JPH0332457A - Method for detecting channeling flow of molten steel in continuous casting mold - Google Patents

Method for detecting channeling flow of molten steel in continuous casting mold

Info

Publication number
JPH0332457A
JPH0332457A JP16542589A JP16542589A JPH0332457A JP H0332457 A JPH0332457 A JP H0332457A JP 16542589 A JP16542589 A JP 16542589A JP 16542589 A JP16542589 A JP 16542589A JP H0332457 A JPH0332457 A JP H0332457A
Authority
JP
Japan
Prior art keywords
molten steel
flow
continuous casting
mold
casting mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16542589A
Other languages
Japanese (ja)
Inventor
Masahiro Kawagoe
川越 雅弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16542589A priority Critical patent/JPH0332457A/en
Publication of JPH0332457A publication Critical patent/JPH0332457A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect channeling flow of molten steel in a continuous casting mold with high accuracy by detecting temp. distributions on both wall faces in short sides at right and left, where the molten steel flows discharged from a submerged nozzle are made to directly collide, and comparing both distributions. CONSTITUTION:When the molten steel flow discharged from the discharging holes 3 in the submerged nozzle 2 is made to flow, the temps. of the molten steel flows 4, 5 are justly higher in comparison with temp. of the molten steel 6 at circumference already stored in the mold 1. The wall face part in each short side 1a, where the molten steel flows 4, 5 are made to directly collide, receive higher heat load in comparison with that of the other part and become high temp. This heat load is varied with the molten steel flow rate. Therefore, when there is some difference of the flow rate between the molten steel flows 4, 5, i.e., there is some channeling flow, the difference of temp. between the wall faces in the short sides 1a, where the molten steel flows 4, 5 are made to collide, is developed. Therefore, the temps. at right and left sides are detected with thermocouples 9a, 9b fitted to the wall faces in the short sides 1a, and by executing comparison-operation with an arithmetic device 12, the development of channeling flow in the molten steel can be detected.

Description

【発明の詳細な説明】 〈産業上の利用分!t〉 本発明は、連続鋳造鋳型内における溶鋼の偏流検知方法
に関する。
[Detailed description of the invention] <Industrial use! t> The present invention relates to a method for detecting drifting of molten steel in a continuous casting mold.

〈従来の技術〉 一般に、連続鋳造における溶鋼中の非金属介在物は、溶
鋼の注入流によって鋳片内部まで持ち込まれ、その大部
分は場面上に浮上するが、残る一部は鋳片内にそのまま
m1lJNされる。このfil目足される非金属介在物
の量は鋳込み時の鋳片内溶鋼流によって大きく変化する
ことが知られており、浸漬ノズルから吐出される溶鋼流
が広い範囲にわたって大きく、かつ、深くなればなる程
、増加する領内にある。
<Prior art> In general, non-metallic inclusions in molten steel during continuous casting are carried into the slab by the injection flow of molten steel, and most of them float to the surface, but the remaining part remains inside the slab. It will be m1lJN as it is. It is known that the amount of nonmetallic inclusions added to the filtrate varies greatly depending on the flow of molten steel in the slab during casting, and the flow of molten steel discharged from the immersion nozzle becomes large and deep over a wide range. As you can see, it is within an increasing territory.

したがって、連続鋳造において、浸漬ノズルから吐出さ
れる溶鋼流が鋳片内に深く達しないように、浸漬ノズル
は側方に吐出孔を有する形状とされ、しかも、鋳型内溶
鋼表面に浮遊する表面被覆用フラックスを巻き込まぬよ
うに、吐出孔は若干下向きとされて使用されている。
Therefore, in continuous casting, the immersion nozzle is shaped to have a discharge hole on the side so that the molten steel flow discharged from the immersion nozzle does not reach deep into the slab. The discharge hole is oriented slightly downward in order to avoid getting the flux involved.

