JPH0194201A - Method and apparatus for measuring thickness of molten slag - Google Patents

Method and apparatus for measuring thickness of molten slag

Info

Publication number
JPH0194201A
JPH0194201A JP25216587A JP25216587A JPH0194201A JP H0194201 A JPH0194201 A JP H0194201A JP 25216587 A JP25216587 A JP 25216587A JP 25216587 A JP25216587 A JP 25216587A JP H0194201 A JPH0194201 A JP H0194201A
Authority
JP
Japan
Prior art keywords
magnetic field
slag
molten
molten slag
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25216587A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yamamoto
俊行 山本
Yoshinori Okazaki
岡崎 良則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25216587A priority Critical patent/JPH0194201A/en
Publication of JPH0194201A publication Critical patent/JPH0194201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To enable highly accurate measurement of the thickness of a molten slag, by detecting impedance of a detection coil generating a high frequency magnetic field with a magnetic field generation coil arranged above the slag to separate and extract a resistance component thereof. CONSTITUTION:A slag 3 is dumped onto the surface of a molten iron 2 poured into a cast mold 1 to form a layer of a powder slag 3a and a molten slag 3b. A detection head 5 is arranged above the slag 3, a magnetic field generation coil 5a is connected to an oscillator 4 to generate a high frequency magnetic field and a pair of detection coils 5b is connected to an impedance measuring device 6 in opposite phase to measure impedance. A computing means 7 separates the impedance detected into an inductance and a resistance. In this manner, as the resistance component is caused by an eddy current loss induced onto the molten slag, there is a better correlationship between a resistance value and the thickness of the molten slag. Thus, the thickness D of the molten slag can be determined at a high accuracy from the resistance value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属の連続鋳造機の鋳型内へ溶湯と共に供給さ
れるスラグの一部が溶融して溶湯」二に形成される溶融
スラグの層の厚さを測定する方法及び装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a layer of molten slag that is formed on the molten metal by the melting of a part of the slag that is supplied together with the molten metal into the mold of a continuous metal casting machine. The present invention relates to a method and apparatus for measuring the thickness of.

〔従来技術〕[Prior art]

連続鋳造機を用いて金属を連続鋳造する場合、鋳型内の
溶湯の保温、溶湯中の非金属介在物の吸収、鋳型内壁と
凝固シーエルとの間の潤滑等を目的として鋳型内の溶湯
表面にスラグが供給される。
When continuously casting metal using a continuous casting machine, the surface of the molten metal in the mold is coated for the purpose of keeping the molten metal in the mold warm, absorbing non-metallic inclusions in the molten metal, and lubricating between the mold inner wall and the solidification seal. Slag is supplied.

そして供給されたスラグは溶湯からの熱によってその一
部が溶融し、溶湯面上に溶融スラグの層を形成する。
A portion of the supplied slag is melted by the heat from the molten metal, forming a layer of molten slag on the surface of the molten metal.

ところで該溶融スラグの層の厚さ(以下溶融スラグ厚さ
という)は、鋳型内壁と凝固シェルとの間に流れ込む)
容融スラグの流入量に対し、溶融スラグの粘度と共に支
配的な影響を与え、また該流入量の過不足が連続鋳造に
よって得られる鋳片の品質低下、或いは操業上での大問
題となるブレイクアウトにつながるので、前記熔融スラ
グ厚さを測定しこれを一定となすべく管理することが必
要となる。
By the way, the thickness of the layer of molten slag (hereinafter referred to as molten slag thickness) is the thickness of the layer of molten slag that flows between the inner wall of the mold and the solidified shell)
The viscosity of the molten slag has a dominant influence on the amount of inflow of molten slag, and excess or deficiency in the amount of inflow can lead to deterioration in the quality of slabs obtained by continuous casting or breakage, which can cause major operational problems. Therefore, it is necessary to measure the thickness of the molten slag and manage it to keep it constant.

