JPS583764A - Charging method for molten metal - Google Patents

Charging method for molten metal

Info

Publication number
JPS583764A
JPS583764A JP10118481A JP10118481A JPS583764A JP S583764 A JPS583764 A JP S583764A JP 10118481 A JP10118481 A JP 10118481A JP 10118481 A JP10118481 A JP 10118481A JP S583764 A JPS583764 A JP S583764A
Authority
JP
Japan
Prior art keywords
molten steel
tundish
temperature
molten metal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10118481A
Other languages
Japanese (ja)
Inventor
Yoshimichi Numata
義道 沼田
Minoru Horiguchi
堀口 穣
Tatsushi Aizawa
相沢 達志
Munehiro Endo
遠藤 宗宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10118481A priority Critical patent/JPS583764A/en
Publication of JPS583764A publication Critical patent/JPS583764A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/183Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by measuring molten metal weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/182Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by measuring temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce a cast ingot of good quality continuously by detecting the weight and temp. of the molten metal in a tundish controlling the rate of the cooling material to be charged into the tundish. CONSTITUTION:After the molten steel in a ladle 1 is flowed into a tundish 6, it is cooled by a cooling material 13 charged from a charger 12 for the cooling material. To control the charging rate of the cooling material, the weight of the molten steel 7 in the tundish 6 is measured with a load meter 8 mounted to the tundish 6 and is inputted to an operator 14, and the temp. of the molten steel 7 is measured with an IR thermometer 5A and is inputted to the operator 14. The target temp. for charging into a casting chamber 10 is beforehand inputted to the operator 14 by a keyboard 15 and the quantity of heat extraction necessary for cooling down to the charging temp. and the weight of the cooling material corresponding to the quantity of heat extraction are calculated. The amt. of the cooling material to be charged into the tundish 6 is controlled in the above- mention manner, whereby the molten steel 7 is cooled and is charged in the form of charging flow 9 into the casting chamber 10 formed by a rotary wheel type continuous casting mold 11.

Description

【発明の詳細な説明】 不発明は金属溶湯注入法に係り、特に溶融金属を鋳型内
に連続的に注入して連続鋳造するに際し、鋳型内に注入
される溶融金属を適正な温度に維持するために溶融金属
に投入される冷却材の量を制御する方法に関する。
[Detailed Description of the Invention] The invention relates to a method of pouring molten metal, and in particular, to maintaining the molten metal poured into the mold at an appropriate temperature when continuously pouring the molten metal into the mold for continuous casting. The invention relates to a method for controlling the amount of coolant introduced into molten metal.

連続鋳造法において、溶鋼は取鍋中に多量に保持された
後、鋳型室上部に設置されたタンディツシュに分注され
、次いでタンディツシュから鋳型室内に連続的に注入さ
れる。この場合、良質な鋳塊を得るためには鋳型室内に
注入される溶鋼の温度はその凝固開始温度より20〜4
0tZ’高くする必要があり、これより注入温度が高い
場合は鋳造途中で凝固殻が破れて巨大な割れが発生した
りする。また、注入温度が低い場合は、鋳塊表面に湯じ
わや表面割れが多発したり、極端な場合はタンディツシ
ュのノズルが閉塞し、連続鋳造が不可能となる。
In the continuous casting method, a large amount of molten steel is held in a ladle, then dispensed into a tundish installed above the mold chamber, and then continuously injected into the mold chamber from the tundish. In this case, in order to obtain a high-quality ingot, the temperature of the molten steel injected into the mold chamber must be 20 to 4
It is necessary to raise the temperature to 0tZ', and if the injection temperature is higher than this, the solidified shell will break during casting and a huge crack will occur. Furthermore, if the pouring temperature is low, many wrinkles and surface cracks will occur on the surface of the ingot, and in extreme cases, the nozzle of the tundish will become clogged, making continuous casting impossible.