第6図はその説明図であり、スラブ連梼機において詩聖
lの中央に浸漬ノズル2が配置され、その吐出孔3a、
3b!、を鋳型1の両短辺1a側に向けられ、吐出孔3
a、3bから吐出される溶鋼流は、鋳型l内を矢示4.
5のように流動する。ずなわら、吐出孔3からの溶鋼流
は、鋳型I内に貯留されるt8 m 6の中を流れる間
にその速度を減少し、鋳型lの各短辺1a側壁面への衝
突によって反転流となり、この反転流は一方は場面側に
向かう上昇流4A、5A、他方は下方へ向かう下降流4
B、5Bとなり、この間に大きく減速される結果、上昇
流4A、5Aは場面上のフランクスフを渦中に巻き込む
ことなく、また下降流4B、5Bは鋳片中に深く到達し
ないようにして、鋳片品質を高める涛造が行われる。
FIG. 6 is an explanatory diagram of the same, in which the immersion nozzle 2 is arranged in the center of the verse l in the slab continuous machine, and its discharge hole 3a,
3b! , are directed toward both short sides 1a of the mold 1, and the discharge holes 3
The molten steel flow discharged from a and 3b moves inside the mold l as indicated by the arrow 4.
It flows like 5. However, the molten steel flow from the discharge hole 3 decreases its speed while flowing through the t8 m 6 stored in the mold I, and reverses the flow by colliding with the side wall surface of each short side 1a of the mold I. These reversed flows are upward flows 4A and 5A heading towards the scene side on the one hand, and downward flows 4A and 5A heading downward on the other hand.
B and 5B, and as a result of being greatly decelerated during this time, the upward flows 4A and 5A do not involve the Franks on the scene in the vortex, and the downward flows 4B and 5B are prevented from reaching deep into the slab, and the casting is completed. A process is performed to improve the quality of the piece.

しかし、第6図の関係は両性出孔3a、3bからの溶鋼
流が均等である場合に生じるものであり、゛浸漬ノズル
2に取付けられるスライディングノズル(図示せず)の
絞り開度や鋳込み速度などにより浸漬ノズル2を下降す
る溶鋼流動にゆらぎを生した場合、あるいは、浸漬ノズ
ル2の内壁にアルεす等非金属介在物の付着を生じた場
合には、左右の吐出孔3a、3bの均等関係はくずれて
、いずれか一方からの溶鋼流動が強くなり、いわゆる偏
流が生じることになる。
However, the relationship shown in FIG. 6 occurs when the molten steel flow from the amphoteric outlet holes 3a and 3b is uniform, and the aperture opening of the sliding nozzle (not shown) attached to the immersion nozzle 2 and the casting speed If the flow of molten steel descending through the immersion nozzle 2 fluctuates due to such reasons, or if non-metallic inclusions such as aluminum adhere to the inner wall of the immersion nozzle 2, the left and right discharge holes 3a, 3b The equality relationship breaks down, and the flow of molten steel from either side becomes stronger, resulting in so-called drifting.

このような偏流が生じると、鋳型内湾S+波のうち、強
い流動を生じた側は、上昇流あるいは下降流が強くなる
結果、フラックス巻き込みあるいは鋳片内部深くまで下
降流が適することによる内部欠陥を生じ、品質悪化の原
因となる。
When such a drift occurs, the upward flow or downward flow becomes stronger on the side of the mold S+ wave where strong flow occurs, resulting in flux entrainment or internal defects due to the downward flow being suitable deep inside the slab. This can cause quality deterioration.

従来、上記した溶鋼の偏流を検出する手段としては、例
えば特開昭(i2−93054号公報に開示されている
ように、左右のtS型短辺の壁面に複数の熱電対を上下
方向に所定の間隔で埋設し、その温度情報から左右の場
面レベル差を把握することによって、浸漬ノズルの左右
の吐出孔から流出する溶鋼流N差の指標とする方法や、
特開昭62−197255号公報に開示されているよう
に、浸漬ノズルとその両側の鋳型各短辺間にそれぞれ渦
流式レベル計を各2個配設してレベル偏差を求め、それ
によって溶鋼の偏流を検知する方法などが種々提案され
ている。
Conventionally, as a means for detecting the above-described drifting of molten steel, for example, as disclosed in Japanese Patent Application Laid-open No. Sho (i2-93054), a plurality of thermocouples are arranged vertically on the walls of the left and right short sides of the tS type. By burying the steel at an interval of
As disclosed in Japanese Unexamined Patent Publication No. 197255/1983, two eddy current level meters are installed between the immersion nozzle and each short side of the mold on both sides to determine the level deviation, thereby determining the level deviation of the molten steel. Various methods for detecting drifting have been proposed.

〈発明が解決しようとする!!!題〉 しかしながら、前者の特開昭62−93054号の熱電
対を用いる場合は、偏流による溶−流動の差に基づ<t
8wJレベル差の発生機構が、前記したように、吐出孔
3a、3bからの溶鋼流が各短辺1aに衝突して生じる
上昇流1mA、5Aによる溶鋼場面の部分的な隆起であ
って、短辺側の一方のレベル全面が一様に変化するので
はないから、レベル差として容易に検知することは困難
である。
<Invention tries to solve! ! ! However, when using the former thermocouple of JP-A No. 62-93054, based on the difference in melt flow due to uneven flow,
As mentioned above, the mechanism of generating the 8wJ level difference is the partial uplift of the molten steel scene due to the upward flow of 1mA and 5A generated when the molten steel flow from the discharge holes 3a and 3b collides with each short side 1a, and Since the level on one side does not change uniformly over the entire surface, it is difficult to easily detect it as a level difference.

