JPH03294053A - Method for controlling drift flow of molten steel in continuous casting mold - Google Patents

Method for controlling drift flow of molten steel in continuous casting mold

Info

Publication number
JPH03294053A
JPH03294053A JP9386990A JP9386990A JPH03294053A JP H03294053 A JPH03294053 A JP H03294053A JP 9386990 A JP9386990 A JP 9386990A JP 9386990 A JP9386990 A JP 9386990A JP H03294053 A JPH03294053 A JP H03294053A
Authority
JP
Japan
Prior art keywords
molten steel
mold
flow
drift
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9386990A
Other languages
Japanese (ja)
Inventor
Masahiro Kawagoe
川越 雅弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9386990A priority Critical patent/JPH03294053A/en
Publication of JPH03294053A publication Critical patent/JPH03294053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To control drift flow of molten steel in a mold with high accuracy by detecting molten steel surface level at both sides of a submerged nozzle, comparing power spectra thereof and controlling electromagnetic braking device. CONSTITUTION:Level meters 11a, 11b are set to the prescribed height from the molten steel surface at between the submerged nozzle 2 and short sides 1a, 1b at both mold sides. High speed Fourier transform is executed to the measured signals with an arithmetic device 13 to obtain the power spectra. By comparing both frequency components, existence of the development of drift flow of the molten steel in the mold 1, the developing direction of drift flow, and the degree of drift flow, are decided. According to this result, impressed current to the electromagnetic braking devices 15a, 15b set to the long sides 1c, 1d in the mold, is controlled. By the electromagnetic force generated with the impressed current, the flowing velocity of molten steel flow discharged from discharging holes 3a, 3b in the submerged nozzle 2 is adjusted to control the drift flow of molten steel.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、連続鋳造鋳型内における溶鋼の偏流制御方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for controlling the drift of molten steel in a continuous casting mold.

〈従来の技術〉 一般に、連続鋳造における溶鋼中の非金属介在物は、溶
鋼の注入流によつて鋳片内部にまで持ち込まれ、その大
部分は湯面上に浮上するが、残る一部は鋳片内にそのま
ま捕捉され、鋳片品質の劣化の原因となる。この捕捉さ
れる非金属介在物の量は鋳込み時の鋳片的溶鋼流の状況
によって大きく変化し、浸漬ノズルから吐出される溶鋼
流速が速く、かつ溶鋼流が鋳型内深くにまで達すれば達
するほど、増加する傾向にある。
<Prior art> In general, non-metallic inclusions in molten steel during continuous casting are carried into the inside of the slab by the injection flow of molten steel, and most of them float above the molten metal surface, but the remaining part is It is trapped in the slab as it is, causing deterioration of the quality of the slab. The amount of non-metallic inclusions that are trapped varies greatly depending on the flow of molten steel in the form of a slab during pouring. , is on the rise.

したがって、連続鋳造においては、浸漬ノズルから吐出
される溶鋼流が鋳片内深くにまで達しないように、浸漬
ノズルは短辺側に吐出孔を有する形状とされ、しかも鋳
型自溶鋼表面に浮遊する表面被覆用フラックスを巻き込
まぬように、吐出孔は若干下向きとされている。
Therefore, in continuous casting, the immersion nozzle is shaped with a discharge hole on the short side so that the molten steel flow discharged from the immersion nozzle does not reach deep into the slab, and the molten steel flow is suspended on the surface of the self-molten steel of the mold. The discharge hole is oriented slightly downward to avoid getting the surface coating flux involved.

第4図はその説明図であるが、スラブ連鋳機においては
、鋳型1の中央に浸漬ノズル2が配置され、その吐出孔
3a、3bは鋳型1の両短辺1a。
FIG. 4 is an explanatory diagram thereof, and in the continuous slab casting machine, the immersion nozzle 2 is arranged at the center of the mold 1, and its discharge holes 3a and 3b are located on both short sides 1a of the mold 1.