−また取鍋内に多量に保持ぎれた全溶鋼を鋳型内に注入
するためには一般に70分程度の時間を要する。このた
め製造末期(すなわち取鍋内の溶鋼量が最小値に近ずい
、たと@]に取鍋から溶鋼を安定に流出させるには、取
鍋内の溶鋼温度を鋳型内への注入温度より40〜600
程度高くしなければならない。この理由は製造末期に取
鍋内の溶鋼温度が低下してノズルが閉塞し、また溶鋼が
取鍋内で凝固して流出しなくなるからである。
- Also, it generally takes about 70 minutes to pour all the molten steel held in the ladle into the mold. Therefore, in order to stably flow out the molten steel from the ladle at the end of production (that is, when the amount of molten steel in the ladle is close to the minimum value), the temperature of the molten steel in the ladle must be 40° higher than the temperature at which it is poured into the mold. ~600
It has to be of a high degree. The reason for this is that at the end of production, the temperature of the molten steel in the ladle drops and the nozzle is clogged, and the molten steel solidifies in the ladle and no longer flows out.

したがって、タンディツシュ内に流入される溶鋼の温度
は、鋳型内の溶鋼の注入温度より高温となる。このため
、従来にタンディツシュ内の溶鋼温度を間欠的に測定し
ながら、溶鋼と同じ化学組成の冷却材をタンディシュ内
に投入し、溶鋼を適正な注入温度になるように冷却して
いた。しかしこの方法では次のような問題がある。
Therefore, the temperature of the molten steel flowing into the tundish is higher than the temperature at which the molten steel is poured into the mold. For this reason, conventionally, the temperature of the molten steel in the tundish was intermittently measured and a coolant having the same chemical composition as the molten steel was poured into the tundish to cool the molten steel to an appropriate injection temperature. However, this method has the following problems.

第1図に回転輪式連続鋳造機で5D−30鋼45トン全
4.0〜4.5m/−の鋳造速度で鋳造した場合、上記
した従来技術による冷却材投入法で注入したときの注入
時間経過に対する溶鋼の注入温度の変化を示す。注入初
期ではタンディツシュが冷えているために溶鋼の注入温
度は適正な温度となっているが、時間経過とともに溶鋼
による加熱のため注入温度は上昇する傾向vcある。し
たがって、5分経過した時点から溶鋼と同じ化学組成の
5D−30鋼の冷却材を間欠的に投入して温度上昇を抑
制しているが、投入量が多過ぎると40分及び60分経
過した時点にみられるように目標の注入温度の下限より
下っている。このように、従来技術ではタンディツシュ
内の溶鋼温度の測定だけで冷却材を投入しているため、
注入中におけるタンディツシュ内の溶鋼量の増減に対応
して迅速に冷却材の投入量を決定することができず、精
度良く注入温度を制御することに困難であった。
Figure 1 shows the injection results when 45 tons of 5D-30 steel were cast using a rotary wheel type continuous casting machine at a casting speed of 4.0 to 4.5 m/-, and when the coolant was injected using the conventional coolant injection method described above. It shows the change in molten steel injection temperature over time. At the initial stage of injection, the tundish is cold, so the injection temperature of the molten steel is at an appropriate temperature, but as time passes, the injection temperature tends to rise due to heating by the molten steel. Therefore, after 5 minutes, a coolant made of 5D-30 steel, which has the same chemical composition as the molten steel, is intermittently added to suppress the temperature rise, but if too much is added, the temperature rises after 40 and 60 minutes. As can be seen at time point, the injection temperature is below the lower limit of the target injection temperature. In this way, in the conventional technology, coolant is injected only by measuring the temperature of molten steel in the tundish.
It was not possible to quickly determine the amount of coolant to be added in response to changes in the amount of molten steel in the tundish during pouring, and it was difficult to control the pouring temperature with high precision.