すなわち、例えば浸漬ノズル2の右側の吐出孔3bから
の溶M流が強いと、第7図に示すように、上昇?A5A
によって溶鋼浴面に隆起部8が生じて、浸漬ノズル2の
左側の溶鋼浴面に比してレベル差Δhが発生する。しか
し、この隆起部8は功型1の短辺1a壁面に沿りて生じ
るものではなく、上昇流5Aがta鋼浴面に到達した位
置に生じるもので、通常、図示したように壁面から離れ
た部分に生じることになる。
That is, for example, if the flow of molten M from the discharge hole 3b on the right side of the immersion nozzle 2 is strong, as shown in FIG. A5A
As a result, a raised portion 8 is generated on the molten steel bath surface, and a level difference Δh occurs compared to the molten steel bath surface on the left side of the immersion nozzle 2. However, this raised portion 8 is not generated along the wall surface of the short side 1a of the gong type 1, but is generated at the position where the upward flow 5A reaches the TA steel bath surface, and is usually separated from the wall surface as shown in the figure. This will occur in the area where the

それ故、壁面に埋設した熱電対9bを用いてレベルの差
異を検出しようとすれば、上昇流5Aによる隆起部8が
壁面まで達する大きな場合に限られるから、その段階に
至るまでは検出することができず、また検出し得てもそ
の精度が悪いという問題がある。
Therefore, if you try to detect the level difference using the thermocouple 9b buried in the wall surface, it will only be possible when the raised part 8 due to the upward flow 5A reaches the wall surface, so it will not be possible to detect the level difference until it reaches that stage. There is a problem that detection is not possible, and even if detection is possible, the accuracy is poor.

また、後者の特開昭62−197255号の渦流式レベ
ル計を用いる場合は、レベル計を常に場面の隆起量最大
の箇所に取付けるこへが前提条件となるのであるが、実
際上は下記の理由により技術的に困難である。
In addition, when using the latter eddy current level meter disclosed in JP-A No. 62-197255, it is a prerequisite that the level meter must always be installed at the location where the amount of upheaval is greatest, but in practice the following It is technically difficult for several reasons.

すなわち、連続鋳造においては高い頻度で鋳込み幅の変
更を余儀無くされるのであるが、レベル計の設置位置を
固定式にすると、隆起部の位置と必ずしも一敗しないか
ら正確に隆起部の高さを検出することができないことに
なる。そこで、レベル計を鋳型の幅変化に対応し得る位
置移動式にすると、レベル計をその都度設置し直すこと
になるから取付は情度に問題が生じて、微小なレベル差
を検出する面皮が低下する恐れがある。
In other words, in continuous casting, it is necessary to change the casting width frequently, but if the level meter is installed in a fixed position, it will not necessarily match the position of the ridge, so it will be possible to accurately measure the height of the ridge. This means that it cannot be detected. Therefore, if the level meter is made to be movable to accommodate changes in the width of the mold, the level meter will have to be reinstalled each time, making installation difficult. There is a risk of a decline.

また、渦流式レベル計を2対1式として測定信号を処理
する場合、その絶対測定値が一敗していることなどが前
提となって、測定上、各レベル計の絶対面皮の向上が必
須となる。しかし、実際に使用するレベル計の測定情度
は若干ずつ異なるのが一般的であり、かつ、それらの設
置箇所は極めて高温という悪環境であるから即測定in
度に大きな影響を及ぼず状況にある。
In addition, when processing measurement signals using a two-to-one eddy current level meter, it is assumed that the absolute measured value is a loss, so it is essential to improve the absolute surface area of each level meter for measurement purposes. becomes. However, the measurement conditions of the level meters actually used are generally slightly different, and the locations where they are installed are in adverse environments with extremely high temperatures, so immediate measurements cannot be made.
The current situation is such that there is no major impact on the situation.

それ故、4台のレベル創を同一水準でかつ高い情度に維
持することは困難であるから、このようなレベル計を用
いると、その測定面皮によって偏流の検知情度が支配さ
れることになり、正確な検知を実現することは困難であ
る。
Therefore, since it is difficult to maintain the level of the four units at the same level and with a high level of sensitivity, when such a level meter is used, the sensitivity of detecting drifting flow is dominated by the surface area of the measurement surface. Therefore, it is difficult to achieve accurate detection.

なお、渦流式レベル針の設置台数を増やすことによって
、鋳型の幅変化による最大隆起部の位置変動に対処させ
ることも考えられるが、渦流式の場合は接近させて取付
けると、互いにノイズを生して干渉し合うという問題が
あり、やはり適当な対応策ではない。
It is possible to increase the number of eddy current type level needles installed to cope with the variation in the position of the maximum protrusion due to changes in the width of the mold. This is not an appropriate countermeasure as there is a problem of mutual interference.

