JPS62148066A - Estimation method for remaining molten steel in ladle for continuous casting - Google Patents

Estimation method for remaining molten steel in ladle for continuous casting

Info

Publication number
JPS62148066A
JPS62148066A JP29106085A JP29106085A JPS62148066A JP S62148066 A JPS62148066 A JP S62148066A JP 29106085 A JP29106085 A JP 29106085A JP 29106085 A JP29106085 A JP 29106085A JP S62148066 A JPS62148066 A JP S62148066A
Authority
JP
Japan
Prior art keywords
ladle
molten steel
amount
magnetic field
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29106085A
Other languages
Japanese (ja)
Inventor
Hirosato Yamane
弘郷 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29106085A priority Critical patent/JPS62148066A/en
Publication of JPS62148066A publication Critical patent/JPS62148066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To surely prevent flow out of slag and to obtain a casting billet having high quality by detecting a molten steel level and also an erosion volume of refractory in a ladle and estimating remaining molten steel in the ladle at high accuracy. CONSTITUTION:At least two changed points in inducing magnetic field intensity of an exciting coil 11 by AC exciting current of a molten metal level measuring apparatus 13 is detected by a detecting coil 12 during flowing process of molten steel in the ladle 1, and molten steel flowing weight between the above- mentioned changed points is obtd. by a controlling device 14. That is, the device 14 is calculated by a tundish 6 weighing machine 15 and tundish 6 weight, pouring weight, etc., according to a length measuring instrument 16 for the above-mentioned flowing wt., and is detected for a change of the ladle sectional area in comparison with flowing weight at new-lining ladle 1 to detect erosion vol. of the ladle at arranged position of coil 11, 12. Then the remaining molten steel weight in the ladle is obtd. by changing of the above-mentioned magnetic field intensity as standard for the ladle 1 vol. compensated by the above- mentioned erosion vol.

Description

【発明の詳細な説明】 〈発明の目的〉 産業上の利用分野 本発明は連続鋳造における取鍋内残溶鋼伍の推定方法に
係り、詳しくは、取鍋内に混在する転炉スラグの流出防
止を図り、連鋳鋳片品質を向上達成する連続鋳造におけ
る取鍋内残溶鋼聞の推定方法に係る。
[Detailed description of the invention] <Object of the invention> Industrial field of application The present invention relates to a method for estimating residual molten steel in a ladle in continuous casting, and more specifically, to prevent outflow of converter slag mixed in the ladle. The present invention relates to a method for estimating the amount of residual molten steel in a ladle during continuous casting to improve the quality of continuously cast slabs.

従  来  の  技  術 一般に、鋼の連続鋳造においては、第6図に示すように
取vA1の底部に設けられた′;FJ鋼流出口2にスラ
イディングゲート3およびロングノズル4を取付けてお
き、取鍋内の溶鋼5を、前記スライディングゲート3お
よびロングノズル4を経てタンディツシュ6に注入し、
さらにタンディツシュ6内の溶鋼をモールド7に注入し
て鋳込み、鋳片8とするのが通常である。
Conventional technology In general, in continuous steel casting, a sliding gate 3 and a long nozzle 4 are attached to the FJ steel outlet 2 provided at the bottom of the trap A1, as shown in Fig. 6. Injecting the molten steel 5 in the pot into the tundish 6 via the sliding gate 3 and the long nozzle 4,
Further, the molten steel in the tundish 6 is usually injected into a mold 7 and cast to form a slab 8.

上述のような鋼の連続鋳造においては、取鋼1内の溶鋼
がなくなれば、別の取鍋と交換して連)1鋳造を継続す
る。しかるに、取鋼1内の溶鋼5の湯面にはスラグ9が
存在し、取鍋的溶鋼の流出末期にはスラグも流出を開始
するから、取鍋内の溶鋼が完全になくなってからスライ
ディングゲート3を閉じれば、取鍋内のスラグ9もタン
ディツシュ6内に流入して、モールド7を通じ鋳片8内
に侵入する。転炉スラグが鋳片内に混在すると非金層介
在物として、圧延後もスリバー等の欠陥となって現われ
、製品に被害を与える。
In the continuous casting of steel as described above, when the molten steel in the ladle 1 runs out, it is replaced with another ladle and continuous casting is continued. However, since slag 9 exists on the surface of the molten steel 5 in the ladle 1, and the slag also starts to flow out at the end of the flow of molten steel in the ladle, the sliding gate is opened only after the molten steel in the ladle is completely gone. 3 is closed, the slag 9 in the ladle also flows into the tundish 6 and enters the slab 8 through the mold 7. If converter slag is mixed in the slab, it will appear as non-gold layer inclusions as defects such as slivers even after rolling, damaging the product.