不発明の目的は、鋳型内に注入される溶融金属の温度を
適正な温度に維持できるような溶融金属に投入される冷
却材の量を精度よく制御できる金属溶湯注入法を提供す
ることにある。
The purpose of the invention is to provide a method for pouring molten metal that can precisely control the amount of coolant added to the molten metal so that the temperature of the molten metal poured into the mold can be maintained at an appropriate temperature. .

不発明の第1は、冷却材を投入して溶融金属を冷却する
容器内の溶融金域の量即ち重量又は体積(又は溶湯面高
さ)を検出し、さらに冷却材投入後の溶融金属の鋳型直
前に至る途中の温度を検出踵これらの検出信号に基づい
て冷却材の投入量を精度°よく制御するようにしたもの
でおる。
The first aspect of the invention is to detect the amount, that is, the weight or volume (or the height of the molten metal surface) of the molten metal area in a container in which a coolant is introduced to cool the molten metal, and further to detect the amount of molten metal after the coolant is introduced. The temperature on the way to the mold is detected, and the amount of coolant introduced is controlled with high precision based on these detection signals.

本発明の第2は、上記の検出信号および冷却材を投入し
て溶融金属を冷却する容器内へ流入される溶融金属の温
度および溶融金属量を検出し、これらの検出信号に基づ
いて冷却材の投入量を更に精度・よく制御するようにし
たものである。
The second aspect of the present invention is to detect the above-mentioned detection signal and the temperature and amount of molten metal flowing into a container into which a coolant is input to cool the molten metal, and to detect the temperature and amount of molten metal based on these detection signals. The amount of input can be controlled more precisely and better.

以下、不発明の実施例を図面に基づいて詳細に説明する
Hereinafter, embodiments of the invention will be described in detail based on the drawings.

第2図において、取鍋1内に保持された多量の溶鋼はタ
ンディツシュ6内に流入され几後、冷却材投入機12か
ら投入される冷却材13によって冷却され、次いで溶鋼
の注入流9となって回転輪式連続鋳型11によって形成
される鋳型室10内に注入される。
In FIG. 2, a large amount of molten steel held in a ladle 1 flows into a tundish 6, is cooled by a coolant 13 fed from a coolant feeder 12, and then becomes an injection stream 9 of molten steel. The liquid is injected into a mold chamber 10 formed by a rotating continuous mold 11.

ここで冷却材の投入量の制御法として、まずタンディツ
シュ6に取付けられた荷重計8によってり/ディツシュ
6内の溶鋼重量を測定し、この値を演算機14に入力す
る。筐たタンディツシュ6内の溶鋼7の温度を赤外線温
度計5Aで測定し、この値を演算機14に入力する。演
算機14にはキーボード15に予め鋳型室10への目標
とする注入温度が入力されており、この注入温度を基準
にしてタンディ・ツシュ6内の溶鋼温度と注入温度の差
を演算し、メンディツシュ6内の溶鋼重量を乗じ、さら
に溶鋼及び耐火物の物性値を含めて溶鋼を基準とする注
入温度まで冷却するに必要な抜熱量を算出する。また演
算機14には浴・鋼中に投入される冷却材の重量当りの
抜熱能力が入力されており、上記の抜熱量の算出値に基
づいて、溶鋼を基準とする注入温度まで冷却するのに必
要な抜熱量に相当する冷却材の重量が算出される。この
ようにしてタンディツシュ6内に投入される冷却材の量
が精度よく制御される。
Here, as a method of controlling the amount of coolant input, first, the weight of molten steel in the dish 6 is measured using a load meter 8 attached to the tundish 6, and this value is input into the computer 14. The temperature of the molten steel 7 in the cased tundish 6 is measured with an infrared thermometer 5A, and this value is input to the computer 14. The target injection temperature into the mold chamber 10 is input in advance into the keyboard 15 of the computer 14, and the difference between the molten steel temperature in the tandy tube 6 and the injection temperature is calculated based on this injection temperature, and the temperature of the molten steel in the tandy tube 6 is calculated. Multiplying the weight of the molten steel in 6 and including the physical property values of the molten steel and refractory, calculate the amount of heat removal required to cool the molten steel to the reference injection temperature. In addition, the heat removal capacity per weight of the coolant to be poured into the bath/steel is inputted to the computer 14, and based on the calculated value of the heat removal amount described above, the molten steel is cooled to the reference injection temperature. The weight of the coolant corresponding to the amount of heat removal required for this is calculated. In this way, the amount of coolant injected into the tundish 6 is accurately controlled.