本発明は、上記のような従来技術が有する課題を解決す
べくしてなされたものであって、連続鋳造鋳型内におい
て高精度で溶鋼の偏流を検知し得る方法を提供すること
を目的とする。
The present invention has been made to solve the problems of the prior art as described above, and an object of the present invention is to provide a method that can detect drifting of molten steel with high accuracy in a continuous casting mold.

く課題を解決するための手段〉 本発明の第1の態様は、連続鋳造鋳型内において浸漬ノ
ズルから吐出する溶鋼流が衝突する両短辺壁面の温度分
布または熱流束分布を検出して、該温度分布または熱流
束分布を比較することにより溶鋼偏流の発生の有無を判
定することを特徴とする連続鋳造鋳型内における溶鋼の
偏流検知方法であり、 また、本発明の第2の態様は、連続鋳造鋳型内の長辺壁
面の幅方向の温度分布または熱流束分布をそれぞれ検出
して、該温度分布または熱流束分布の鋳型の中央部に対
する右半分のパターンと左半分のパターンとを比較する
ことにより溶鋼偏流の発生の有無を判定することを特徴
とする連続鋳造鋳型内における溶鋼の偏流検知方法であ
る。
Means for Solving the Problems> A first aspect of the present invention is to detect the temperature distribution or heat flux distribution of both short side wall surfaces with which the molten steel flow discharged from the immersion nozzle collides in the continuous casting mold. A second aspect of the present invention is a method for detecting uneven flow of molten steel in a continuous casting mold, which is characterized by determining the presence or absence of uneven flow of molten steel by comparing temperature distribution or heat flux distribution. Detecting the temperature distribution or heat flux distribution in the width direction of the long side wall surface in the casting mold, and comparing the right half pattern and the left half pattern of the temperature distribution or heat flux distribution with respect to the center of the mold. This is a method for detecting drifting of molten steel in a continuous casting mold, characterized by determining whether or not drifting of molten steel has occurred.

さらに、本発明の第3のB様は、連続鋳造鋳型内におい
て浸清ノズルから吐出する溶tR流が衝突する短辺壁面
および長辺壁面の幅方向の温度分布または熱流束分布を
それぞれ検出して、該温度分布または熱流束分布の鋳型
の中央部に対する右半分のパターンと左半分のパターン
とを比較することにより溶鋼偏流の発生の有無を判定す
ることを特徴とする連続V#造造型型内おける溶鋼の偏
流検知方法である。
Furthermore, the third aspect B of the present invention is to detect the temperature distribution or heat flux distribution in the width direction of the short side wall surface and the long side wall surface with which the molten tR flow discharged from the dipping nozzle collides in the continuous casting mold. The continuous V# forming mold is characterized in that the presence or absence of uneven flow of molten steel is determined by comparing the right half pattern and the left half pattern with respect to the center part of the mold of the temperature distribution or heat flux distribution. This is a method for detecting drifting of molten steel within a vessel.

く作  川〉 本発明によれば、浸漬ノズルから吐出する溶鋼流が直接
衝突する左右両短辺壁面の温度分布または熱流束分布を
検出して両者を比較することにより、鋳型内における溶
鋼偏流の発生の有無を判定することができる。
Kusaku Kawa> According to the present invention, by detecting the temperature distribution or heat flux distribution of the left and right short side wall surfaces with which the molten steel flow discharged from the immersion nozzle directly collides and comparing the two, it is possible to detect the uneven flow of molten steel in the mold. The presence or absence of occurrence can be determined.

また、長辺の幅方向の温度または熱流束を測定するよう
にして、長辺の幅方向の中心に対して左右の温度または
熱流束のパターンを比較することにより、鋳型内におけ
る溶鋼偏流の発生の有無を判定することができる。
In addition, by measuring the temperature or heat flux in the width direction of the long side and comparing the temperature or heat flux patterns on the left and right sides with respect to the center of the long side in the width direction, it is possible to generate uneven flow of molten steel in the mold. It is possible to determine the presence or absence of

さらに、上記した各短辺壁面での温度または熱流束の検
出に加えて、長辺の幅方向の温度または熱流束を測定す
るようにし°C1長辺の幅方向の中心に対して左右の温
度または熱流束のパターンを比較するようにすれば、溶
鋼の偏流をさらに高精度で検知することが可能である。
Furthermore, in addition to detecting the temperature or heat flux on each short side wall surface described above, the temperature or heat flux in the width direction of the long side is also measured. Alternatively, by comparing heat flux patterns, it is possible to detect drifting of molten steel with even higher accuracy.