そこで溶融スラグ厚さを測定する方法がいくつか提案さ
れている。例えば第5図に示す如く、溶湯温度以下であ
り且つ溶融スラグ温度以上の溶融点を有する棒状の素材
]Oaの周囲を溶融スラグ温度以下の溶融点を有する素
材10bにて被覆して同軸状の線部材となした針線10
を、鋳型1のスラグ3及び溶湯2の中へその両者にわた
るように」ニガから鉛直に挿入し、該針線10を構成す
る前記画素材10a、 10bの溶融長さの差から溶融
スラグ厚さDを求める方法(針線法)が提案されている
。なお、前記針線10に代えて前記画素+1’lOa、
 10bから夫々単独構成される一対の線材を平行に配
置してなる針線対を用いることもある(特開昭61−2
71401号)。
Therefore, several methods have been proposed for measuring the thickness of molten slag. For example, as shown in FIG. 5, a rod-shaped material 10b having a melting point below the molten metal temperature and above the molten slag temperature] is coated around the periphery of the material 10b having a melting point below the molten slag temperature to create a coaxial shape. Needle wire 10 made into a wire member
is vertically inserted into the slag 3 and molten metal 2 of the mold 1 so as to cover both of them, and the molten slag thickness D is determined from the difference in the melting length of the image materials 10a and 10b that constitute the needle line 10. A method (needle line method) has been proposed. Note that instead of the needle line 10, the pixel +1'lOa,
In some cases, a pair of needle wires is used in which a pair of wire rods each made of 10b are arranged in parallel (Japanese Patent Laid-Open No. 61-2
No. 71401).

また多周波数渦電流変位計を使用した方法も提案されて
いる(特開昭59−180402号)。この方法は、鋳
型内の溶湯及びスラグの上方に高周波磁界を発生させる
磁界発生コイルとインピーダンスを測定する検出コイル
とを配し、該検出コイルと溶融スラグ及び溶湯との距離
が変化したことによるインピーダンス変化が前記高周波
磁界の周波数によって異なることに着目し、溶湯に感度
の高い周波数の低周波磁界及び溶融スラグに感度の高い
周波数の低周波磁界を前記磁界発生コイルにて発生させ
、その両磁界におけるインピーダンスを比較して溶融ス
ラグ厚さを求める方法である。
A method using a multi-frequency eddy current displacement meter has also been proposed (Japanese Patent Application Laid-Open No. 180402/1982). In this method, a magnetic field generating coil that generates a high-frequency magnetic field and a detection coil that measures impedance are arranged above the molten metal and slag in the mold, and the impedance changes as the distance between the detection coil and the molten slag and molten metal changes. Focusing on the fact that the change differs depending on the frequency of the high-frequency magnetic field, the magnetic field generation coil generates a low-frequency magnetic field with a frequency that is sensitive to the molten metal and a low-frequency magnetic field with a frequency that is sensitive to the molten slag, and This is a method to determine the molten slag thickness by comparing impedances.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然るに前記針線10(又は針線対)を用いる方法による
場合は、該針線10を鋳型1内のスラグ3及び溶湯2の
中へ挿入してから該針線10が溶融するまでに一定の時
間がかかり、その間における溶鋼の場面変動(溶鋼レベ
ルの変動)等に起因して大きな誤差が生じることがある
という問題点があった。また通常は人手による間欠測定
が行われるため、その作業は正確性や再現性に難があっ
て高精度な測定を行い難いという問題点があった。
However, in the case of the method using the needle wire 10 (or a pair of needle wires), it takes a certain amount of time from the time the needle wire 10 is inserted into the slag 3 and the molten metal 2 in the mold 1 until the needle wire 10 melts. There has been a problem in that large errors may occur due to changes in the molten steel scene (changes in the molten steel level) during that time. Furthermore, since intermittent measurements are usually performed manually, there is a problem in that the accuracy and reproducibility of this work are difficult, making it difficult to perform highly accurate measurements.

一方、多周波数渦電流変位計を使用した方法による場合
は、インピーダンス変化の要因を十分に解析することな
くその変化量を溶融スラグ厚さと関係づけているため、
種々の要因による誤差、例えば溶鋼レベルの変動やスラ
グの種類に基づく誤差が生じ易く高精度な測定結果が得
られるとはいい難かった。
On the other hand, when using a method using a multi-frequency eddy current displacement meter, the amount of change is related to the molten slag thickness without fully analyzing the factors behind impedance change.
Errors due to various factors, such as fluctuations in the molten steel level and types of slag, tend to occur, making it difficult to obtain highly accurate measurement results.