1bllに向けられ、吐出孔3a、3bから吐出される
溶鋼流は、鋳型1内を矢示4.5のように流動する。す
なわち、吐出孔3からの溶鋼流は、鋳111内に貯留さ
れる溶鋼6の中を流れる間にその速度を減少し、鋳型1
の各短辺fall壁面への衝突によって反転流となる。
1 bll and discharged from the discharge holes 3 a and 3 b flows within the mold 1 as shown by arrow 4.5. That is, the molten steel flow from the discharge hole 3 reduces its speed while flowing through the molten steel 6 stored in the casting 111, and
A reverse flow occurs due to collision with each short side of the fall wall.

この反転流は一方は湯面側に向かう上昇流4A、5A、
他方は下方へ向かう下降流4B、5Bとなり、この間に
大きく減速される結果、上昇流4A、5Aは湯面上のフ
ランクスフを湯中に巻き込むことなく、また下降流4B
、5Bは鋳片中に深く到達しないようにして、鋳片品質
を高める鋳造が実施されている。
One side of this reverse flow is an upward flow 4A, 5A toward the hot water surface,
The other flow becomes downward flows 4B and 5B, and as a result of being greatly decelerated during this time, the upward flows 4A and 5A do not involve the Franks on the surface of the hot water into the hot water, and the downward flows 4B
, 5B are cast to improve the quality of the slab by preventing it from reaching deep into the slab.

しかし、第4図の関係は両畦出孔3a、3bからの溶鋼
流が均等である場合に生じる良好な状況のものであり、
浸漬ノズル2に取付けられるスライディングノズル(図
示せず)の絞り開度や鋳込速度などによって浸漬ノズル
2を下降する溶鋼流動にゆらぎを住した場合、あるいは
浸漬ノズル2の内壁にアルミナ等非金属介在物の付着を
生じた場合には、左右の吐出孔3a、3bからのf4J
、ml流の均等関係はくずれて、いずれか一方からの溶
鋼流動が強くなり、いわゆる偏流が生じることになる。
However, the relationship shown in Fig. 4 is a good situation that occurs when the molten steel flow from both ridge holes 3a and 3b is equal.
If there is fluctuation in the flow of molten steel descending through the immersion nozzle 2 due to the throttle opening or casting speed of the sliding nozzle (not shown) attached to the immersion nozzle 2, or if there is non-metallic material such as alumina on the inner wall of the immersion nozzle 2. If something sticks, f4J from the left and right discharge holes 3a, 3b
, ml flow collapses, and the flow of molten steel from either side becomes stronger, resulting in so-called drifting.

このような偏流が発生すると、鋳型内溶鋼流のうち、強
い流動を生じた側は、上昇流あるいは下−流が強くなる
ので、フラックス巻き込みあるいは鋳片内部深くまで下
降流が達することに起因した内部欠陥を生じ、鋳片品質
の劣化を招くことになる。
When such a drift occurs, the upward flow or downward flow becomes stronger on the side of the molten steel flow in the mold where strong flow occurs, which may be caused by flux entrainment or downward flow reaching deep inside the slab. Internal defects will occur, leading to deterioration in slab quality.

従来、上記した溶鋼の偏流を制御する手段としては、例
えば特開昭62−252650号公報に開示されている
ように、左右の鋳型短辺の壁面に複数の熱電対を上下方
向に所定の間隔で埋設し、その温度情報から左右の場面
レベル差を検出し、そのレベル差を電磁攪拌装置(EM
S)を作動させて解消する方法や、特開昭62−252
649号公報に開示されているように、浸漬ノズル内に
吹き込むガス量を左右独立に制御することによって左右
レベル差を解消する方法などが種々提案されている。
Conventionally, as a means for controlling the drift of molten steel described above, a plurality of thermocouples are placed on the wall surfaces of the short sides of the left and right molds at predetermined intervals in the vertical direction, as disclosed in, for example, Japanese Patent Laid-Open No. 62-252650. The level difference between the left and right sides is detected from the temperature information, and the level difference is measured using an electromagnetic stirring device (EM).
S) and how to eliminate it by activating
As disclosed in Japanese Patent No. 649, various methods have been proposed for eliminating the difference in level between the left and right sides by independently controlling the amount of gas blown into the submerged nozzle.