〈実施例〉 以下に、本発明の実施例について、図面を参照して詳し
く説明する。
<Examples> Examples of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明方法に係る実施例を示す模式図である
。なお、図中、従来例と同一のものは同一符号を付して
いる。
FIG. 1 is a schematic diagram showing an embodiment of the method of the present invention. In addition, in the figure, the same parts as in the conventional example are given the same reference numerals.

図に示すように、鋳型lの左右の両短辺1a壁面の高さ
方向に等間隔て熱電対9a、9bが複数本ずつ取付けら
れ、これら熱電対9a、9bで検出された溶鋼温度信号
はそれぞれ例えばA/D変喚器などの入力装置Wl l
に人力され、さらにマイクロコンピュータなどの演算装
置12で演算処理されて、その演算結果は例えばCRT
などの表示装置13に表示される。
As shown in the figure, a plurality of thermocouples 9a and 9b are installed at equal intervals in the height direction of the wall surface of both the left and right short sides 1a of the mold l, and the molten steel temperature signal detected by these thermocouples 9a and 9b is For example, an input device such as an A/D converter Wl l
It is then manually processed by an arithmetic device 12 such as a microcomputer, and the arithmetic results are displayed on a CRT, for example.
It is displayed on a display device 13 such as.

そこで、浸漬ノズル2の吐出孔3から吐出する溶鋼流は
鋳型l内を矢示4.5のように流動すると、溶鋼流4.
5の温度は鋳型l内に既に貯留されている周囲の熔11
Gに比して当然高い温度であるから、その溶鋼流4.5
が直接11i突する各短辺1aの壁面部分は、例えば第
2図に示すように、他の部分に比して高い熱負荷を受け
て高温になる。
Therefore, when the molten steel flow discharged from the discharge hole 3 of the immersion nozzle 2 flows in the mold l as shown by the arrow 4.5, the molten steel flow 4.
5 is the temperature of the surrounding melt 11 already stored in the mold l.
Since the temperature is naturally higher than G, the molten steel flow is 4.5
As shown in FIG. 2, for example, the wall surface portion of each short side 1a where 11i directly protrudes receives a higher heat load than other portions and becomes high temperature.

この熱負荷は溶鋼量によって変化することは自明であり
、したがって、溶鋼流4.5の間に流量の差つまり偏流
があれば、それぞれの溶鋼流4,5力呻i突する各短辺
1aの壁面での温度または熱流束に差が生じるから、各
短辺1aの壁面に取付けた熱電対9a、9bによって検
出して、演算装置12によって比較演算することにより
、溶鋼の偏流の有無を検出することが可能である。
It is obvious that this heat load changes depending on the amount of molten steel. Therefore, if there is a difference in flow rate, that is, a drift, between the molten steel flows 4 and 5, the force of each of the molten steel flows 4 and 5 will be Since a difference occurs in the temperature or heat flux on the wall surface of the molten steel, it is detected by the thermocouples 9a and 9b attached to the wall surface of each short side 1a, and the presence or absence of a drift of molten steel is detected by comparing and calculating with the arithmetic unit 12. It is possible to do so.

なお、上記した実施例において、熱電対9a。In addition, in the above-described embodiment, the thermocouple 9a.

9bの代わりに熱流束計を用いることによって、溶鋼に
よって壁面が受ける熱量の変化を熱流束として検出する
ようにしてもよい。
By using a heat flux meter instead of 9b, a change in the amount of heat that the wall surface receives from the molten steel may be detected as a heat flux.

また、本実施例によれば、各短辺1aの壁面に衝突して
反転する溶鋼流のうちの上昇流に溶鋼表面に到達する強
さがない場合でも、早期に偏流の有無を検出することが
できる。
Further, according to this embodiment, even if the upward flow of the molten steel flow that collides with the wall surface of each short side 1a and reverses does not have the strength to reach the molten steel surface, the presence or absence of drift can be detected at an early stage. I can do it.

つぎに、第3図に示すように、一方の長辺1bの幅方向
に複数の熱電対(または熱流束計)10a〜toeを取
付けて、長辺1bの幅方向における温度変化(または熱
流束変化)を測定するごとによってもi8鋼の偏流の有
無を検出することが可能である。
Next, as shown in FIG. 3, a plurality of thermocouples (or heat flux meters) 10a to 10e are attached in the width direction of one long side 1b, and temperature changes (or heat flux meters) in the width direction of the long side 1b are measured. It is also possible to detect the presence or absence of drift in the i8 steel by measuring the change in the flow rate.