本発明はかかる事情に鑑みてなされたものであり、高精
度にて溶融スラグ厚さを測定する方法及び装置を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method and apparatus for measuring the thickness of molten slag with high accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る溶融スラグ厚さの測定方法は、連続鋳造機
の鋳型内へ溶湯と共に供給されてその一部が溶融するス
ラグの上方に磁界発生コイルと検出コイルとを配し、該
磁界発生コイルを用いて高周波磁界を発生させつつ前記
検出コイルのインピーダンスを検出し、該検出インピー
ダンスより分離抽出した抵抗分から溶融スラグ厚さを求
めることを特徴としている。
The method for measuring the thickness of molten slag according to the present invention includes disposing a magnetic field generating coil and a detection coil above the slag that is supplied together with the molten metal into the mold of a continuous casting machine and partially melting. The present invention is characterized in that the impedance of the detection coil is detected while generating a high-frequency magnetic field using a high-frequency magnetic field, and the thickness of the molten slag is determined from the resistance component separated and extracted from the detected impedance.

〔作用〕[Effect]

かかる本発明方法にあっては、検出コイルにて測定され
たインピーダンスから抵抗分を分離抽出することとして
いるが、該抵抗は溶融スラグ上に誘導される渦電流損に
よって生ずるので、該抵抗と溶融スラグ厚さとの間には
良好な相関関係がある。
In the method of the present invention, the resistance component is separated and extracted from the impedance measured by the detection coil, but since the resistance is caused by eddy current loss induced on the molten slag, the resistance and the molten slag are There is a good correlation with slag thickness.

従って該抵抗から溶融スラグ厚さを高精度に求めること
ができる。
Therefore, the molten slag thickness can be determined with high accuracy from the resistance.

なお溶融スラグ厚さを測定すべく前記インピーダンスか
ら抵抗を分離抽出するに際しては、インダクタンスも分
離抽出されるが、該インダクタンスは溶鋼レベル(具体
的には検出コイルと湯面との距離で表現できる)との間
で良好な相関関係があり、該インピーダンスから溶鋼レ
ベルを高精度に求めることができる。そして該溶鋼レベ
ルの測定値を用いて?8鋼の湯面変動に基づく誤差の補
正を溶融スラグ厚さ測定時に行うことにより、又は測定
された溶鋼レベルと該検出コイルとの距離を一定とする
機構を付加することにより該溶融スラグ厚さの測定精度
を一層高めることができる。
Note that when the resistance is separated and extracted from the impedance to measure the molten slag thickness, the inductance is also separated and extracted, but the inductance is at the molten steel level (specifically, it can be expressed by the distance between the detection coil and the molten metal surface). There is a good correlation between the impedance and the molten steel level, and the molten steel level can be determined with high accuracy from the impedance. And using the measured value of the molten steel level? The thickness of the molten slag can be adjusted by correcting errors based on fluctuations in the molten steel level when measuring the molten slag thickness, or by adding a mechanism that keeps the distance between the measured molten steel level and the detection coil constant. The measurement accuracy can be further improved.

またかかる本発明方法の実施に使用する装置を構成する
に際しては、前記磁界発生コイルの上下に検出コイルを
逆相に接続すると、溶融スラグ厚さを測定する上で誤差
原因となるコイル抵抗の温度による変動の影響を相殺す
ることによって抑制することができる。
Furthermore, when configuring the apparatus used to carry out the method of the present invention, if detecting coils are connected above and below the magnetic field generating coil in opposite phases, the temperature of the coil resistance will cause an error in measuring the thickness of the molten slag. This can be suppressed by offsetting the effects of fluctuations due to

〔実施例〕〔Example〕

以下、本発明方法をその実施例を示す図面に基づいて詳
述する。
Hereinafter, the method of the present invention will be explained in detail based on the drawings showing examples thereof.