そこで、従来、一般には取鍋内の溶鋼残量が少なくなっ
たことを操作員が経験的に判別してスライディングゲー
ト3を閉じることにより取鋼内スラグの流出を防ぐこと
が行なわれていた。
Therefore, conventionally, an operator has empirically determined that the remaining amount of molten steel in the ladle has become small and closed the sliding gate 3 to prevent the slag from flowing out of the ladle.

しかしながら、実際には取鋼内の溶tJAuは目視し得
ないから、取鍋中の溶鋼が少なくなったことは、現実に
は取鍋内のスラグ9がロングノズル4を通じてタンディ
ツシュ6内に侵入し始めた時点以降でなければ判断でき
ない。そのため、上述のような経験に頼った操業におい
ては、スラグがタンディツシュ6内に流入して結果的に
鋳片の内部欠陥をもたらすことを殆んど避は得なかった
のが実情である。さらに、実際の取鋼内においては溶鋼
とスラグと〃完全に分離しているわけではなく、ある程
度混合状態にあるから、鋳片の品質を良好に保つために
は、取鋼サイズや品質要求に応じて1〜20トン程度の
範囲で溶鋼を取鋼中に残したままスライディングゲート
を閉じる必要がある。
However, in reality, the molten tJAu in the ladle cannot be visually observed, so the fact that the molten steel in the ladle has decreased is actually due to the slag 9 in the ladle entering the tundish 6 through the long nozzle 4. You can't judge until after you start. Therefore, in the operation based on experience as described above, it is almost inevitable that slag will flow into the tundish 6 and result in internal defects in the slab. Furthermore, in actual steel strips, molten steel and slag are not completely separated, but are mixed to some extent, so in order to maintain good quality of slabs, it is necessary to adjust the steel strip size and quality requirements. Depending on the amount of molten steel, it is necessary to close the sliding gate while leaving the molten steel in the range of about 1 to 20 tons.

そこで、従来から、何らかのデータに基いて取鍋内の溶
鋼残量を推定し、その推定した溶鋼残留量に基いてスラ
イディングゲートを閉じる方法が考えられており、また
、その方法を実施するために取鍋内溶鋼残留吊を推定す
る方法が従来からいくつか提案されている。しかしなが
ら、従来提案されている取鍋内溶鋼残伍推定方法は、何
れも精度が低く、実用化するには不充分なものであった
Therefore, a method of estimating the remaining amount of molten steel in the ladle based on some data and closing the sliding gate based on the estimated amount of remaining molten steel has been considered. Several methods have been proposed to estimate the residual molten steel in the ladle. However, all of the conventionally proposed methods for estimating the molten steel residue in the ladle have low accuracy and are insufficient for practical use.

すなわち、従来の取鍋的溶鋼残量推定方法としては、先
ず第1には、溶鋼精錬工程における溶鋼の取鋼ごとの生
産面の推定値を基準とし、実tIa鋳造量を差し引いて
取鍋内の溶鋼残量を算出する方法が提案されているが、
この場合、実際には精錬工程での溶鋼生産量のばらつき
が大きいため、取鍋内残溶鋼伍推定値の精度も低くなら
ざるを得ない。
In other words, as a conventional method for estimating the amount of molten steel remaining in the ladle, first, the estimated production value for each ladle of molten steel in the molten steel refining process is used as a standard, and the actual amount of tIa cast is subtracted to calculate the amount in the ladle. A method of calculating the remaining amount of molten steel has been proposed, but
In this case, since there is actually a large variation in the amount of molten steel produced in the refining process, the accuracy of the estimated value of the remaining molten steel in the ladle is inevitably low.

また、第2の方法として、クレーン秤S器により取鋼を
秤量し、空の状態での取鋼重置を差し引いて取鋼内の初
期層!I出を算出し、その量から実績鋳造廻を差し引い
て取鍋内残溶1lffiを推定する方法がある。しかし
ながら、取鋼内には溶鋼のほか相当量のスラグが存在し
、そのため、この方法の場合スラグの分だけ誤差が生じ
る。また、スラグmを推定してその分を差し引くことも
考えられるが、スラグ吊は作業上のばらつきが大きく、
正確な推定は困難である。
In addition, as a second method, the steel stock is weighed using a crane scale S, and the initial layer in the steel stock is calculated by subtracting the amount of stacked steel stock in an empty state. There is a method of estimating the residual melt in the ladle 1lffi by calculating the I output and subtracting the actual casting amount from that amount. However, in addition to molten steel, there is a considerable amount of slag in the steel strip, and therefore, in this method, an error occurs by the amount of slag. It is also possible to estimate the slag m and subtract it, but slag lifting involves large variations in work.
Accurate estimation is difficult.