なお、タンディツシュ6内の溶鋼温度の測定値の代りに
タンディツシュ6から回転輪式連続鋳型11に至る途中
の溶鋼温度を赤外線温度計5Cで測定し、この測定値を
演算機14に入力させてもよく、またタンディツシュ6
内の溶鋼温度の測定値及びタンディツシュ6から回転式
連続鋳型11に至る途中の溶鋼温度の測定値の両方を演
算機14に入力し、演算を行ってもよい。これらは必要
とする精度に応じて使い分ければよい。
Note that instead of measuring the temperature of the molten steel in the tundish 6, the temperature of the molten steel on the way from the tundish 6 to the rotating continuous mold 11 may be measured with an infrared thermometer 5C, and this measured value may be input to the computer 14. See you soon Tanditshu 6
Both the measured value of the temperature of the molten steel inside the tundish 6 and the measured value of the molten steel temperature on the way from the tundish 6 to the rotary continuous mold 11 may be input to the calculator 14 to perform calculations. These can be used depending on the required accuracy.

次にタンディツシュ6内の溶鋼温度及び溶鋼重量をそれ
ぞれ測足し、演算機14へ人力するとともに取鍋1から
タンディツシュ6に流入する溶鋼温度全赤外線温度計5
Bによって測定し、1友取鍋1に取付けた荷重計3によ
ってタンディツシュ6に流入する溶鋼量を測定し、これ
らの測定値を演算機14に入力し、上記同様に演算を行
うことによってタンディツシュ6内に投入される冷却材
の量をさらに精度よく制御することができる。
Next, the temperature of the molten steel and the weight of the molten steel in the tundish 6 are measured manually and input to the computer 14, and the temperature of the molten steel flowing from the ladle 1 into the tundish 6 is measured using a total infrared thermometer 5.
B, the amount of molten steel flowing into the tundish 6 is measured by the load cell 3 attached to the ladle 1, and these measured values are input into the computer 14, and the calculation is performed in the same manner as described above. The amount of coolant injected into the interior can be controlled with greater precision.

上記実施例において、タンディツシュ6内の溶鋼重量を
荷重計8によって測定しているが、タンディツシュ6内
に取付けたレベル計によって溶鋼量を測足し、筐たは単
位時間当りのタンディツシュ6内への溶鋼の流入量と単
位時間当りのタンディツシュ6内の溶鋼量を測定し、こ
れらの測定値を演算機14に入力し、演算を行ってもよ
い。
In the above embodiment, the weight of molten steel in the tundish 6 is measured by the load cell 8, but the amount of molten steel is measured by a level meter installed in the tundish 6, and the amount of molten steel is added to the tundish 6 per unit time. The inflow amount and the amount of molten steel in the tundish 6 per unit time may be measured, and these measured values may be input to the computer 14 to perform calculations.

タンディツシュ6内に投入される冷却材は溶鋼と化学成
分が同一のものに限定されるものでなく、鉄屑1.クロ
ム、マンガン、鉄合金等の金属又は合金全使用すること
もできる。溶鋼と同一の化学成分でない金属又は合金を
用いる場合、タンディツシュ6内の溶鋼の冷却と同時に
最゛終的な鋳物の物性改善を兼ねることができる。
The coolant introduced into the tundish 6 is not limited to one having the same chemical composition as the molten steel, but may include iron scraps 1. All metals or alloys such as chromium, manganese, iron alloys, etc. can also be used. When using a metal or alloy that does not have the same chemical composition as the molten steel, it is possible to simultaneously cool the molten steel in the tundish 6 and improve the physical properties of the final casting.