第1図は本発明方法の実施状態を模式的に示す縦断面図
であり、図中1は鋳型、2は溶湯、3はスラグであり、
該鋳型1内へは溶湯2が連続鋳造のために注入供給され
、また該溶湯2表面へはスラグ3が、溶湯2の保温、溶
湯2中の非金属介在物の吸収、溶湯2が凝固して生成す
る凝固シェル2aと前記鋳型1との間の潤滑等を目的と
して投入供給される。そして該スラグ3は粉末スラグ3
aの状態にて供給されるが、その一部は溶融して溶湯2
上に溶融スラグ3bの層を形成する。
FIG. 1 is a vertical cross-sectional view schematically showing the implementation state of the method of the present invention, in which 1 is a mold, 2 is a molten metal, 3 is a slag,
Molten metal 2 is injected into the mold 1 for continuous casting, and slag 3 is applied to the surface of the molten metal 2 to keep the molten metal 2 warm, absorb nonmetallic inclusions in the molten metal 2, and solidify the molten metal 2. The solidified shell 2a produced by the process is supplied for the purpose of lubrication between the mold 1 and the solidified shell 2a. And the slag 3 is powder slag 3
It is supplied in the state of a, but a part of it melts and becomes molten metal 2.
A layer of molten slag 3b is formed on top.

かかるスラグ3の上方には、発振H4に接続されて適宜
周波数の高周波磁界を発生させる磁界発生コイル5aと
インピーダンス測定器6に接続されてインピーダンスを
検出する一対の検出コイル5bとを両コイルの軸芯を一
致させて内蔵した検出ヘッド5が、そのコイル軸芯方向
を溶湯2の注入方向に一致させた状態で配置される。
Above the slug 3, there are a magnetic field generating coil 5a connected to the oscillation H4 to generate a high frequency magnetic field of an appropriate frequency, and a pair of detection coils 5b connected to the impedance measuring device 6 to detect impedance. A built-in detection head 5 whose cores are aligned with each other is arranged with its coil axis direction aligned with the injection direction of the molten metal 2.

なお前記磁界発生コイル5aにて発生させる高周波磁界
の周波数としては、本発明方法のように溶融スラグ厚さ
Dを測定する場合、周波数と抵抗変化率との相関を示す
グラフ(第2図参照)から抵抗変化率が最大となるよう
な周波数(具体的にはIMIlz前後の周波数)を採用
すればよい。
The frequency of the high-frequency magnetic field generated by the magnetic field generating coil 5a is determined by a graph showing the correlation between the frequency and the rate of change in resistance when measuring the molten slag thickness D as in the method of the present invention (see FIG. 2). It is sufficient to adopt a frequency (specifically, a frequency around IMIlz) at which the resistance change rate is maximum from .

また前記検出へソド5に内蔵される一対の検出コイル5
bとしては温度係数が小さいものを用い、しかも該検出
コイル5bは磁界発生コイル5aの」二下に適長離隔(
具体的には10mm離隔)された状態で逆相に接続され
ている。このように温度係数が小さい一対の検出コイル
5bを磁界発生コイル5aの上下に適長離隔させて逆相
に接続するのは、溶融スラグ厚さDを測定する上で誤差
原因となるコイル抵抗の温度による変動の影響を相殺す
ることによって抑制するためである。
Also, a pair of detection coils 5 built into the detection coil 5
A coil with a small temperature coefficient is used as b, and the detection coil 5b is placed below the magnetic field generating coil 5a at an appropriate distance (
Specifically, they are connected in opposite phases with a separation distance of 10 mm. In this way, the pair of detection coils 5b having a small temperature coefficient are separated by an appropriate length above and below the magnetic field generating coil 5a and connected in opposite phases to reduce the coil resistance, which causes an error in measuring the molten slag thickness D. This is to suppress the influence of temperature fluctuations by offsetting them.