第3の方法としては、特開昭55−95084号、53
−7359号に開示される溶鋼のレベル検出手段を用い
て取鍋内の湯面レベルを検出し、溶鋼量を惇出する方法
がある。しかし、取鍋耐大物の溶損の影響によって溶鋼
量の推定精度が低下する。
As a third method, JP-A No. 55-95084, 53
There is a method of detecting the level of molten steel in a ladle using a molten steel level detection means disclosed in Japanese Patent Application No. 7359, and determining the amount of molten steel in its entirety. However, the accuracy of estimating the amount of molten steel decreases due to the influence of erosion of the large ladle-resistant material.

すなわち、取鋼耐大物の溶損が進行すれば取鋼内容積が
大きくなって、同じ湯面レベルでら溶til量が大きく
なり、したがって実際の溶鋼量との誤差が大きくなる。
That is, as the melting loss of the large steel stock increases, the internal volume of the steel stock increases, and the amount of molten steel increases at the same level of molten steel, thus increasing the error from the actual amount of molten steel.

以上のように従来の取鍋内残溶鋼量推定方法は、何れも
従来の溶uAmに対する誤差が大きく、そのため、従来
の推定方法を用いてスライディングゲートの閉止タイミ
ングをとる場合には、安全サイドを見積って多口の残留
邑でスライディングゲー1−を閉じざるを得す、したが
ってスクラップとなる珊が多く、コスト高となる問題が
あった。
As mentioned above, all of the conventional methods for estimating the amount of molten steel remaining in the ladle have large errors with respect to the conventional molten uAm. Therefore, when determining the closing timing of the sliding gate using the conventional estimating method, it is necessary to be on the safe side. The sliding game 1 has to be closed with a large amount of remaining coral, which results in a large amount of coral being scrapped, resulting in high costs.

発明が解洸しようとする問題点 本発明はこれらの問題点を解決することを目的とし、具
体的には、溶鋼レベルの検出ととしに取鋼内の耐火物の
溶損量を検知し、高精度に取鋼内の溶鋼残量を推定する
ことを再能とした取鋼内残溶鋼旧の推定方法を提供する
ことを目的とする。
Problems to be Solved by the Invention The present invention aims to solve these problems, and specifically, detects the level of molten steel and detects the amount of corrosion loss of refractories in the steel stock, The purpose of the present invention is to provide a method for estimating the amount of remaining molten steel in a steel tap that is capable of estimating the remaining amount of molten steel in a steel tap with high accuracy.

〈発明の構成〉 問題点を解決するための 手段ならびにその作用 本発明は、取鍋の相対する壁面の耐火物中に励磁コイル
および磁界強度検出コイルを対向配置し、励磁コイルか
ら誘起される磁界の強度を検出コイルで測定して溶鋼レ
ベ゛ルを検知しながら取鋼内の溶鋼残量を推定する取鋼
内外’rRm lの推定方法において、前記取鋼的溶鋼
の流出過程における誘起磁界強度の少なくとも2つの変
化点を検出し、口の変化点間における取鍋内溶鋼流出階
を測定若しくは演算によって求め、取鍋内耐火物の溶損
量を検出し、該溶損量をもとに補正された取鋼容積を基
準として前記磁界強度変化から取鍋内溶鋼残市を推定す
ることを特徴とする。
<Structure of the Invention> Means for Solving the Problems and Their Effects The present invention provides an excitation coil and a magnetic field strength detection coil that are disposed facing each other in refractories on opposing walls of a ladle, and the magnetic field induced from the excitation coil is In the method for estimating the amount of molten steel remaining in the steel tap while measuring the strength of the molten steel with a detection coil and detecting the molten steel level, the induced magnetic field strength during the outflow process of the molten steel in the steel tap is Detect at least two changing points of the mouth, determine the flow rate of molten steel in the ladle between the changing points of the mouth by measurement or calculation, detect the amount of erosion of the refractory in the ladle, and based on the amount of erosion. The method is characterized in that the amount of remaining molten steel in the ladle is estimated from the change in magnetic field strength using the corrected steel volume as a reference.

以下、図面により本発明の構成ならびに作用を説明する
と、次の通りである。
Hereinafter, the structure and operation of the present invention will be explained with reference to the drawings.