次に具体的な鋳造条件を基に本発明の効果を明らかにす
る。
Next, the effects of the present invention will be explained based on specific casting conditions.

ここでは鋳塊断面寸法が130X130X160(II
III)の台形状の回転輪式連続鋳型11に対し、3.
8〜4.4m/―の鋳造速度で鋳型への溶鋼の注入温度
を15401:に制御することを目標とし、タンディツ
シュ6内の溶鋼重量は2.5〜3.0トンとなるように
操作した。
Here, the cross-sectional dimensions of the ingot are 130X130X160 (II
For the trapezoidal rotating ring type continuous mold 11 of III), 3.
The aim was to control the injection temperature of molten steel into the mold to 15401: at a casting speed of 8 to 4.4 m/-, and the operation was performed so that the weight of molten steel in the tundish 6 was 2.5 to 3.0 tons. .

筐ず5D−40鋼45トンが保持された取鍋l内の溶鋼
2の重量を荷重計3で測定した。また取鍋1の底部より
流出する溶鋼流4の温度を赤外線温度計5Bで測定した
。ざらに、タンディツシュ6に取付けた荷重計8でタン
ディツシュ6内の溶鋼7の重量全測足するとともに溶鋼
7の温度を赤外線温度計5Aで測定した。そして、これ
らの値を演算機14に入力した。演算機14にはキーボ
ード15であらかじめ鋳型室10への注入温度1540
Cを入力しておき、この注入温度と取鍋1からの溶鋼流
4の温度差を演算した。17tタンデイツシユ6内への
溶鋼の流入重量は荷重計3で10秒おきに測足し、演算
機で前回の測定値から現在の測定値金婚し引いて算出し
た。そして、溶鋼流の温度と注入温度との温度差に溶鋼
流入重量を乗じてタンディツシュ6に流入した溶鋼流を
注入温度1でに冷却するのに必要な熱量を算出した。
The weight of the molten steel 2 in the ladle 1 holding 45 tons of 5D-40 steel was measured using a load meter 3. Further, the temperature of the molten steel flow 4 flowing out from the bottom of the ladle 1 was measured with an infrared thermometer 5B. Roughly, the total weight of the molten steel 7 in the tundish 6 was measured using a load cell 8 attached to the tundish 6, and the temperature of the molten steel 7 was measured using an infrared thermometer 5A. These values were then input into the computer 14. The temperature of injection into the mold chamber 10 is set to 1540 in advance on the computer 14 using the keyboard 15.
C was input, and the temperature difference between this injection temperature and the molten steel flow 4 from the ladle 1 was calculated. The weight of the molten steel flowing into the 17t tundish 6 was measured every 10 seconds using the load cell 3, and was calculated by subtracting the current measured value from the previous measured value using a computer. Then, the amount of heat required to cool the molten steel flow flowing into the tundish 6 at the injection temperature 1 was calculated by multiplying the temperature difference between the temperature of the molten steel flow and the injection temperature by the weight of the molten steel flowing into the tundish 6.

[−これと平行して同様の演算処理によってタンディツ
シュ6内の溶鋼7の温度と注入温度との差にタンディツ
シュ6内の溶鋼重量を乗じてタンディツシュ内の溶鋼7
を注入温度まで冷却するのに必要な熱量を算出する。こ
うして得られた冷却量を基にして演算機14にキーボー
ド15から入力し7’n5D−30鋼の室温での単位重
量当りの冷却量から溶鋼の冷却に必要な冷却量の重量を
算出して、冷却材投入機12で厚さ10+a+、幅50
×50m+の5D−30鋼の板をタンディツシュ6内に
投入して注入温度全制御した。この場合、演算と冷却す
13の投入の間隔は、注入が安定する筐での注入開始か
ら5分間の間では1分おきとし、そr以後の注入の安定
な時期では2分おきとした。
[-In parallel, similar arithmetic processing is performed to calculate the difference between the temperature of the molten steel 7 in the tundish 6 and the injection temperature by the weight of the molten steel in the tundish 6.
Calculate the amount of heat required to cool down to the injection temperature. Based on the cooling amount obtained in this way, input it into the computer 14 from the keyboard 15, and calculate the weight of the cooling amount required for cooling the molten steel from the cooling amount per unit weight of 7'n5D-30 steel at room temperature. , thickness 10+a+, width 50 with coolant injection machine 12
A 5D-30 steel plate measuring 50 m+ was placed in a tundish 6, and the injection temperature was fully controlled. In this case, the interval between the calculation and the injection of the cooling device 13 was set to be every 1 minute during the 5 minutes from the start of injection in the case when the injection was stable, and every 2 minutes after that time when the injection was stable.