ずなわち、浸漬ノズル2の吐出孔3から吐出する溶鋼流
4.5は、鋳型1の長片tbを横切るように流動するた
め、長片ibはこの溶鋼流4.5の流れにより熱負荷を
受けてその幅方向に温度または熱流束の変化が誘起する
。したがって、溶鋼fi4.5の間に流量差つまり偏流
が生じれば、その熱負荷が変化し、長片tbの幅方向の
壁面での温度または熱流束に差が発生するため、溶鋼の
偏流の有無を検出することができるのである。
That is, since the molten steel flow 4.5 discharged from the discharge hole 3 of the immersion nozzle 2 flows across the long piece tb of the mold 1, the long piece ib is subjected to a thermal load due to the flow of the molten steel flow 4.5. This induces a change in temperature or heat flux in the width direction. Therefore, if a flow rate difference or drift occurs between the molten steel fi4.5, the heat load will change, and a difference will occur in the temperature or heat flux on the wall surface in the width direction of the long piece tb. The presence or absence can be detected.

さらに、この実施例の長辺1bの幅方向に取付けた複数
の熱電対10a〜10eによる温度の検出に、前述した
実施例の各短辺1a壁面に取付けた熱電対9a、9bに
よる温度の検出を加えて温度変化を測定するようにすれ
ば、溶鋼の偏流をさらに高面皮で検出することが可能で
ある。
Furthermore, in addition to the temperature detection by the plurality of thermocouples 10a to 10e attached in the width direction of the long side 1b of this embodiment, the temperature detection is performed by the thermocouples 9a and 9b attached to the wall surface of each short side 1a of the above-mentioned embodiment. If the temperature change is measured by adding the temperature change, it is possible to detect the drift of the molten steel even more clearly.

なお、上記実施例における熱電対の本数は特に限定する
このではなく、またその配列も1列に限らずに複数列と
してもよく、さらに両方の長辺にそれぞれ取付zノても
よい。
Note that the number of thermocouples in the above embodiment is not particularly limited, and the arrangement thereof is not limited to one row, but may be in multiple rows, and furthermore, they may be attached to both long sides, respectively.

浸漬ノズル2の吐出孔3から吐出する溶w4流に差がな
いときは、第4図(a)にその測定結果の一例を示すよ
うに、長辺1bの幅方向中央部Cに取付けた熱電対10
cを中心にしたほぼ左右対称なり字状のパターンを溝く
が、偏流が生じた場合は、第4図(b)に示すように、
左右非対称な9字状のパターンを溝<、このような現象
は、溶鋼流のfil’l差によって鋳型長辺1bの幅方
向の温度分布に変化を生じることによる。
When there is no difference in the flow of the melt w4 discharged from the discharge hole 3 of the immersion nozzle 2, as shown in FIG. 4(a), an example of the measurement result is shown in FIG. vs 10
A groove is formed in a substantially symmetrical curved pattern centered on point c, but if drift occurs, as shown in Figure 4(b),
This phenomenon is caused by a change in the temperature distribution in the width direction of the long side 1b of the mold due to the difference in fil'l of the molten steel flow.

そこで、長辺tbの幅方向中央部Cを境界にして、左側
と右側の温度分布パターンを比較することによって、溶
鋼の偏流の有無を判定することができる。
Therefore, by comparing the temperature distribution patterns on the left and right sides with the widthwise center C of the long side tb as a boundary, it is possible to determine whether there is a drift of molten steel.

なお、偏流の判定の簡易な方法の一つとして、得られる
温度分布が必ず9字状のパターンを描くことを利用して
、演算装置12において測定位置毎に温度の値に応じて
順位付は処理を施すことによって、温度分布を指数化す
ることで判定を行うことができる。
In addition, as one of the simple methods for determining drift, the temperature distribution obtained always draws a figure-9 pattern, and the arithmetic unit 12 ranks each measurement position according to the temperature value. By performing the processing, determination can be made by converting the temperature distribution into an index.

すなわち、第5図(a)、 (b)に示すように、前出
第4図(a)、 (b)において得られた温度分布に対
して、最も低い温度測定値に整数の“l”を与え、その
測定値から高い値になるに従い順次大きくなる整数を付
与するのである。
That is, as shown in FIGS. 5(a) and (b), for the temperature distribution obtained in FIGS. 4(a) and (b), an integer "l" is added to the lowest temperature measurement value. The measured value is given as an integer that increases as the value increases.

まず、偏流がない状態の第5図(a)においては、1“
の左側の順位和が12(−2−)4+6)であるのに対
し、右側の順位和が15(−3−)5+7)で、両者の
差が3であることから左右の温度分布には有意差が認め
られず、したがって”偏流なし”と判定することができ
る。
First, in FIG. 5(a) where there is no drift, 1"
The rank sum on the left side is 12 (-2-) 4 + 6), while the rank sum on the right side is 15 (-3-) 5 + 7), and the difference between the two is 3, so the temperature distribution on the left and right sides is No significant difference was observed, so it can be determined that there is "no drift."