第1図は本発明に係る取鍋内残溶鋼吊の推定方法を示す
説明図であり、第2図は取鋼的溶鋼レベルと出力信号の
関係を示すグラフであり、第3図は本発明制御装Hの構
成を示す説明図であり、第4図は取鍋の底面溶損潰と断
面積比の関係を示すグラフであり、第5図は目標残鋼量
と実際に残・〕だ溶m!!lとの差の分布を示すグラフ
であり、第6図は通常の連続vi造における取鋼付近の
所面図である。
FIG. 1 is an explanatory diagram showing a method for estimating the residual molten steel in a ladle according to the present invention, FIG. 2 is a graph showing the relationship between the level of molten steel in a ladle and an output signal, and FIG. This is an explanatory diagram showing the configuration of the control system H, Fig. 4 is a graph showing the relationship between the bottom surface erosion and collapse of the ladle and the cross-sectional area ratio, and Fig. 5 is a graph showing the relationship between the target remaining steel amount and the actual remaining steel amount. Melting m! ! FIG. 6 is a graph showing the distribution of the difference between 1 and 1. FIG.

本発明は前記第3の方法に立脚して開発されたもので、
溶融金属レベル測定装置は特開昭55−95084号に
示された測定装訪を使用する。本制御方法は第1図に示
す装置で実施される。第1図において、13は特開昭5
5−95084号で示される溶融金属レベル測定装置で
あり、その一対の検出端は取鋼内の耐火物内に設置され
る。すなわち、取鋼1の耐火物中には相互に相対する位
置に励磁コイル11及び検出コイル12が対向状に埋込
まれている。励磁コイル11にはレベル測定装H13に
内蔵された交流励磁電流発生器(図示せず)から供給さ
れる交流励磁電流が流れ、取鋼1内に交流磁界を誘起さ
せる。また、−力検出コイル12は、上記交流磁界の検
出コイル位置における磁界強度を起電力として検出する
The present invention was developed based on the third method, and
The molten metal level measuring device uses the measuring device disclosed in Japanese Patent Laid-Open No. 55-95084. This control method is implemented with the apparatus shown in FIG. In Figure 1, 13 is JP-A No. 5
This is a molten metal level measuring device shown in No. 5-95084, and a pair of detection ends thereof are installed in a refractory in a steel stock. That is, an excitation coil 11 and a detection coil 12 are embedded in the refractory of the steel stock 1 in opposing positions at mutually opposing positions. An AC excitation current supplied from an AC excitation current generator (not shown) built in the level measuring device H13 flows through the excitation coil 11, and an AC magnetic field is induced in the steel stock 1. The -force detection coil 12 detects the magnetic field strength at the detection coil position of the alternating current magnetic field as an electromotive force.

上記励磁コイル11により誘起される磁界分布は、取鋼
1内の溶鋼の影響を強く受け、その溶鋼の湯面レベルに
よって検出コイル12が検出する磁界強度が変化するこ
とから、この磁界強度を検出することによって溶鋼の湯
面レベルが検出されるものであり、磁界強度は次の通り
である。
The magnetic field distribution induced by the excitation coil 11 is strongly influenced by the molten steel in the steel drawer 1, and the magnetic field strength detected by the detection coil 12 changes depending on the level of the molten steel. By doing this, the level of the molten steel is detected, and the magnetic field strength is as follows.

まず、湯面レベルがコイル11.12の上端より上方に
ある場合、コイル11.12間が溶鋼によって遮断され
るため、検出コイル12が検出する磁界強度は小さい。
First, when the hot water level is above the upper end of the coil 11.12, the magnetic field strength detected by the detection coil 12 is small because the space between the coils 11.12 is blocked by molten steel.

すなわち、励磁コイル11からの直接の磁束(1次磁界
)は検出コイル12にや1達せず、溶鋼側に入り、その
溶鋼から漏洩した磁束(2次Ia界)のみが検出コイル
12に検出されるもので検出磁界強度は小となる。
That is, the direct magnetic flux (primary magnetic field) from the excitation coil 11 does not reach the detection coil 12 and enters the molten steel, and only the magnetic flux (secondary Ia field) leaking from the molten steel is detected by the detection coil 12. The detected magnetic field strength will be small.

そして、湯面しベルがコイル11.12の上端に達し、
さらに、下方に下がってゆく場合には、励11コイル1
1からの1次磁界の一部が検出コイル12により検出さ
れるようになり、磁界強度の上昇を生じる。そして、湯
面レベルが下がるほど、1次磁界の強度は大きくなるた
め、検出コイル12の検出磁界強度はますます高くなる
。なお、2次磁界も同時に検出されている。この検出磁
界強度の上昇はコイル11.12の下端に場面レベルが
達するまで続き、下端レベルに達した際に1次磁界強度
は最大となる。
Then, the hot water level bell reaches the upper end of coil 11.12,
Furthermore, when going downward, excitation 11 coil 1
A portion of the primary magnetic field from 1 becomes detected by the detection coil 12, causing an increase in the magnetic field strength. Then, as the hot water level decreases, the strength of the primary magnetic field increases, so the strength of the magnetic field detected by the detection coil 12 becomes higher and higher. Note that the secondary magnetic field is also detected at the same time. This increase in the detected magnetic field strength continues until the scene level reaches the lower end of the coil 11.12, and when the lower end level is reached, the primary magnetic field strength reaches its maximum.