更に検出コイル5bを用いて(厳密にはそれとインピー
ダンス測定器6とを用いて)検出されたインピーダンス
に関する情報は演算手段7へ入力され、該演算手段7に
てインダクタンスと抵抗とに分離され、該抵抗から溶融
スラグ厚さDが求められるようになっている。なお、前
記インダクタンスからは?容鋼しヘルXが求められる。
Furthermore, information regarding the impedance detected using the detection coil 5b (strictly speaking, using it and the impedance measuring device 6) is input to the calculation means 7, which separates it into inductance and resistance. The molten slag thickness D can be determined from the resistance. What about the inductance mentioned above? A strong Hell X is required.

具体的には鋳型1内に溶湯2及び溶融スラグ3bが存在
しない条件で周囲の鋳型1等の影響を含めた空芯状態の
インピーダンス(Ro、ωLo)を求め、次に溶湯2及
び溶融スラグ3bが存在するいくつかの条件でのインピ
ーダンス(R,ωL)を求め、それらの結果がら空芯状
態に対する抵抗変化率(R−Ro )/ωT−o及びイ
ンダクタンス変化率log (1−ωL/ωLO) (
即ち溶湯2及び溶融スラグ3bが存在することによって
生ずる実質的な抵抗及びインダクタンス)を求め、該抵
抗変化率(実質的な抵抗)と溶融スラグ厚さDとの関係
(第3図参照)及び該インピーダンス変化率(実質的な
インダクタンス)と溶鋼レベルXとの関係(第4図参照
)を予め検量しておき、その検量結果を前記演算手段7
に入力しておく。ここで抵抗変化率と溶融スラグ厚さD
との関係は検出コイルと溶鋼レベルとの距1iillX
によって影響を受けるため、距離Xを一定にするか、又
は距離Xを求めて第3図に示す関係を補正することが必
要である。
Specifically, the impedance (Ro, ωLo) in the air core state including the influence of the surrounding mold 1, etc. is determined under the condition that the molten metal 2 and molten slag 3b are not present in the mold 1, and then Find the impedance (R, ωL) under several conditions where (
That is, the actual resistance and inductance caused by the presence of the molten metal 2 and the molten slag 3b are determined, and the relationship between the rate of change in resistance (substantive resistance) and the molten slag thickness D (see Fig. 3) and the The relationship between the impedance change rate (substantive inductance) and the molten steel level
Enter it in. Here, the resistance change rate and the molten slag thickness D
The relationship between the distance between the detection coil and the molten steel level is 1iillX
Therefore, it is necessary to keep the distance X constant or to calculate the distance X and correct the relationship shown in FIG. 3.

なお、第3図中の実線は前記距離Xが大きい場合を、ま
た破線は前記距離Xが小さい場合を夫々示す。そして実
際に鋳型1内へ溶湯2及びスラグ3が供給され溶融スラ
グ層3hが形成された状態にて抵抗及びインダクタンス
を測定し、その測定結果と上述の第3図に示す検量結果
とに基づいて演算手段7にて溶融スラグ厚さDを求める
。なお前記状態にて測定されたインダクタンスからは、
その測定結果と上述の第4図に示す検量結果とに基つい
て溶鋼レベルXを求めることができる。
Note that the solid line in FIG. 3 indicates the case where the distance X is large, and the broken line indicates the case where the distance X is small. Then, the resistance and inductance were actually measured in a state where the molten metal 2 and slag 3 were supplied into the mold 1 and the molten slag layer 3h was formed, and based on the measurement results and the calibration results shown in FIG. 3 above, The molten slag thickness D is determined by the calculation means 7. Furthermore, from the inductance measured in the above state,
The molten steel level X can be determined based on the measurement results and the calibration results shown in FIG. 4 described above.

かくして溶融スラグ厚さDを測定する場合は、インピー
ダンスをインダクタンスと抵抗とに分離した結果に基づ
いて溶融スラグ厚さDを求めるので、測定値に影響を与
える要因が明確である結果、その補正も簡単に行えて高
精度の測定が可能となる。
In this way, when measuring the molten slag thickness D, the molten slag thickness D is determined based on the result of separating impedance into inductance and resistance, so the factors that influence the measured value are clear, and as a result, their correction is also possible. It is easy to perform and enables highly accurate measurements.

