時点Bとする)で起電力が最
大となる。そして時dB以降は、湯面レベル11が炉底
に達した時点すなわち取鍋1内の溶鋼5がなくなった時
点(これを時点Cとする)まで起電力がゆるやかに減少
する。したがって検出コイル15の起電力の変化は、時
点A、B、Cの3点で顕著にとらえることができる。そ
してまた時点A、Bはコイル14.15と溶15の湯面
レベル11との位置関係によって定まるから、スラグ9
の存在や耐火物の溶損とは無関係に、常に一定の位置に
対応することになる。また時点Cは溶鋼がなくなった時
点であるから、これもスラグや耐火物の溶損とは無関係
に一定の位置に対応することになる。
As is clear from FIG. 5, when the hot water level 11 is above the upper end of the coil 14.
.. The electromotive force of the detection coil 15 is at an almost constant low level until it reaches the upper end of the coil 14.15, and from the time when the hot water level 11 reaches the upper end of the coil 14. The electromotive force of the detection coil 15 increases rapidly until the lower end of the coil 14.15 is reached, and the electromotive force reaches its maximum when the lower end of the coil 14. After 1 dB, the electromotive force gradually decreases until the melt level 11 reaches the bottom of the furnace, that is, the molten steel 5 in the ladle 1 is exhausted (this is defined as time C). Therefore, changes in the electromotive force of the detection coil 15 can be clearly detected at three points, A, B, and C. Also, since times A and B are determined by the positional relationship between the coil 14 and 15 and the molten metal level 11 of the molten metal 15, the slag 9
It always corresponds to a fixed position, regardless of the existence of refractories or the erosion of refractories. Moreover, since time C is the time when the molten steel is gone, this also corresponds to a fixed position regardless of the melting loss of the slag or refractory.

そこでこの発明の方法では、最初の測定時において時点
A、8、Cのうち少なくとも2つの変化点く例えばB、
C)を検出し、その検出した変化点のうち、湯面レベル
が高い方の変化点(例えばB)から湯面レベルが低い方
の変化点(例えばC)に達するまでの溶鋼流出量を実績
鋳造量等から推定もしくは演算するとともに、湯面レベ
ルが低い方の変化点(C)における残鋼量を求め、これ
らの値から肩面レベルが高い方の変化点(8)における
溶t!AIを求める。そして次回の測定時においては、
前回の測定時に溶[1を求めた変化点(B)を検出し、
その変化点(B)を基準としてその変化点(B)以降の
取鍋自溶鋼量を実情鋳造量等から推定する。
Therefore, in the method of the present invention, at least two change points among time points A, 8, and C during the first measurement, for example, B,
C) is detected, and among the detected change points, the flow rate of molten steel is measured from the point where the hot water level is higher (e.g. B) to the point where the hot water level is lower (e.g. C). In addition to estimating or calculating from the casting amount etc., the amount of remaining steel at the change point (C) where the molten metal surface level is lower is determined, and from these values, the melt t! at the change point (8) where the shoulder surface level is higher. Seek AI. At the next measurement,
Detect the change point (B) where melt [1 was determined during the previous measurement,
Using the change point (B) as a reference, the amount of self-molten steel in the ladle after the change point (B) is estimated from the actual casting amount, etc.

ここで説明の簡略化のために最初の測定時において時点
B、Cの変化点を検出する例について次に説明する。
To simplify the explanation, an example will be described below in which the changing points at time points B and C are detected during the first measurement.

取11からの溶鋼流出過程において前述のように検出コ
イル15によって磁界強度を測定し、その検出コイル1
5の起電力のデータを演算器20に入力させ、起電力が
最大となった時点を変化点8として検出する。ざらに取
鍋1からの流出が進んで、取WA1内の溶鋼5がなくな
った時点を変化点Cとして検出し、その変化点Cにおけ
る起電力■0を記憶させておく。このような検出と同時
または検出後に、変化点BからCに至るまでの間の溶鋼
流出量を求める。この溶鋼流出量は、変化点AからCに
至るまでの間の連続鋳造の鋳造速度を積分することによ
って得ることができる。ここで、変化点Cにおける残鋼
量は零であるから、上述のようにして求められた変化点
8〜0間の溶鋼流出量が変化点Bにおける取鍋自溶81
41に相当することになる。そこでこの変化点Bにおけ
る溶鋼量を次回の測定のために演算器20に配憶させて
おく。
During the process of outflow of molten steel from the drawer 11, the magnetic field strength is measured by the detection coil 15 as described above, and the detection coil 1
The electromotive force data of No. 5 is input to the computing unit 20, and the point of time when the electromotive force becomes maximum is detected as a change point 8. The point in time when the outflow from the ladle 1 progresses and the molten steel 5 in the ladle WA1 disappears is detected as a change point C, and the electromotive force ■0 at that change point C is stored. Simultaneously with or after such detection, the flow rate of molten steel from change point B to C is determined. This amount of molten steel flowing out can be obtained by integrating the casting speed of continuous casting from change point A to C. Here, since the amount of remaining steel at the change point C is zero, the amount of molten steel flowing out between the change points 8 and 0 obtained as described above is equal to the amount of ladle self-melting 81 at the change point B.
This corresponds to 41. Therefore, the amount of molten steel at this change point B is stored in the calculator 20 for the next measurement.