その後、場面レベルがコイル11.12の下端より下が
れば1次磁界強度は不変〈同一)であるlメ、溶鋼がコ
イル11.12より遠ざかる口とになる結束、2次磁界
強度が次第に低下し、検出磁界強度の低下を生じる。そ
して、取鍋1内の溶鋼がなくなれば磁界強度はそれ以上
低下せず、安定した状態となる。この状況を第2図に示
す。
After that, if the scene level falls below the lower end of the coil 11.12, the primary magnetic field strength remains unchanged (the same), and the secondary magnetic field strength gradually decreases as the molten steel becomes the outlet where the molten steel moves away from the coil 11.12. , resulting in a decrease in the detected magnetic field strength. Then, once the molten steel in the ladle 1 is gone, the magnetic field strength does not decrease any further and becomes stable. This situation is shown in Figure 2.

このように、検出コイル12の検出磁界強度による起電
力の変化中、コイル11.12の上端部と下端部に湯面
レベルが達した際の変化は顕著にとらえることができる
ことは明らかであり、本発明においてはこの魚を利用し
、取鋼内の耐火物溶損量の検知を行なう。この耐火物溶
損Mの検知は次の通り行なう。
In this way, it is clear that while the electromotive force changes due to the strength of the detected magnetic field of the detection coil 12, the change when the hot water level reaches the upper and lower ends of the coil 11.12 can be clearly detected. In the present invention, this fish is used to detect the amount of refractory erosion within the steel stock. Detection of this refractory erosion M is performed as follows.

コイル11.12の上端部から下端部に湯面レベルが達
するまでの2点間の溶鋼流出量をタンディツレ1重量、
鋳込重量から演算し、取鍋新品時の流出量との対比にお
いて取鍋断面積の変化を検出し、コイル11.12の配
置部分の溶損量を検知すると共に、口の取鍋のコイル配
置位置の壁面部の溶損から取鍋底部の溶損を推定し、残
留溶鋼出を求める。
The flow rate of molten steel between the two points from the upper end of the coil 11.12 until the molten metal level reaches the lower end is 1 weight,
Calculated from the casting weight, the change in the cross-sectional area of the ladle is detected in comparison with the flow rate when the ladle is new, and the amount of erosion in the area where the coils 11 and 12 are arranged is detected. Estimating the melting damage at the bottom of the ladle from the melting damage on the wall at the placement location, and calculating the amount of residual molten steel.

こ口で、取鋼に施工された耐火物の溶損は、受鋼温度、
聞及び回数により変1ヒしてゆくもので、取鍋壁面部、
底部等の溶損状況と相関が見られることは明らかであり
、−例を第4図に示しである。
At this point, the corrosion of the refractory installed on the steel plate is determined by the receiving steel temperature,
The ladle wall surface,
It is clear that there is a correlation with the state of erosion on the bottom, etc., and an example is shown in FIG.

以下、更に詳細に説明する。This will be explained in more detail below.

第1図中14は第2図の出力とタンディツシュ重1!l
 f15より得る)と鋳造量を用い、本発明の主眼とな
る残溶鋼量の推定ならびにこの推定・をもとに取鍋がら
の溶鋼注入を制御する制御l装置である。この制御装置
14は第3図のように構成されている。制御装置!11
4の目的は13で得られたレベル信号と取鋼溶損量を求
めることにある。これはコイル下端と溶鋼表面の距離が
わかったとしても、耐火物溶損は壁面のみならず底部に
も生じ、取鍋深さの変化を生じるため、溶鋼そのものの
高さを把握することが不可能であるからである。
14 in Fig. 1 is the output of Fig. 2 and tanditshu weight 1! l
This is a control device that estimates the amount of remaining molten steel, which is the main focus of the present invention, and controls the injection of molten steel into a ladle based on this estimation, using the amount obtained from f15) and the casting amount. This control device 14 is constructed as shown in FIG. Control device! 11
The purpose of step 4 is to obtain the level signal obtained in step 13 and the amount of steel corrosion loss. This is because even if the distance between the bottom end of the coil and the surface of the molten steel is known, it is difficult to know the height of the molten steel itself because refractory corrosion occurs not only on the wall but also at the bottom, causing changes in the ladle depth. Because it is possible.