なお、投入されるスラグの銘柄による差は比抵抗の違い
として溶融スラグ厚さDの測定結果に影響を及ぼすが、
その影響はスラグの銘柄に応した前記検量を行うことで
可及的に小さく抑えることができる。
Note that the difference in the brand of slag introduced affects the measurement result of the molten slag thickness D as a difference in specific resistance.
The influence can be suppressed as much as possible by performing the above-mentioned calibration according to the brand of slag.

また、溶融スラグ厚さDの測定感度は溶湯2と検出ヘッ
ド5との距離によって大きく変化するが、これによる影
響を最小限に抑えるには、前述の如くインダクタンスか
ら溶鋼レベルXを求め、該溶鋼レベルXを一定とずべく
検出ヘッド5の位置制御を行いその制御下で前述の如き
溶融スラグ厚さDの測定を行うことも考えられる。
Furthermore, the measurement sensitivity of the molten slag thickness D varies greatly depending on the distance between the molten metal 2 and the detection head 5, but in order to minimize the influence of this, the molten steel level It is also conceivable to control the position of the detection head 5 in order to keep the level X constant, and to measure the molten slag thickness D as described above under this control.

〔効果〕〔effect〕

以上詳述した如く、本発明方法によれば高精度にて溶融
スラグ厚さを測定することができるので、該溶融スラグ
厚さを一定となすべぎ管理が確実に行えるようになって
鋳型内壁と凝固シェルとの間に流れ込む溶融スラグの流
入を適正に保つことができる。その結果、連続鋳造によ
って得られる鋳片の品質向上や操業中におけるブレイク
アウトの発注抑止等が可能となる等、本発明は金属を連
続鋳造する上で極めて有用な手段を擢供するものである
As detailed above, according to the method of the present invention, the thickness of the molten slag can be measured with high accuracy, so that the thickness of the molten slag can be reliably controlled to be constant, and the inner wall of the mold can be The flow of molten slag flowing between the solidified shell and the solidified shell can be maintained appropriately. As a result, the present invention provides extremely useful means for continuous casting of metals, such as improving the quality of slabs obtained by continuous casting and preventing breakout orders during operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施状態を模式的に示す縦断面図
、第2図は周波数と抵抗変化率との関係を示すグラフ、
第3図は溶融スラグ厚さと抵抗変化率との関係を示すグ
ラフ、第4図は溶鋼レベルとインダクタンス変化率との
関係を示すグラフ、第5図は従来方法の実施状態を模式
的に示す縦断面図である。 1・・・鋳型 2・・・溶湯 3・・・スラグ 3b・
・・溶融スラグ 5・・・検出ヘッド 5a・・・磁界
発生コイル5b・・・検出コイル D・・・溶融スラグ
厚さ X・・・溶鋼レベル 代理人 弁理士  河  野  登  夫X・XいC−
い・h区ドξ貼脣
FIG. 1 is a vertical cross-sectional view schematically showing the implementation state of the method of the present invention, FIG. 2 is a graph showing the relationship between frequency and resistance change rate,
Fig. 3 is a graph showing the relationship between molten slag thickness and resistance change rate, Fig. 4 is a graph showing the relationship between molten steel level and inductance change rate, and Fig. 5 is a longitudinal section schematically showing the implementation state of the conventional method. It is a front view. 1... Mold 2... Molten metal 3... Slag 3b.
... Molten slag 5... Detection head 5a... Magnetic field generating coil 5b... Detection coil D... Molten slag thickness X... Molten steel level agent Patent attorney Noboru Kono −
i・h ward do ξ pasting

Claims (1)