次回の測定にあたっては、前回の測定時に求められた変
化点Bでの溶鋼量を推定基準値としてそのまま用いても
良いが、耐火物の溶損による推定誤差を少なくするため
には、取鍋の1回の使用による耐火物溶損Bを予め調べ
ておき、その耐火物溶損により取鍋1の内容積が増加し
た分の量を補正値として加えた溶鋼量を次回測定時の変
化点Bの推定基準値とすることが望ましい。この測定時
においては、前回の測定時と同時に検出コイル15によ
って磁界強度を測定し、検出コイル15の起電力が最大
となった時点(変化点8Nを検出する。この変化点B′
における温血レベルは前回の測定時の変化点Bにおける
湯面レベルと同じであるから、変化点B−における溶鋼
量の推定値として、前述の如く前回の測定時における変
化点Bの溶mflを溶損量で補正した値を用いる。そし
てその変化点B−以降においては、変化点B′での推定
値に対し、実時間で鋳造速度を積分して減算し、実時間
における溶鋼量を算出する。このようにすることによっ
て、変化点B−以降の取鍋残溶鋼量が実時間で推定され
るから、例えば連続鋳造機の取鍋においては、その推定
溶鋼量が取鍋サイズや品質要求等に応じて予め定めた残
留させるべき員に達した時点でスライディングゲートを
閉じれば良い。
For the next measurement, the amount of molten steel at change point B obtained during the previous measurement may be used as the estimated reference value, but in order to reduce estimation errors due to melting of the refractory, it is necessary to The melting loss B of the refractory due to one use is investigated in advance, and the amount of molten steel obtained by adding the amount of increase in the internal volume of the ladle 1 due to the melting of the refractory as a correction value is determined as the change point B at the next measurement. It is desirable to use this as the estimated reference value. During this measurement, the magnetic field strength is measured by the detection coil 15 at the same time as the previous measurement, and a point of change (change point 8N) is detected when the electromotive force of the detection coil 15 reaches its maximum.This change point B'
Since the warm blood level at is the same as the level at change point B during the previous measurement, as the estimated value of the amount of molten steel at change point B-, the molten mfl at change point B during the previous measurement is used as the estimated value of the molten steel amount at change point B-. Use the value corrected by the amount of erosion. After the change point B-, the casting speed is integrated in real time and subtracted from the estimated value at the change point B' to calculate the amount of molten steel in real time. By doing this, the amount of remaining molten steel in the ladle after the change point B- can be estimated in real time, so for example, in the ladle of a continuous casting machine, the estimated amount of molten steel will depend on the ladle size, quality requirements, etc. The sliding gate may be closed when a predetermined number of people to remain is reached.

以上の例は、変化点B、Cを検出して、次回の測定時に
は変化点Bに対応する時点の推定溶鋼量を基準としたが
、変化点A、Cあるいは変化点A1Bを検出して、次回
の測定時に変化点へに対応する時点の推定溶鋼量を基準
としても良いことは勿論である。
In the above example, change points B and C were detected, and the next measurement was based on the estimated amount of molten steel at the time corresponding to change point B, but if change points A and C or change point A1B were detected, Of course, the estimated amount of molten steel at the time corresponding to the change point may be used as a reference for the next measurement.

なおこの発明の方法は、連続鋳造における取鍋に限らず
、要は底部に溶鋼流出口が設けられた取鍋内の溶鋼残量
推定に全て適用できることは勿論である。
It goes without saying that the method of the present invention is applicable not only to ladles in continuous casting, but also to any estimation of the remaining amount of molten steel in a ladle having a molten steel outlet at the bottom.

以下にこの発明の方法による実賎結果を記す。The fruiting results obtained by the method of this invention are described below.