〈発明が解決しようとする課題〉 しかしながら、前者の特開昭62−252650号の電
磁攪拌装置を利用する方法では、偏流の程度とそれを解
消するための攪拌力との関係が具体的に明記されておら
ず、もし一定の攪拌力が使用されているのであれば、溶
鋼流動の時間的変化(グイナミクス)を考慮したものに
はなっておらず、制御精度に問題がある。
<Problem to be solved by the invention> However, in the former method using an electromagnetic stirring device disclosed in JP-A No. 62-252650, the relationship between the degree of drift and the stirring force to eliminate it is not specifically specified. If a constant stirring force is used, it does not take into account temporal changes in molten steel flow (guynamics), and there is a problem with control accuracy.

また、後者の特開昭62−252649号の場合につい
ては、同公報の発明の詳細な説明欄における実験例で見
られるような微小流量差では溶鋼偏流をうまく制御する
ことができないことを、本発明者らは実験でf1認して
いる。
In addition, regarding the latter case of JP-A-62-252649, the authors note that it is not possible to effectively control molten steel drift with minute flow rate differences such as those seen in the experimental examples in the detailed explanation section of the invention in the same publication. The inventors have confirmed f1 through experiments.

一方、両者において利用されている偏流検知方法につい
ては、特開昭62−93054号公報にも開示されてい
るが、第5図に示すように、左右の鋳型短辺1a、lb
の壁面に複数の熱電対9a、9bを上下方向に所定の間
隔で埋設し、その温度情報から左右の場面のレベル差Δ
hを把握することによって、浸漬ノズル2の左右の吐出
孔3a、3bから流出する溶鋼流量差の指標とする方法
であるが、この方法では、偏流による溶鋼流動の差に基
づく溶鋼レベル差Δhの発生機構が、前記したように、
吐出孔3a、3bからの溶鋼流4,5が各短辺1a、l
bに衝突して生じる上昇流4A、5Aによる溶鋼場面の
部分的な隆起であって、短辺側の一方のレベル全面が一
様に変化するのではないから、レベル差Δhとして容易
に検知することは困難である。
On the other hand, the drift detection method used in both is also disclosed in Japanese Patent Application Laid-Open No. 62-93054, but as shown in FIG.
A plurality of thermocouples 9a and 9b are buried in the wall surface at a predetermined interval in the vertical direction, and the level difference Δ between the left and right scenes is determined from the temperature information.
By understanding h, the difference in the flow rate of molten steel flowing out from the left and right discharge holes 3a and 3b of the immersion nozzle 2 is used as an index. The generation mechanism is, as mentioned above,
The molten steel flows 4, 5 from the discharge holes 3a, 3b are directed to the respective short sides 1a, l.
This is a partial upheaval of the molten steel scene due to the upward flows 4A and 5A that occur when they collide with b, and the level on one of the short sides does not change uniformly over the entire surface, so it can be easily detected as a level difference Δh. That is difficult.

すなわち、例えば浸漬ノズル2の右側の吐出孔3bから
の溶鋼流が強いと、第5図に示すように、上昇流5Aに
よって溶鋼浴面に隆起部8が生じて、浸漬ノズル2の左
側の溶鋼浴面に比してレベル差Δhが発生する。しかし
、この隆起部8は鋳型1の短辺1a壁面に沿って生じる
ものではなく、上昇流5Aが溶鋼浴面に到達した位置に
住しるもので、通常、図示したように壁面から離れた部
分に生じることになる。
That is, for example, when the flow of molten steel from the discharge hole 3b on the right side of the immersion nozzle 2 is strong, as shown in FIG. A level difference Δh occurs compared to the bath surface. However, this raised portion 8 does not occur along the wall surface of the short side 1a of the mold 1, but resides at the position where the upward flow 5A reaches the molten steel bath surface, and is usually located away from the wall surface as shown in the figure. This will occur in some parts.

それ故、壁面に埋設した熱電対9bを用いてレベルの差
異を検出しようとすれば、上昇流5Aによる隆起部8が
壁面まで達する大きな場合に限られるから、その段階に
至る蜜では検出することができず、また検出し得てもそ
の精度が悪いという問題がある。
Therefore, if you try to detect a difference in level using the thermocouple 9b buried in the wall surface, it will only be possible when the raised part 8 due to the upward flow 5A reaches the wall surface, so it cannot be detected at that stage. There is a problem that detection is not possible, and even if detection is possible, the accuracy is poor.