【特許請求の範囲】 1、連続鋳造機の鋳型内へ溶湯と共に供給されてその一
部が溶融するスラグの上方に磁界発生コイルと検出コイ
ルとを配し、該磁界発生コイルを用いて高周波磁界を発
生させつつ前記検出コイルのインピーダンスを検出し、
該検出インピーダンスより分離抽出した抵抗から溶融ス
ラグ厚さを求めることを特徴とする溶融スラグ厚さの測
定方法。 2、連続鋳造機の鋳型内へ溶湯と共に供給されてその一
部が溶融するスラグの上方に磁界発生コイルと検出コイ
ルとを配し、該磁界発生コイルを用いて高周波磁界を発
生させつつ前記検出コイルのインピーダンスを検出し、
該検出インピーダンスをインダクタンスと抵抗とに分離
し、該インダクタンスから溶鋼レベルを測定し、その測
定した溶鋼レベル及び前記抵抗から溶融スラグ厚さを求
めることを特徴とする溶融スラグ厚さの測定方法。 3、連続鋳造機の鋳型内へ溶湯と共に供給されてその一
部が溶融するスラグの上方に磁界発生コイルと検出コイ
ルとを配し、該磁界発生コイルを用いて高周波磁界を発
生させつつ前記検出コイルのインピーダンスを検出し、
該検出インピーダンスをインダクタンスと抵抗とに分離
し、該インダクタンスから溶鋼レベルを測定し、その測
定値を用いて検出コイルと溶鋼との距離が一定になるよ
うに検出コイル位置を変化させる一方でそのインピーダ
ンスの抵抗から溶融スラグ厚さを求めることを特徴とす
る溶融スラグ厚さの測定方法。 4、連続鋳造機の鋳型内へ溶湯と共に供給されてその一
部が溶融するスラグの上方に配され、高周波磁界を発生
させる磁界発生コイルと、該磁界発生コイルの上下に配
され、しかも逆相に接続されてなる一対の検出コイルと
、該検出コイルのインピーダンスをインダクタンス及び
抵抗分に分離する手段とを備えたことを特徴とする溶融
スラグ厚さの測定装置。
[Claims] 1. A magnetic field generating coil and a detection coil are arranged above the slag, which is supplied with the molten metal into the mold of a continuous casting machine and partially melted, and the magnetic field generating coil is used to generate a high frequency magnetic field. detecting the impedance of the detection coil while generating
A method for measuring molten slag thickness, characterized in that the molten slag thickness is determined from the resistance separated and extracted from the detected impedance. 2. A magnetic field generating coil and a detection coil are placed above the slag, which is supplied together with the molten metal into the mold of a continuous casting machine and partially melted, and the magnetic field generating coil is used to generate a high frequency magnetic field while detecting the above. Detects the impedance of the coil,
A method for measuring molten slag thickness, characterized in that the detected impedance is separated into an inductance and a resistance, a molten steel level is measured from the inductance, and a molten slag thickness is determined from the measured molten steel level and the resistance. 3. A magnetic field generating coil and a detection coil are arranged above the slag which is supplied together with the molten metal into the mold of the continuous casting machine and a part of the slag melts, and the magnetic field generating coil is used to generate a high frequency magnetic field and detect the above. Detects the impedance of the coil,
Separate the detection impedance into an inductance and a resistance, measure the molten steel level from the inductance, and use the measured value to change the detection coil position so that the distance between the detection coil and the molten steel is constant, while changing the impedance. A method for measuring molten slag thickness, which is characterized by determining the molten slag thickness from the resistance of the molten slag. 4. A magnetic field generating coil that is placed above the slag that is supplied with the molten metal into the mold of a continuous casting machine and partially melts, and that generates a high frequency magnetic field, and a magnetic field generating coil that is placed above and below the magnetic field generating coil and that has an opposite phase. 1. A molten slag thickness measuring device comprising: a pair of detection coils connected to a molten slag; and means for separating the impedance of the detection coil into an inductance component and a resistance component.
JP25216587A 1987-10-06 1987-10-06 Method and apparatus for measuring thickness of molten slag Pending JPH0194201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25216587A JPH0194201A (en) 1987-10-06 1987-10-06 Method and apparatus for measuring thickness of molten slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25216587A JPH0194201A (en) 1987-10-06 1987-10-06 Method and apparatus for measuring thickness of molten slag

Publications (1)

Publication Number Publication Date
JPH0194201A true JPH0194201A (en) 1989-04-12

Family

ID=17233393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25216587A Pending JPH0194201A (en) 1987-10-06 1987-10-06 Method and apparatus for measuring thickness of molten slag

Country Status (1)