この発明の推定方法による精度秤価を行うため、この発
明の方法による取鍋内推定溶鋼厖が2.4.6.8.1
0,12トンになった時点でスライディングゲートを閉
じ、取鍋内のスラグおよび溶鋼を分離して冷却凝固させ
た後、鋼塊のみを秤量して、溶鋼の実際の取鍋内残量を
測定した。この実験の結果を第6図に示す。第6図によ
れば、実際の溶tsmに対する推定lの誤差はほぼ1ト
ン程度であり、前述した従来方法では最もa11度の場
合でも誤差が3トン程度あったのに対し、この発明の推
定方法によれば格段の精度向上を達成し得たことが明ら
かである。
In order to perform precision weighing using the estimation method of this invention, the estimated molten steel volume in the ladle using the method of this invention is 2.4.6.8.1
When the weight reaches 0.12 tons, the sliding gate is closed, the slag and molten steel in the ladle are separated and cooled and solidified, and then only the steel ingot is weighed to measure the actual amount of molten steel remaining in the ladle. did. The results of this experiment are shown in FIG. According to FIG. 6, the error in the estimated l with respect to the actual melt tsm is about 1 ton, and while in the conventional method mentioned above, the error was about 3 ton even in the case of maximum a11 degrees, the estimation of the present invention It is clear that the method achieved a significant improvement in accuracy.

さらにこの発明の方法を連続的鋳造における実操業に適
用してスライディングゲートの閉止タイミンク制御を行
なった効果を第6図に示す。第6図は鋼材内部品質要求
の強いある鋼種の連続鋳造におけるスライディングゲー
ト閉止タイミング制御にこの発明の方法を適用した場合
、およびこの発明の方法を適用せずに経験的にゲート閉
止を行なった場合の、鋳片の不良率を比較して示すもの
である。この発明を方法に適用しない場合には、取鍋中
のスラグがタンディツシュに流出し、ひいては鋳片に非
金属介在物として残留して不良となるケースが多かった
。これに対しこの発明の方法を適用した後には、上記の
ケースは皆無となり、別要因での若干の不良のみとなっ
て鋼材の品質向上、歩留り向上に大きく貢献されること
が確認された。
Furthermore, FIG. 6 shows the effect of controlling the closing timing of the sliding gate by applying the method of the present invention to an actual continuous casting operation. Figure 6 shows a case where the method of the present invention is applied to the sliding gate closing timing control in continuous casting of a steel type with strong internal quality requirements, and a case where the gate is closed empirically without applying the method of the present invention. This figure shows a comparison of the defective rates of slabs. When this invention is not applied to the method, the slag in the ladle flows into the tundish, and in many cases remains in the slab as non-metallic inclusions, resulting in defects. On the other hand, after applying the method of the present invention, the above-mentioned cases disappeared, and only a few defects were caused by other factors, and it was confirmed that this greatly contributed to improving the quality and yield of steel materials.