以下、この補正方法について説明する。This correction method will be explained below.

第3図中a、bはピーク検出器を、c、dは記憶装置、
e、hは減粋器、りは加締器、iはJI算器、fは割算
器を示し、j、にはそれぞれ比較′an器、関数設定器
である。
In Fig. 3, a and b are peak detectors, c and d are storage devices,
e and h are a subtractor, ri is a consolidator, i is a JI calculator, f is a divider, and j is a comparison 'an' unit and a function setter, respectively.

第3図において、ピーク検出器aおよびbはそれぞれ第
2図に示す起電力が明確に変化する変化点であるコイル
上端とコイル下端に相当する点を児出す装置であり、溶
融金属レベル測定装置13の出力から上記変化点で生じ
る起電力のピーク値を検出する。このときの残鋼尚推定
値は、製出鋼S−タンディツシュ重吊−鋳造艮×鋳片単
重により求めるもので、鋳iia良さは測長器1Gの出
力を入力信号として、鋳片単重Sをもとに掛算器iで鋳
造長×鋳片単重で算出し、加算器0においてタンディツ
シュ重量計15からの溶tJ4m伍出力と合せ、判明し
ている製出構出から減算器11によって減じることで残
鋼量が求まる。これをそれぞれ記憶装@e、 dに記憶
し、減算器eにおいて、その差を求める。この際、製出
銅分に誤差があっても、差を求めることにより相殺され
る。これを割算器「においてコイルの高さ[、新しい鍋
の断面積れおよび溶鋼比重γで割れば、使用中の鎖の新
鍋に対する断面積^/A、が求まる。更に、断面積比A
/Aoと底面溶損ff1Xの関係より底面溶損量が求ま
る。A/^0対Xは別途測定しておき、例えば、第4図
のように、多項式近似すればよく、このA/A oとX
の関係はkの関数設定器に記憶させておく。底面溶損f
f1Xと溶融金属レベル測定装置13よりの信号を演算
すれば、底面からの溶鋼レベルが求まる(重Mで監視し
たい場合はこれに断面積Aをかければ良い)。これと取
鋼サイズや品質要求に応じて予め定めた目標残鋼量を比
較演粋器jで比較し、一致すれば「注入終了検知」とし
て17に出力する。
In Fig. 3, peak detectors a and b are devices that detect points corresponding to the upper end and lower end of the coil, which are the changing points where the electromotive force clearly changes shown in Fig. 2, and the molten metal level measuring device The peak value of the electromotive force generated at the above change point is detected from the output of step 13. The estimated value of the remaining steel at this time is obtained from the following equation: steel production S - tanditshu heavy lifting - casting weight x unit weight of the slab. Based on S, use multiplier i to calculate casting length x slab unit weight, adder 0 to add 4 m of molten metal output from tanditshu weighing scale 15, and subtractor 11 from the known production structure. By subtracting the amount, the amount of remaining steel can be determined. These are stored in the memory devices @e and d, respectively, and the difference between them is determined in the subtractor e. At this time, even if there is an error in the amount of produced copper, it is offset by calculating the difference. By dividing this by the height of the coil [, the cross-sectional area of the new ladle, and the specific gravity of the molten steel γ using the divider, the cross-sectional area of the chain in use with respect to the new ladle, ^/A, is determined.Furthermore, the cross-sectional area ratio A
The amount of bottom surface melting loss can be determined from the relationship between /Ao and bottom surface melting loss ff1X. A/^0 vs.
The relationship is stored in the k function setter. Bottom melting f
By calculating f1X and the signal from the molten metal level measuring device 13, the molten steel level from the bottom can be determined (if you want to monitor with heavy M, you can multiply this by the cross-sectional area A). A comparator j compares this with a predetermined target remaining steel amount according to the steel stock size and quality requirements, and if they match, it is output to 17 as "injection end detection".

その演算内容を次式で示す。The contents of the calculation are shown in the following equation.

h=Jo−Z+X 2=αV+β 但し、h ・・・・・・溶鋼深さ !。・・・・・・コイル下端から新鍋の底面までの長さ
く定数) X ・・・・・・底面溶損量 2 ・・・・・・コイル下端から溶鋼面までの長さ ■ ・・・・・・溶融金風レベル測定装置の出力信号 α、β・・・・・・定数 もちろん、第3図の装ぽはマイクロコンピュータ、ミニ
コンピユータを用いてソフトウェア的に処理させて構成
することも可能である。
h=Jo-Z+X 2=αV+β However, h... Molten steel depth! .・・・・・・Length from the bottom end of the coil to the bottom of the new pot (constant) ... Output signals α, β of the molten metal level measuring device ... Constants Of course, the system shown in Figure 3 can also be configured by processing it in software using a microcomputer or minicomputer. It is.