Country Link
JP (1) JPH0194201A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2715722A1 (en) * 1994-01-28 1995-08-04 Amepa Eng Gmbh Device for the intermittent determination of the thickness of layers on molten metal.
KR20010055824A (en) * 1999-12-13 2001-07-04 이구택 Thicknes measurement apparatus of teel making slag
KR100406371B1 (en) * 1998-12-24 2004-01-24 주식회사 우진 Apparatus and method for detecting thickness of slag layer in ladle
JP2011064590A (en) * 2009-09-17 2011-03-31 Ebara Corp Eddy current sensor, polishing apparatus, plating apparatus, polishing method, plating method
KR101224978B1 (en) * 2010-03-31 2013-01-22 현대제철 주식회사 Method for measuring mold slag film layer and apparatus for measuring mold slag film layer
CN108489370A (en) * 2018-02-28 2018-09-04 天津职业技术师范大学 A kind of current vortex range-measurement system and method suitable for aluminium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2715722A1 (en) * 1994-01-28 1995-08-04 Amepa Eng Gmbh Device for the intermittent determination of the thickness of layers on molten metal.
BE1010228A5 (en) * 1994-01-28 1998-04-07 Amepa Eng Gmbh Device for determining the thickness of rain coats located on the metal fusion.
KR100406371B1 (en) * 1998-12-24 2004-01-24 주식회사 우진 Apparatus and method for detecting thickness of slag layer in ladle
KR20010055824A (en) * 1999-12-13 2001-07-04 이구택 Thicknes measurement apparatus of teel making slag
JP2011064590A (en) * 2009-09-17 2011-03-31 Ebara Corp Eddy current sensor, polishing apparatus, plating apparatus, polishing method, plating method
KR101224978B1 (en) * 2010-03-31 2013-01-22 현대제철 주식회사 Method for measuring mold slag film layer and apparatus for measuring mold slag film layer
CN108489370A (en) * 2018-02-28 2018-09-04 天津职业技术师范大学 A kind of current vortex range-measurement system and method suitable for aluminium

Similar Documents

Publication Publication Date Title
US20100025004A1 (en) Method for continuously casting billet with small cross section
CN104972091B (en) Modification method and device for target roll gap value of withdrawal and straightening machine
JPH0194201A (en) Method and apparatus for measuring thickness of molten slag
US7828043B2 (en) Non-invasive real-time level sensing and feedback system for the precision sand casting process
JP6524849B2 (en) Method and apparatus for measuring flow rate of molten steel in immersion nozzle, tundish for continuous casting and continuous casting method for multi-layer slab
JP6862846B2 (en) Method and equipment for measuring the flow rate of molten steel in the immersion nozzle, tundish for continuous casting, and continuous casting method for multi-layer slabs.
JP4700466B2 (en) Continuous casting apparatus and flow velocity measuring method
CA1198293A (en) Method of detecting the level of a melt in a continuous-casting mold
JP2013006206A (en) Method for measuring melt layer thickness of mold powder for continuous casting
JP4414609B2 (en) Method and apparatus for detecting drift in molten steel in continuous casting of steel
JPH0540056A (en) Automatic calibration method of eddy current type molten metal level indicator for continuous casting mold
JPH02117750A (en) Method for detecting molten metal surface level in metal strip continuous casting
JP3575264B2 (en) Flow velocity measuring method and device
TW201606270A (en) Eddy current mold level measuring device and mold level measuring method
KR100801116B1 (en) A nonuniform flow detection system of submerged entry nozzle in continuous casting mold with free surface height measurement
JPS6257427B2 (en)
JPH0194220A (en) Method for measuring molten steel level
JPH08211084A (en) Flow velocity measuring device
JPH11304566A (en) Method and device for detecting level of molten steel in immersion nozzle of continuous casting
JP3779809B2 (en) Method and apparatus for continuous casting of molten metal
JP2638369B2 (en) Pouring method of continuous casting mold
JP4398848B2 (en) Steel continuous casting mold flow velocity measuring apparatus and detection method
KR20220079483A (en) Method and measuring instrument for measurement of the casting level in a mould
KR100466179B1 (en) Measuring method of molten steel level in electromagnetic casting
JPH05138319A (en) Method and instrument for measuring molten metal surface level