以上の説明で明らかなようにこの発明の取鍋残浴WI!
推定方法によれば、取鍋内の溶鋼残量を、溶wI溌面上
のスラグの影響を受けることなく、実時間で高精度に推
定することができ、したがって例えば連続鋳造設備にお
(ブる取鍋のスライディングゲー[・の閉止タイミング
副葬にこの発明の方法を適用すれば、スラグの流出を確
実に防止して高品質の鋳片を得ることができると同時に
、スライディングゲート閉止後に過剰な量の溶鋼を取鍋
内に残すことを防止して、稼働率の向上を図ることがで
きる。そしてまた特に取鍋壁面の耐火物の推定溶jIf
lによって補正する実施態様によれば、耐火物の溶損の
影響による推定誤差を小さくして、より一層高精度での
溶鋼量推定が可能となる。
As is clear from the above explanation, the ladle residual bath WI of this invention!
According to the estimation method, the remaining amount of molten steel in the ladle can be estimated with high accuracy in real time without being affected by slag on the molten steel surface, and therefore it is possible to estimate the remaining amount of molten steel in the ladle with high precision in real time. If the method of the present invention is applied to the closing timing of the sliding gate of a ladle, it is possible to reliably prevent slag from flowing out and obtain high-quality slabs, and at the same time, it is possible to prevent excessive slag from flowing out after the sliding gate is closed. It is possible to prevent a large amount of molten steel from remaining in the ladle, thereby improving the operating rate.In addition, in particular, the estimated molten steel of the refractory on the wall of the ladle can be
According to the embodiment in which the correction is made by l, the estimation error due to the influence of the melting loss of the refractory is reduced, and the amount of molten steel can be estimated with even higher accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法を適用する対象となる連続鋳造
設備の一般的な例を模式的に示す略解図、第2図は従来
の推定方法の一例を実施している状況を示す略解図であ
る。第3図はこの発明の方法を実施している状況の一例
を示す略解図、第4図(A)〜(D)はこの発明の方法
を実施する際における取鍋内溶鋼場面レベルと検出コイ
ルの検出磁界強度(起電力)の関係を段階的に示す略解
図、第5図は同じく1面レベルと検出コイルの検出磁界
強度(起電力)との関係を示す線図、第6図はこの発明
の方法により推定された取鍋残溶鋼量の精度を示すため
の線図、第7図はこの発明の方法を連続鋳造設備のスラ
イディングゲート閉止タイミング制御に適用した場合の
鋳片不良率を、この発明の方法を適用しなかった場合と
比較して示す11図である。 1・・・取鍋、 2・・・溶鋼流出口、 3・・・スラ
イディングゲート、 5・・・溶鋼、 9・・・スラグ
、 14・・・励磁コイル、 15・・・検出コイル、
 A、B、C・・・変化点。
Fig. 1 is a schematic diagram schematically showing a general example of continuous casting equipment to which the method of the present invention is applied, and Fig. 2 is a schematic diagram showing a situation in which an example of the conventional estimation method is implemented. It is. FIG. 3 is a schematic diagram showing an example of a situation in which the method of the present invention is implemented, and FIGS. 4 (A) to (D) show the level of molten steel in the ladle and the detection coil when implementing the method of the present invention. Figure 5 is a diagram showing the relationship between the detected magnetic field strength (electromotive force) of the detection coil in stages, and Figure 6 is a diagram showing the relationship between the first plane level and the detected magnetic field strength (electromotive force) of the detection coil. Figure 7 is a diagram showing the accuracy of the amount of remaining molten steel in the ladle estimated by the method of the invention, and shows the slab defect rate when the method of the invention is applied to the sliding gate closing timing control of continuous casting equipment. FIG. 11 is a comparison diagram showing a case where the method of the present invention is not applied. DESCRIPTION OF SYMBOLS 1... Ladle, 2... Molten steel outlet, 3... Sliding gate, 5... Molten steel, 9... Slag, 14... Excitation coil, 15... Detection coil,
A, B, C...change points.

Claims (2)

【特許請求の範囲】[Claims] (1)底部に溶鋼流出口が設けられた取鍋内の溶鋼残量
を推定するにあたり、 取鍋の相対する壁面の耐火物中に励磁コイルおよび磁界
強度検出コイルを対向配置しておき、励磁コイルから誘
起される磁界の強度を検出コイルで測定して、取鍋内溶
鋼の流出過程における誘起磁界強度の少なくとも2つの
変化点を検出し、それらの変化点のうち第1の変化点か
ら第2の変化点までの取鍋内溶鋼流出量を測定もしくは
演算により求めるとともに第2の変化点における残鋼量
を求め、その求められた流出量および残鋼量から第1の
変化点における溶鋼量を定めておき、次回の測定時にお
いては前記第1の変化点を検知してその第1の変化点に
おける前記溶鋼量を基準として取鍋内溶鋼残量を推定す
ることを特徴とする取鍋残溶鋼量の推定方法。
(1) When estimating the remaining amount of molten steel in a ladle with a molten steel outlet at the bottom, an excitation coil and a magnetic field strength detection coil are placed facing each other in the refractories on the opposing walls of the ladle, and The intensity of the magnetic field induced from the coil is measured with a detection coil to detect at least two changing points of the induced magnetic field intensity during the outflow process of the molten steel in the ladle, and the The flow rate of molten steel in the ladle up to the second change point is determined by measurement or calculation, and the amount of remaining steel at the second change point is determined, and the amount of molten steel at the first change point is determined from the determined flow rate and remaining steel amount. is determined, and at the next time of measurement, the first change point is detected and the remaining amount of molten steel in the ladle is estimated based on the amount of molten steel at the first change point. Method for estimating the amount of remaining molten steel.
(2)前記の次回の測定時に使用する第1の変化点での
溶鋼量として、取鍋内壁耐火物の推定溶損量で補正した
値を用いる特許請求の範囲第1項記載の取鍋残溶鋼量の
推定方法。
(2) As the amount of molten steel at the first change point used in the next measurement, a value corrected by the estimated amount of corrosion loss of the refractories on the inner wall of the ladle is used. Method for estimating the amount of molten steel.
JP13272084A 1984-06-27 1984-06-27 Estimating method of amount of molten steel remaining in ladle Granted JPS619966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13272084A JPS619966A (en) 1984-06-27 1984-06-27 Estimating method of amount of molten steel remaining in ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13272084A JPS619966A (en) 1984-06-27 1984-06-27 Estimating method of amount of molten steel remaining in ladle