また、特開昭62−197255号公報には浸漬ノズル
とその両側の鋳型各短辺間にそれぞれ渦流式レベル針を
各2個ずつ配設してレベル偏差を求めて溶鋼の偏流を検
知する方法が開示されているが、この渦流式レベル計を
用いる場合は、レベル計を常に場面の隆起量最大の箇所
に取付けることが前提条件となるのであるが、実際上は
下記の理由により技術的に困難である。
In addition, JP-A-62-197255 discloses a method of detecting the drift of molten steel by arranging two eddy current level needles between the immersion nozzle and each short side of the mold on both sides to determine the level deviation. However, when using this eddy current level meter, it is a prerequisite to always install the level meter at the location where the amount of upheaval is the greatest, but in practice, it is technically difficult to do so due to the following reasons. Have difficulty.

すなわち、連続鋳造においては高い頻度で鋳込み幅の変
更を余儀無くされるのであるが、レベル針の設置位置を
固定式にすると、隆起部の位置と必ずしも一致しないか
ら正確に隆起部の高さを検出することができないことに
なる。そこで、レベル針を鋳型の幅変化に対応し得る位
置移動式にすると、レベル計をその都度設置し直すこと
になるから取付は精度を損なうとかレベル針特性が変化
するなどの問題が生じて、微小なレベル差を検出する精
度が低下する恐れがある。
In other words, in continuous casting, it is necessary to change the casting width frequently, but if the level needle is installed in a fixed position, it will not necessarily match the position of the raised part, so it will be possible to accurately detect the height of the raised part. You will not be able to do so. Therefore, if the level needle is made to be movable to accommodate changes in the width of the mold, the level meter will have to be reinstalled each time, resulting in problems such as loss of installation accuracy and changes in the level needle characteristics. The accuracy of detecting minute level differences may be reduced.

また、渦流式レベル計を2対処式として測定信号を処理
する場合、その絶対測定値が一致していることなどが前
提となって、測定上、各レベル針の絶対精度の向上が必
須となる。しかし、実際に使用するレベル計の測定精度
は若干ずつ異なるのが一般的であり、かつ、それらの設
置箇所は極めて高温という悪環境であるから部側定精度
に大きな影響を及ぼす杖況にある。
Furthermore, when processing measurement signals using an eddy current level meter as a two-way type, it is assumed that the absolute measured values match, and it is essential to improve the absolute precision of each level needle in terms of measurement. . However, the measurement accuracy of the level meters actually used generally differs slightly from one another, and the locations where they are installed are in adverse environments with extremely high temperatures, which has a large effect on the accuracy of the measurement. .

それ故、4台のレベル計を同一水準でかフ高い精度に維
持することは困難であるから、このようなレベル計を用
いると、その測定精度によって偏流の検知精度が支配さ
れることになり、正確な検知を実現することは困難であ
る。
Therefore, it is difficult to maintain four level meters at the same level or with high accuracy, so when such level meters are used, the accuracy of detecting drifting flow will be dominated by their measurement accuracy. , it is difficult to achieve accurate detection.

なお、渦流式レベル計の設置台数を増やすことによって
、鋳型の幅変化による最大隆起部の位置変動に対処させ
ることも考えられるが、渦流式の場合は接近させて取付
けると、互いにノイズを生じて干渉し合うという問題が
あり、やはり適当な対応策ではない。
It is possible to increase the number of eddy current type level meters installed to cope with fluctuations in the position of the maximum protrusion due to changes in the width of the mold. There is a problem of mutual interference, so it is not an appropriate countermeasure.

本発明は、上記のような従来技術が有する課題を解決す
べくしてなされたものであって、連続鋳造鋳型内におい
て高精度で溶鋼の偏流を検知し、偏流の発生方向とその
程度に応じて偏流を制御す名方法を提供することを目的
とする。
The present invention was made in order to solve the problems of the prior art as described above, and it detects drifting of molten steel with high accuracy in a continuous casting mold, and detects drifting in the direction and degree of drifting. The purpose is to provide a method for controlling drift.