このような冷却材の投入量の制御操作における溶鋼の注
入温度の時間経過による変動を第3図に示す。第3図に
おいて、溶鋼の注入操作初期では取鍋1が冷えでいるた
めに目標の注入温度よりも若干低くなっているが、それ
以後は冷却材の投入量が制御され、注入温度は設足温度
に対して5C以内の範囲に制御されていることを示して
いる。
FIG. 3 shows fluctuations in the molten steel injection temperature over time in such a control operation for the amount of coolant input. In Figure 3, at the beginning of the molten steel injection operation, the ladle 1 is cold, so the injection temperature is slightly lower than the target injection temperature, but after that, the amount of coolant input is controlled and the injection temperature is lower than the initial injection temperature. This shows that the temperature is controlled within a range of 5C.

以上のように本発明によれば、鋳型室への溶融金属の注
入温度の制御を精度よく行うことができるため、安定し
た連続鋳造操作によって品質の良好な鋳塊を連続的に製
造することができる。
As described above, according to the present invention, it is possible to accurately control the temperature at which molten metal is poured into the mold chamber, and therefore it is possible to continuously produce ingots of good quality through stable continuous casting operations. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の金属溶湯注入法における溶鋼注入温度の
時間経過による変動を示す図、第2図は不発明の一例を
示す構成図、第3図は本発明による溶鋼注入温度の時間
経過による変動を示す図である。 1・・・取鍋、2,7・・・溶鋼、3.8・・・荷重計
、4・・・溶鋼流、5A、5B、5C・・・赤外線温度
計、6・・・タンディツシュ、9・・・注入流、10・
・・鋳型室、11・・・鋳型、12・・・冷却材投入機
、13・・・冷却材、注入時開 袖 j主入呼量 i
Fig. 1 is a diagram showing changes in molten steel injection temperature over time in the conventional molten metal injection method, Fig. 2 is a block diagram showing an example of the non-invention, and Fig. 3 is a diagram showing changes in molten steel injection temperature over time according to the present invention. It is a figure showing a fluctuation. 1... Ladle, 2,7... Molten steel, 3.8... Load cell, 4... Molten steel flow, 5A, 5B, 5C... Infrared thermometer, 6... Tandish, 9 ...Injection flow, 10.
... Mold chamber, 11... Mold, 12... Coolant injection machine, 13... Coolant, open during injection Sleeve j Main incoming volume i

Claims (1)