実施例 連続&R造に本発明残溶鋼量の推定方法を適用して、注
入終了制御を行ない、目標残!!4@と実際に残った溶
鋼との差の分布を第5図に棒グラフで示す。図に明らか
なように、はぼ1トンの誤差内に収まっており、本発明
が有効であることが分った。また、この発明をスライデ
ィングノズルの閉鎖タイミング制御に適用した場合、従
来、取鋼中へのスラグの流出に伴って鋳片へ侵入するケ
ースが見られたものが皆無となった。
Example: Applying the method of estimating the amount of remaining molten steel of the present invention to continuous & R construction, controlling the injection end and achieving the target remaining amount! ! The distribution of the difference between 4@ and the actual remaining molten steel is shown in a bar graph in Figure 5. As is clear from the figure, the error was within about 1 ton, indicating that the present invention is effective. Furthermore, when the present invention is applied to the closing timing control of a sliding nozzle, there are no cases where slag intrudes into the slab as it flows out into the steel plate.

〈発明の効果〉 本発明は取鍋固溶鋼の流出過程における誘起磁界強度の
少なくとも2つの変化点を検出し、口の変化点間におけ
る取鍋内溶鋼流出吊を測定若しくは演算によって求め、
取鍋内耐火物の溶損aを検出し、該溶損量をもとに補正
された取鍋容積を基準として、前記磁界強度変化から取
鍋内溶鋼残量を推定することを特徴とする取鋼内残溶1
4ffiの推定方法であって、本発明によれば、耐火物
の溶損進行に伴う取鍋内残溶tMffiのH1定誤差を
橿力小さくすることができることから過剰な■の溶鋼を
取鍋内に残すことが防止され、また、スライディングノ
ズルの閉鎖制御に適用すれば、高精度で残溶鋼量の推定
が行なわれる結果、スラグの流出を確実に防止して高品
質の鋳片を得ることができるようになった。
<Effects of the Invention> The present invention detects at least two changing points of the induced magnetic field intensity during the outflow process of solid molten steel in the ladle, and determines the outflow of molten steel in the ladle between the changing points at the mouth by measurement or calculation.
It is characterized by detecting melting loss a of the refractory in the ladle, and estimating the remaining amount of molten steel in the ladle from the change in magnetic field strength using the ladle volume corrected based on the amount of melting damage as a reference. Residual melt in steel plate 1
According to the present invention, it is possible to reduce the H1 constant error of the residual melt tMffi in the ladle due to the progress of melting of the refractory. In addition, if applied to the closing control of sliding nozzles, the amount of remaining molten steel can be estimated with high accuracy, and as a result, it is possible to reliably prevent slag from flowing out and obtain high-quality slabs. Now you can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る取鋼的残溶鋼aのni定定法法示
す説明図、第2図は取鍋固溶鋼レベルと出力信号の関係
を示すグラフ、第3図は本発明制御装置の構成を示す説
明図、第4図は取鋼の底面溶損量と断面積比の関係を示
すグラフ、第5図は目標残w4mと実際に残った溶鋼面
との差の分布を示すグラフ、第6図は通常の連続鋳造に
おける取鍋付近の断面図である。 符号1・・・・・・取鍋     2・・・・・・溶鋼
流出口3・・・・・・スライディングゲート 4・・・・・・ロングノズル 5・・・・・・溶鋼6・
・・・・・タンディツシュ ト・・・・・モールド   8・・・・・・鋳片9・・
・・・・スラグ    11・・・・・・励磁コイル1
2・・・・・・検出コイル 13・・・・・・溶融金属レベル測定装置14・・・・
・・残溶鋼量制御装置 15・・・・・・タンディツシュ重量計1G・・・・・
・測長器
Fig. 1 is an explanatory diagram showing the ni standard method for the residual molten steel a in the steel withdrawal according to the present invention, Fig. 2 is a graph showing the relationship between the ladle solid molten steel level and the output signal, and Fig. 3 is a diagram showing the relationship between the ladle solid molten steel level and the output signal. An explanatory diagram showing the configuration, Fig. 4 is a graph showing the relationship between the amount of erosion on the bottom surface of the steel plate and the cross-sectional area ratio, Fig. 5 is a graph showing the distribution of the difference between the target remaining w4m and the actual remaining molten steel surface. FIG. 6 is a sectional view of the vicinity of the ladle in normal continuous casting. Code 1... Ladle 2... Molten steel outlet 3... Sliding gate 4... Long nozzle 5... Molten steel 6.
...Tandisht...Mold 8...Slab 9...
...Slug 11 ...Exciting coil 1
2...Detection coil 13... Molten metal level measuring device 14...
...Residual molten steel amount control device 15...Tandish weight scale 1G...
・Length measuring device