一方、偏流がある状態の第5図(b)においては、“l
”の左側の順位和が9 (−2+4+6)であるのに対
し、右側の順位和が18(−5+6+7)で、両者の差
が9であることから左右の温度分布には明らかな有意差
が認められるから、“偏流あり”と判定することができ
る。なお、この判定の際には、両者の順位和の差に予め
しきい値を与えておき、差の演算値と比較することが必
要である。。
On the other hand, in FIG. 5(b) where there is a drift, "l
”, the rank sum on the left side is 9 (-2+4+6), while the rank sum on the right side is 18 (-5+6+7), and the difference between the two is 9, so there is clearly a significant difference between the left and right temperature distributions. Since it is recognized, it can be determined that there is a "biased flow".In addition, when making this determination, it is necessary to give a threshold value in advance to the difference between the two rank sums and compare it with the calculated value of the difference. It is..

そして、そのしきい値を超える状況が例えば数秒間とい
う所定時間をII続することを確認してから、゛°偏流
あり”°と判定するようにすればより正確である。
It will be more accurate to determine that there is a drift after confirming that the condition exceeding the threshold continues for a predetermined period of, for example, several seconds.

本発明方法を連続鋳造の鋳込みに適用して偏流発生の有
無を判定させ、偏流発生を検知したときに鋳込速度を落
とし、かつ、溶鋼吐出量を下げるというアクションを講
じたところ、製品の内部欠陥発生率を3%に抑制するこ
とができ、従来の12%に対して大幅に減少させること
ができた。
When the method of the present invention was applied to pouring in continuous casting to determine the presence or absence of drifting, and when the drifting was detected, the casting speed was reduced and the amount of molten steel discharged was reduced. It was possible to suppress the defect occurrence rate to 3%, which was significantly lower than the conventional rate of 12%.

〈発明の効果〉 以上説明したように、本発明によれば、簡単な手法によ
り、偏流を容易に検出することができるから、製品の品
質向上に大いに寄与する。
<Effects of the Invention> As explained above, according to the present invention, drifting can be easily detected using a simple method, which greatly contributes to improving the quality of products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法に係る偏流検知装置の実施例を示
す模式図、第2図は、偏流検知装置による温度測定の一
利を示すグラフ、第3図は、温度測定の他の実施例の要
部を示す斜視図、第4図(a)。 (b)は、温度分布のパターンの一例を示すグラフ、第
5図(a)、 (b)は、温度分布パターンの指数化の
一例を示す説明図、第6図、第7図は、従来例を示す説
明図である。 l・・・鋳型、       la・・・短辺。 1b・・・長辺、     2・・・浸漬ノズル。 3・・・吐出孔、    6・・・溶鋼。 9.10・・・熱電対、   11・・・入力装置。 12・・・演算装置。 13・・・表示装置。
FIG. 1 is a schematic diagram showing an embodiment of the drift detection device according to the method of the present invention, FIG. 2 is a graph showing the advantages of temperature measurement by the drift flow detection device, and FIG. 3 is a diagram showing other implementations of temperature measurement. FIG. 4(a) is a perspective view showing the main part of the example. 5(b) is a graph showing an example of a temperature distribution pattern, FIGS. 5(a) and 5(b) are explanatory diagrams showing an example of indexing a temperature distribution pattern, and FIGS. It is an explanatory diagram showing an example. l...mold, la...short side. 1b...Long side, 2...Immersion nozzle. 3...Discharge hole, 6... Molten steel. 9.10...Thermocouple, 11...Input device. 12... Arithmetic device. 13...Display device.

Claims (1)