【特許請求の範囲】 1、@融金属を第1の容器に保持した後、第2の容器に
流入さぞ、ここで溶融金属に冷却材を投入して溶融金属
を冷却し、次いで溶融金属を第2の容器から鋳型内に注
入する金属溶湯注入法において、第2の容器内の溶融金
属の量を検出し、さらに第2の容器内から鋳型直前に至
る途中の溶融金属の温度を検出し、これらの検出信号に
基づいて第2の容器中に投入される冷却材の量を制御す
ることIs徴とする金属溶湯注入法。 2、溶融金属を第1の容器に保持した後、第2の容器に
流入させ、ここで溶融金属に冷却材を投入して溶融金属
を冷却し、次いで溶融金属を第2の容器から鋳型内に注
入する金属溶湯注入法において、第2の容器内の溶融金
属の量を検出し、さらに第2の容器内から鋳型直前に至
る途中の溶融金属の温度を検出するとともに、第1の容
器から第2の容器に流入される溶融金属の温度および溶
融金属量を検出し、これらの検出信号に基づいて第2の
容器中に投入される冷却材の量を制御することe%徴と
する金属溶湯注入法。
[Claims] 1. After the molten metal is held in the first container, it flows into the second container, where a coolant is poured into the molten metal to cool the molten metal, and then the molten metal is In the method of pouring molten metal into a mold from a second container, the amount of molten metal in the second container is detected, and the temperature of the molten metal on the way from inside the second container to just before the mold is detected. , a molten metal injection method in which the amount of coolant injected into the second container is controlled based on these detection signals. 2. After holding the molten metal in the first container, it flows into the second container, where a coolant is introduced into the molten metal to cool the molten metal, and then the molten metal is transferred from the second container into the mold. In the molten metal injection method, the amount of molten metal in the second container is detected, and the temperature of the molten metal on the way from the second container to just before the mold is detected. Detecting the temperature and amount of molten metal flowing into the second container, and controlling the amount of coolant introduced into the second container based on these detection signals. Molten metal injection method.
JP10118481A 1981-07-01 1981-07-01 Charging method for molten metal Pending JPS583764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10118481A JPS583764A (en) 1981-07-01 1981-07-01 Charging method for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10118481A JPS583764A (en) 1981-07-01 1981-07-01 Charging method for molten metal

Publications (1)

Publication Number Publication Date
JPS583764A true JPS583764A (en) 1983-01-10

Family

ID=14293892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10118481A Pending JPS583764A (en) 1981-07-01 1981-07-01 Charging method for molten metal

Country Status (1)

Country Link
JP (1) JPS583764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189856A (en) * 1985-02-18 1986-08-23 Nippon Steel Corp Method for controlling addition of metal to tundish

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189856A (en) * 1985-02-18 1986-08-23 Nippon Steel Corp Method for controlling addition of metal to tundish

Similar Documents

Publication Publication Date Title
Wang et al. Detection of non-metallic inclusions in centrifugal continuous casting steel billets
KR101400042B1 (en) Method for producing high quality slab
TWI762264B (en) Method for predicting temperature of molten steel
US4370719A (en) Control of centrifugal pipe casting operation
JPS583764A (en) Charging method for molten metal
CN102974794B (en) Device and method for reducing superheat degree of molten steel of continuous casting ladle or intermediate ladle
JPS6340655A (en) Continuous casting method for molten metal
JPS619966A (en) Estimating method of amount of molten steel remaining in ladle
KR101412536B1 (en) Device for forecasting number of continuous-continuous casting on continuous casting process and method therefor
JPH02200362A (en) Method for predicting and restraining nozzle clogging in continuous casting apparatus
CN110883332A (en) Method and system for detecting water gap blockage on line
CN105081283B (en) A kind of apparatus and method detected for low pressure casting alloy critical solidification coefficient
JPH0124592B2 (en)
JPH08197234A (en) Method for controlling temperature of molten metal
WO2022034864A1 (en) Method for continuously casting steel and test solidification device for steel
CN115570124A (en) Method for intelligently controlling pouring speed of vacuum induction melting
JP2013076133A (en) Continuous casting method
JPS62179859A (en) Auto-start controlling method for continuous casting machine
Dutta et al. Continuous casting (concast)
JPS58125350A (en) Detection of clogging of nozzle for charging molten metal into continuous casting mold
Bhattacharya et al. Root cause analysis of surface defects in coils produced through thin slab route
JPH05228580A (en) Continuous casting method
JPH0622957Y2 (en) Tandishyu heat retention device
Anisimov et al. Influence of mold flux on the thermal processes in the mold
SU634844A1 (en) Method of continuous casting of metals and melts