く課題を解決するための手段〉 本発明は、鋳型短辺側に向いた溶鋼の吐出孔を存する浸
漬ノズルを鋳型中央に配して連続鋳造を行うに際し、前
記浸漬ノズルとその両側の鋳型各短辺との間にそれぞれ
レベル計を少なくとも1個ずつ配設し、該レベル針で検
出される各レベル測定値を高速フーリエ変換してパワー
スペクトルを求め、両者の周波数成分を比較することに
より、鋳型内における溶鋼偏流の発生の有無、偏流の発
生の方向およびその程度を判定し、その結果に応じて鋳
型内長辺部に設置した2個の電磁ブレーキ装置の印加電
流量を制御することを特徴とする連続鋳造鋳型内におけ
る溶鋼の偏流制御方法である。
Means for Solving the Problems> The present invention provides continuous casting when a submerged nozzle having a discharge hole for molten steel facing the short side of the mold is disposed in the center of the mold. By disposing at least one level meter between each of the short sides, fast Fourier transforming each level measurement value detected by the level needle to obtain a power spectrum, and comparing the frequency components of the two, It is possible to determine the presence or absence of drifting of molten steel in the mold, the direction and degree of drifting, and control the amount of current applied to two electromagnetic brake devices installed on the long sides of the mold according to the results. This is a method for controlling the drift of molten steel in a continuous casting mold.

〈作 用〉 本発明者は、溶鋼偏流制御について鋭意研究を行い、ま
ずその偏流検出について鋳型銅板測温実験と鋳型内多点
レベル測定実験を行って、鋳型内fII#/4偏流をも
っともよく!!現できる指標を探った結果、本出願人が
既に特願平1−165423号で出願した両短辺に設け
られたレベル針の測定値の周波数成分を比較して偏流を
検知する方法の方が、前出の2者の従来例すなわち特開
昭62−93054号に示された熱電対による偏流検知
方法および特開昭62−197255号の4個の渦流式
レベル計による溶鋼偏流検知方法と比較して偏流現象を
よく表していることを見出した。
<Function> The present inventor has conducted intensive research on molten steel drift control, and first conducted a temperature measurement experiment on a mold copper plate and a multi-point level measurement experiment in the mold to detect drift in molten steel. ! ! As a result of searching for an index that could be used to detect drift, we found that the method of detecting drift by comparing the frequency components of the measured values of level needles provided on both short sides, which the applicant had already filed in Japanese Patent Application No. 1-165423, was found to be better. , compared with the two previous examples, namely the method for detecting drifting of molten steel using a thermocouple as disclosed in JP-A No. 62-93054 and the method for detecting drifting of molten steel using four eddy current level meters as disclosed in JP-A-62-197255. It was found that the current phenomenon was well expressed.

また、その溶鋼の偏流制御についても、浸漬ノズルの2
個の吐出孔に対応させて左右2個の電磁ブレーキ装置を
用いることによって偏流の発生している方向により多く
の印加電流をかけるようにすれば、効果的に溶綱流の吐
出流速を抑制し得ることから左右の吐出孔から吐出する
流速を均埠にすることができることを見出した0本発明
はこれらの知見の組み合わせによって完成し得たもので
ある。
In addition, regarding the drift control of the molten steel, two of the submerged nozzles
By using two electromagnetic brake devices on the left and right corresponding to each discharge hole, more current can be applied in the direction where the drift is occurring, effectively suppressing the discharge flow velocity of the melt flow. The present invention was completed by combining these findings.

すなわち、本発明によれば、浸漬ノズルから吐出する溶
鋼流が左右両短辺壁面に衝突して生じる上昇流によって
もたらされる溶鋼場面の隆起によるレベルの変化状況を
検出し、それぞれ高速フーリエ変換してパワースペクト
ルを求め、それらの周波数成分を比較することによって
、鋳型内における溶鋼al流の発生の有無、偏流の発注
の方向およびその程度を判定し、偏流の程度に応じて鋳
型内に設置した2個の電磁ブレーキ装置の印加電流量を
個別に制御するようにしたので、鋳型内における溶鋼偏
流を精度高(制御することができるのである。
That is, according to the present invention, the state of change in the level due to the uplift of the molten steel scene caused by the upward flow generated when the molten steel flow discharged from the immersion nozzle collides with both the left and right short side walls is detected, and the changes are detected by fast Fourier transform. By determining the power spectrum and comparing their frequency components, it is possible to determine the presence or absence of molten steel aluminum flow in the mold, the direction and degree of drifting, and the two installed in the mold according to the degree of drifting. Since the amount of current applied to each electromagnetic brake device is individually controlled, the drift of molten steel in the mold can be controlled with high precision.