【特許請求の範囲】 1、連続鋳造鋳型内において浸漬ノズルから吐出する溶
鋼流が衝突する両短辺壁面の温度分布または熱流束分布
を検出して、該温度分布または熱流束分布を比較するこ
とにより溶鋼偏流の発生の有無を判定することを特徴と
する連続鋳造鋳型内における溶鋼の偏流検知方法。 2、連続鋳造鋳型内の長辺壁面の幅方向の温度分布また
は熱流束分布をそれぞれ検出して、該温度分布または熱
流束分布の鋳型の中央部に対する右半分のパターンと左
半分のパターンとを比較することにより溶鋼偏流の発生
の有無を判定することを特徴とする連続鋳造鋳型内にお
ける溶鋼の偏流検知方法。 3、連続鋳造鋳型内において浸漬ノズルから吐出する溶
鋼流が衝突する短辺壁面および長辺壁面の幅方向の温度
分布または熱流束分布をそれぞれ検出して、該温度分布
または熱流束分布の鋳型の中央部に対する右半分のパタ
ーンと左半分のパターンとを比較することにより溶鋼偏
流の発生の有無を判定することを特徴とする連続鋳造鋳
型内における溶鋼の偏流検知方法。
[Claims] 1. Detecting the temperature distribution or heat flux distribution of both short side wall surfaces that collide with the molten steel flow discharged from the immersion nozzle in the continuous casting mold, and comparing the temperature distribution or heat flux distribution. A method for detecting drifting of molten steel in a continuous casting mold, the method comprising: determining the presence or absence of drifting of molten steel. 2. Detect the temperature distribution or heat flux distribution in the width direction of the long side walls in the continuous casting mold, and determine the right half pattern and left half pattern of the temperature distribution or heat flux distribution with respect to the center of the mold. A method for detecting drifting of molten steel in a continuous casting mold, the method comprising determining whether or not drifting of molten steel has occurred through comparison. 3. Detect the temperature distribution or heat flux distribution in the width direction of the short side wall surface and the long side wall surface that collide with the molten steel flow discharged from the immersion nozzle in the continuous casting mold, and determine the temperature distribution or heat flux distribution of the mold. 1. A method for detecting drifting of molten steel in a continuous casting mold, the method comprising: determining the presence or absence of drifting of molten steel by comparing a pattern on the right half and a pattern on the left half of the center.
JP16542589A 1989-06-29 1989-06-29 Method for detecting channeling flow of molten steel in continuous casting mold Pending JPH0332457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16542589A JPH0332457A (en) 1989-06-29 1989-06-29 Method for detecting channeling flow of molten steel in continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16542589A JPH0332457A (en) 1989-06-29 1989-06-29 Method for detecting channeling flow of molten steel in continuous casting mold

Publications (1)

Publication Number Publication Date
JPH0332457A true JPH0332457A (en) 1991-02-13

Family

ID=15812181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16542589A Pending JPH0332457A (en) 1989-06-29 1989-06-29 Method for detecting channeling flow of molten steel in continuous casting mold

Country Status (1)

Country Link
JP (1) JPH0332457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098400A (en) * 2005-09-30 2007-04-19 Nippon Steel Corp Continuous casting apparatus and method for measuring flowing rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098400A (en) * 2005-09-30 2007-04-19 Nippon Steel Corp Continuous casting apparatus and method for measuring flowing rate
JP4700466B2 (en) * 2005-09-30 2011-06-15 新日本製鐵株式会社 Continuous casting apparatus and flow velocity measuring method

Similar Documents

Publication Publication Date Title
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
JP5617293B2 (en) Slab surface state prediction method and slab surface state prediction apparatus
US6179041B1 (en) Method and apparatus for the early recognition of ruptures in continuous casting of steel with an oscillating mold
JP2003181609A (en) Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting
JPH0332457A (en) Method for detecting channeling flow of molten steel in continuous casting mold
JP2001239353A (en) Detecting method of abnormal casting condition inside mold in continuous casting
CA1198293A (en) Method of detecting the level of a melt in a continuous-casting mold
CA1325277C (en) Method of measurement of the level of the surface of a metal bath
KR100801116B1 (en) A nonuniform flow detection system of submerged entry nozzle in continuous casting mold with free surface height measurement
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JP2950188B2 (en) Method of controlling surface defects in continuous casting
KR100950396B1 (en) Device for detecting the slag injection using the vibration sensor attached to long nozzle
JPH0332456A (en) Method for detecting channeling flow of molten steel in continuous casting mold
JPH0446658A (en) Device for predicting breakout in continuous casting apparatus
JP3252770B2 (en) Detecting method and control method of molten metal level in continuous casting
JPH04262841A (en) Instrument and method for measuring flow speed on surface of molten steel in continuous casting mold
JPH03294053A (en) Method for controlling drift flow of molten steel in continuous casting mold
JPS5983004A (en) Method for measuring thickness of wall of refractories for fused metal container
KR100516028B1 (en) Method and device for estimating/controlling molten steel flowing pattern in continuous casting
JPH10193047A (en) Method for controlling flow of molten steel in continuous casting mold
JPH10277716A (en) Method for measuring thickness of solidified shell in continuous casing and instrument therefor
KR100362650B1 (en) The method for diagnosing deformation of continuous casting roll
JPH02165856A (en) Method for discriminating abnormality of temperature measuring element in continuous casting apparatus
JP2713030B2 (en) Method of controlling molten steel drift in continuous casting mold
JP4414609B2 (en) Method and apparatus for detecting drift in molten steel in continuous casting of steel