Publications (2)

Publication Number Publication Date
JPS619966A true JPS619966A (en) 1986-01-17
JPS6257427B2 JPS6257427B2 (en) 1987-12-01

Family

ID=15087999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13272084A Granted JPS619966A (en) 1984-06-27 1984-06-27 Estimating method of amount of molten steel remaining in ladle

Country Status (1)

Country Link
JP (1) JPS619966A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015149187A (en) * 2014-02-06 2015-08-20 株式会社豊田自動織機 Method of manufacturing power storage device and inspecting method for power storage device
US9829385B2 (en) 2004-07-05 2017-11-28 Heraeus Electro-Nite International N.V. Container for molten metal, use of the container and method for determining an interface
CN108372279A (en) * 2018-04-13 2018-08-07 东北大学 A kind of continuous casting process tundish pours the measurement method of surplus
CN108515156A (en) * 2018-04-13 2018-09-11 东北大学 A kind of continuous casting process is big to wrap the measurement method for pouring surplus
JP2021524586A (en) * 2018-06-29 2021-09-13 ダニエリ アンド シー.オフィス メカニケ エスピーエーDanieli&C.Officine Meccaniche Spa Detection system for detecting metal levels in the melting furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112230A (en) * 1982-12-06 1984-06-28 ストウドスビツク・エネルギテクニツク・アクチ−ボラグ Method and device for measuring molten metal in bottom of vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112230A (en) * 1982-12-06 1984-06-28 ストウドスビツク・エネルギテクニツク・アクチ−ボラグ Method and device for measuring molten metal in bottom of vessel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9829385B2 (en) 2004-07-05 2017-11-28 Heraeus Electro-Nite International N.V. Container for molten metal, use of the container and method for determining an interface
JP2015149187A (en) * 2014-02-06 2015-08-20 株式会社豊田自動織機 Method of manufacturing power storage device and inspecting method for power storage device
CN108372279A (en) * 2018-04-13 2018-08-07 东北大学 A kind of continuous casting process tundish pours the measurement method of surplus
CN108515156A (en) * 2018-04-13 2018-09-11 东北大学 A kind of continuous casting process is big to wrap the measurement method for pouring surplus
JP2021524586A (en) * 2018-06-29 2021-09-13 ダニエリ アンド シー.オフィス メカニケ エスピーエーDanieli&C.Officine Meccaniche Spa Detection system for detecting metal levels in the melting furnace

Also Published As

Publication number Publication date
JPS6257427B2 (en) 1987-12-01

Similar Documents

Publication Publication Date Title
US20110174457A1 (en) Process for optimizing steel fabrication
JPS619966A (en) Estimating method of amount of molten steel remaining in ladle
US3941281A (en) Control device for regulating teeming rate
JP3604661B2 (en) Method and device for judging completion of molten steel injection
JP4324077B2 (en) Sliding nozzle opening measuring method and apparatus, and molten steel injection method using this method
JPH02200362A (en) Method for predicting and restraining nozzle clogging in continuous casting apparatus
US4787604A (en) Slag retention on discharge of a ladle
JPH0773776B2 (en) Switching method for different steel types in continuous casting
JPS62148066A (en) Estimation method for remaining molten steel in ladle for continuous casting
RU2662850C2 (en) Slag in the metal melt flow detection method
JPS61279351A (en) Method and mold for continuous casting
JPH09206906A (en) Detection of unsteady bulging in continuous casting
JPS5978763A (en) Controlling method of molten steel level in casting mold in continuous casting
JPS62179859A (en) Auto-start controlling method for continuous casting machine
JPS583764A (en) Charging method for molten metal
CN117399585A (en) Method for avoiding ladle slag discharge by using steel continuous casting for automobile panel at low cost
JP2648425B2 (en) How to control the amount of slag flowing out of converter
JPH09150241A (en) Method for completing casting of molten steel in tundish
JPH0947861A (en) Method for pouring molten metal in ladle
JP4414609B2 (en) Method and apparatus for detecting drift in molten steel in continuous casting of steel
SU1431893A1 (en) Method and apparatus for determining the mass of slag in melt
JPH08267219A (en) Method for detecting and controlling outflow of slag from molten metal vessel
KR20150069272A (en) continuous casting apparatus and controlling system for cast of using it
JP4457707B2 (en) Finishing pouring of molten steel in tundish
JPH07204815A (en) Method for adjusting request specification of cast slab