ここで、偏流の有無によるパワースペクトルの波形の変
化状況について説明する。
Here, a description will be given of how the waveform of the power spectrum changes depending on the presence or absence of drift.

第2図(a)、 (b)は、偏流のない状態での溶鋼場
面の左右のレベルを測定したときのパワースペクトルの
波形分布の一例を示したものであり、溶鋼場面レベルに
変動がないときは、左右のパワースペクトルの波形分布
はほぼ相位で大きな差がない。
Figures 2 (a) and (b) show an example of the waveform distribution of the power spectrum when measuring the left and right levels of the molten steel scene without drifting, and there is no fluctuation in the molten steel scene level. At this time, the waveform distributions of the left and right power spectra are almost in phase and there is no big difference.

なお、溶鋼の上昇流による場面隆起によるレベル変動に
対しては、偏流側の場面が反偏流側に比べて変動が激し
いことから、高い周波数域におけるパワースペクトルの
変動として検知することができる。
Note that level fluctuations due to scene elevation due to the upward flow of molten steel can be detected as fluctuations in the power spectrum in a high frequency range, since the fluctuations are more severe on the drifting side than on the anti-drifting side.

また、第3図(a)、 (b)は、偏流が生じた状態で
の溶鋼場面の左右のレベルを測定したときのパワースペ
クトルの波形分布の一例を示したもので、左右のパワー
スペクトルの分布に著しい差異が生じている。すなわち
、左側のレベルは第3図(尋に示すように正常時に比し
てあまり変化はなく、若干高い周波数域でのパワースペ
クトルが微増しているのに対し、右側のレベルは第3図
(ロ)に示すように高い周波数域におけるパワースペク
トルが激増していることがわかる。そこで、特に高い周
波数域における左右のパワースペクトルの波形分布を比
較することにより、パワースペクトルの高い右側に強い
上昇流による隆起部が生じており、したがって溶鋼の偏
流が発生していると判定することができる。
In addition, Figures 3 (a) and (b) show an example of the waveform distribution of the power spectrum when measuring the left and right levels of the molten steel scene when drifting occurs. There are significant differences in the distribution. In other words, the level on the left side does not change much compared to the normal state as shown in Figure 3 (Fig. As shown in (b), it can be seen that the power spectrum in the high frequency range increases dramatically.Thus, by comparing the waveform distribution of the left and right power spectra in the high frequency range, we found that there is a strong upward flow on the right side of the power spectrum where the power spectrum is high. Therefore, it can be determined that the molten steel is drifting.

〈実施例〉 以下に、本発明の実施例について、図面を参照して詳し
く説明する。
<Examples> Examples of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明方法に係る溶鋼偏流制御装置の実施例
を示す構成図である。なお、図中、従来例と同一のもの
は同一符号を付している。
FIG. 1 is a configuration diagram showing an embodiment of a molten steel drift control device according to the method of the present invention. In addition, in the figure, the same parts as in the conventional example are given the same reference numerals.

図に示すように、鋳型1の中央に浸漬ノズル2をその吐
出孔3a、3bを鋳型短辺1a、Ib側に向けて配設し
、例えば渦流式レベル計などのレベ/lll+ila、
 Ilbを浸漬ノズル2とその両側の鋳型各短辺1a、
lbとの間に溶鋼場面から所定の高さに配設する。
As shown in the figure, a submerged nozzle 2 is arranged in the center of a mold 1 with its discharge holes 3a and 3b facing the short sides 1a and Ib of the mold.
Ilb is immersed in the nozzle 2 and each short side 1a of the mold on both sides,
lb at a predetermined height from the molten steel scene.