Claims (1)

【特許請求の範囲】[Claims] 取鍋の相対する壁面の耐火物中に励磁コイルおよび磁界
強度検出コイルを対向配置し、励磁コイルから誘起され
る磁界の強度を検出コイルで測定して溶鋼レベルを検知
しながら取鍋内の溶鋼残量を推定する取鍋内残溶鋼量の
推定方法において、前記取鍋内溶鋼の流出過程における
誘起磁界強度の少なくとも2つの変化点を検出し、この
変化点間における取鍋内溶鋼流出量を測定若しくは演算
によって求め、取鍋内耐火物の溶損量を検出し、該溶損
量をもとに補正された取鍋容積を基準として前記磁界強
度変化から取鍋内溶鋼残量を推定することを特徴とする
取鍋内残溶鋼量の推定方法。
An excitation coil and a magnetic field strength detection coil are arranged facing each other in the refractories on opposing walls of the ladle, and the strength of the magnetic field induced by the excitation coil is measured by the detection coil to detect the molten steel level while detecting the molten steel in the ladle. A method for estimating the remaining amount of molten steel in the ladle includes detecting at least two changing points of the induced magnetic field strength during the outflow process of the molten steel in the ladle, and calculating the amount of molten steel flowing out in the ladle between these changing points. Determined by measurement or calculation, detecting the amount of erosion of the refractory in the ladle, and estimating the remaining amount of molten steel in the ladle from the change in magnetic field strength with the ladle volume corrected based on the amount of erosion as a reference. A method for estimating the amount of remaining molten steel in a ladle, characterized by:
JP29106085A 1985-12-23 1985-12-23 Estimation method for remaining molten steel in ladle for continuous casting Pending JPS62148066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29106085A JPS62148066A (en) 1985-12-23 1985-12-23 Estimation method for remaining molten steel in ladle for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29106085A JPS62148066A (en) 1985-12-23 1985-12-23 Estimation method for remaining molten steel in ladle for continuous casting

Publications (1)

Publication Number Publication Date
JPS62148066A true JPS62148066A (en) 1987-07-02

Family

ID=17763910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29106085A Pending JPS62148066A (en) 1985-12-23 1985-12-23 Estimation method for remaining molten steel in ladle for continuous casting

Country Status (1)

Country Link
JP (1) JPS62148066A (en)

Similar Documents

Publication Publication Date Title
KR20090064452A (en) Method for pouring melt from a tiltable metallurgic vessel and system for performing the method
US20110174457A1 (en) Process for optimizing steel fabrication
US4370719A (en) Control of centrifugal pipe casting operation
US3941281A (en) Control device for regulating teeming rate
KR101387329B1 (en) Apparatus for controlling level of molten steel and continuous casting method using the same
US4102190A (en) Method and apparatus for determining the weight of slag on a bath of molten metal
JPS619966A (en) Estimating method of amount of molten steel remaining in ladle
JPS62148066A (en) Estimation method for remaining molten steel in ladle for continuous casting
JP4324077B2 (en) Sliding nozzle opening measuring method and apparatus, and molten steel injection method using this method
JPH02200362A (en) Method for predicting and restraining nozzle clogging in continuous casting apparatus
JP3622422B2 (en) Tundish for continuous casting of steel
JPH07314105A (en) Method for automatically charging mold powder at start of pouring molten steel and device thereof
JPH09236461A (en) Decision method and device for slug outflow
JPS62179859A (en) Auto-start controlling method for continuous casting machine
KR101246193B1 (en) Method for estimating steel component during mixed grade continuous casting
JP6375765B2 (en) Molten metal injection method
JPH0773776B2 (en) Switching method for different steel types in continuous casting
JPS5978763A (en) Controlling method of molten steel level in casting mold in continuous casting
JPS5931424B2 (en) Molten metal pouring control method in continuous casting
KR101435111B1 (en) Method for predicting shrinkage of solidified shell in continuous casting process
JPH0538558A (en) Method for pouring and stopping molten metal into mold for continuous casting
JPH08267219A (en) Method for detecting and controlling outflow of slag from molten metal vessel
JPS62270264A (en) Control method at casting initial stage for continuous casting
JP4457707B2 (en) Finishing pouring of molten steel in tundish
JPS583764A (en) Charging method for molten metal