そして、各レベル計11a、llbでの測定信号は、そ
れぞれ例えばA/D変換器などの入力装置12に入力さ
れ、さらにマイクロコンピュータなどの演算装置13で
高速フーリエ変換してパワースペクトルの演算処理がな
され、その差に応して1tiaブレーキ制御装置14を
介して鋳型1内の長辺1c、fd側に設置した2個の電
磁ブレーキ装置15a、15bへの印加電流量を制御す
る。これら電磁ブレーキ装置15a、15bにおいては
印加電流によって発生する電磁力により、浸漬ノズル2
の吐出孔3a。
The measurement signals from each of the level meters 11a and 11b are input to an input device 12 such as an A/D converter, and are further subjected to fast Fourier transform by a calculation device 13 such as a microcomputer to calculate the power spectrum. The amount of current applied to the two electromagnetic brake devices 15a and 15b installed on the long side 1c and fd side of the mold 1 is controlled via the 1tia brake control device 14 according to the difference. In these electromagnetic brake devices 15a and 15b, the immersion nozzle 2 is
discharge hole 3a.

3bから吐出される溶鋼流の流速を調整して溶鋼偏流の
制御を行う、なお、演算装置13での演算結果は例えば
CRTなどの表示装置16に表示される。
The flow velocity of the molten steel flow discharged from 3b is adjusted to control the drift of molten steel.The calculation results of the calculation device 13 are displayed on a display device 16 such as a CRT.

ついで、このように構成された溶鋼偏流制御装置の動作
について説明すると、各レベル計118゜11bからの
測定信号を演算装置13においてパワースペクトルの高
い周波数差から溶鋼の偏流発生の有無を検出し、偏流が
発生したと判定したときはその発生の方向およびその程
度を判断して、その差の程度に応じて電磁ブレーキ制m
装置14から電磁ブレーキ装置15a、15bに出力す
る印加電流la、Ibの差ΔI(−1a−1b)を加減
する。
Next, the operation of the molten steel drift control device configured as described above will be explained. The measurement signals from each level meter 118° 11b are sent to the calculation device 13 to detect whether or not molten steel drift has occurred based on the high frequency difference in the power spectrum. When it is determined that a drift has occurred, the direction and degree of the drift is determined, and the electromagnetic brake is applied depending on the degree of the difference.
The difference ΔI (-1a-1b) between the applied currents la and Ib output from the device 14 to the electromagnetic brake devices 15a and 15b is adjusted.

すなわち、これら印加電流1a、Ibは偏流のない状態
では、網種などの鋳込まれる操業条件によって決められ
るのであるが、偏流が発生すると偏流が発生している方
の吐出孔から吐出する溶鋼の流速はもう一方の吐出孔の
に比し速くなっている。
In other words, when there is no drift, these applied currents 1a and Ib are determined by the casting operating conditions such as the type of mesh, but when a drift occurs, the applied currents 1a and Ib are determined by the molten steel discharged from the discharge hole on the side where the drift occurs. The flow rate is faster than that of the other outlet.

そこで、その流速の速い吐出孔の方により多くの印加電
流をかけて溶鋼の吐出流速を抑えて、浸漬ノズル2の吐
出孔3a、3bから吐出される溶鋼流の流速を均等にす
るため、偏流が発生している吐出孔側の電磁ブレーキ装
置に出力する印加電流に、その差Δ■を加算させるよう
にすることで偏流を制御するのである。(第1図の例で
は溶鋼流5を制御対象になる。) なお、上記の実施例においては、レベル針を左右に1個
ずつ設けるとして説明したが、本発明はこれに限定され
るものではなく、それぞれ複数個ずつ配設するようにす
れば、さらに偏流の検知精度は向上することは言うまで
もない。
Therefore, in order to equalize the flow speed of the molten steel flow discharged from the discharge holes 3a and 3b of the submerged nozzle 2 by applying more current to the discharge hole with a faster flow velocity to suppress the discharge flow velocity of the molten steel, a biased flow is applied. The drift is controlled by adding the difference Δ■ to the applied current output to the electromagnetic brake device on the side of the discharge hole where the discharge hole is occurring. (In the example shown in FIG. 1, the molten steel flow 5 is the object to be controlled.) In the above embodiment, one level needle is provided on the left and one on the left, but the present invention is not limited to this. It goes without saying that if a plurality of each of these types of sensors are provided, the accuracy of detecting drifting currents will be further improved.

本発明方法を連続鋳造の鋳込みに適用して偏流制御を行
った。すなわち、0.4秒の周期で512点のサンプリ
ングを行い、両レベル計11a、llbから得られたレ
ベル測定値を高速フーリエ変換してそれぞれのパワース
ペクトルを導出し、さらにパワースペクトルの大きい周
波数を数点抽出してその平均値をそれぞれ導出し、周波
数平均値の大きい方に偏流があると判定させた。(この
ことは、偏流側のレベル信号の変動周期が他方のレベル
信号の変動周期に比べて短い、すなわち高周波成分をよ
り多く含んでいるという実験結果に基づいているもので
ある。) ついで、求められた周波数平均値の差Δfを算出してそ
の値に対応した信号を1を磁ブレーキ制御装置14に出
力し、そのi磁ブレーキ制御装214においてΔfの信
号に応じた印加[流差Δ!を偏流が発生している方向の
1を磁ブレーキ装置(15aまたは15b)の印加電流
に加算させて出力することによって、溶鋼偏流を制御し
た。
The method of the present invention was applied to continuous casting to control drifting flow. That is, 512 points are sampled at a period of 0.4 seconds, and the level measurement values obtained from both level meters 11a and llb are fast Fourier transformed to derive their respective power spectra, and then the frequencies with large power spectra are derived. Several points were extracted and their average values were derived, and the one with the larger average frequency value was determined to have a drift. (This is based on the experimental result that the fluctuation period of the level signal on the drift side is shorter than that of the other level signal, that is, it contains more high frequency components.) Next, calculate The difference Δf between the average frequency values is calculated, a signal corresponding to the value is output as 1 to the magnetic brake control device 14, and the magnetic brake control device 214 applies an application [current difference Δ!] according to the signal of Δf. The molten steel drift was controlled by adding 1 in the direction in which the drift occurred to the applied current of the magnetic brake device (15a or 15b) and outputting the result.

なお、周波数平均値差Δfと偏流抑制に最適な印加電流
差Δ■との関係については、第1表に示すように予めオ
ンライン実験によって得られた値を用いた。
As for the relationship between the frequency average value difference Δf and the applied current difference Δ■ optimal for suppressing drifting, values previously obtained through online experiments were used as shown in Table 1.

その結果、溶鋼の偏流を抑制することができ、鋳片品質
を大幅に改善することができた。
As a result, drifting of the molten steel could be suppressed, and the quality of the slab could be significantly improved.

第1表 右のパワースペクトルの波形分布の一例を示す特性図、
第4図、第5図は、従来例を示す説明図である。
The characteristic diagram showing an example of the waveform distribution of the power spectrum on the right side of Table 1,
FIGS. 4 and 5 are explanatory diagrams showing conventional examples.

〈発明の効果〉 以上説明したように、本発明によれば、左右の溶鋼湯面
のレベルを測定してそれらのパワースペクトルを比較し
て偏流を検出し、その周波数の差を用いてii電磁ブレ
ーキ装置制御するようにしたので、鋳型内溶鋼の偏流を
制御することができ、鋳片の品質向上に大いに寄与する
<Effects of the Invention> As explained above, according to the present invention, the levels of the left and right molten steel surfaces are measured, their power spectra are compared to detect drift, and the difference in frequency is used to detect the ii electromagnetic Since the braking device is controlled, the drift of molten steel in the mold can be controlled, which greatly contributes to improving the quality of slabs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に係る偏流制御装置の実施例を示す
構成図、第2図(a)、 (b)は偏流がないときの左
右のパワースペクトルの波形分布の一例を示す特性図、
第3図(a)、 (b)は偏流が生じたときの左la、
lb・・・短辺、  2・・・浸漬ノ3b・・・吐出孔
、 、6・・・溶鋼 11a、llb・・・レベル計、12・・・13・・・
演算装置、14・・・it磁ブレー15a、15b・・
・を磁ブレーキ装置1・・・鋳型。 ズル、  3a。 8・・・隆起部。 入力装置。 キ制欄装置。 I6・・・表示装置。
FIG. 1 is a configuration diagram showing an embodiment of a drift control device according to the method of the present invention, FIGS. 2(a) and 2(b) are characteristic diagrams showing an example of the waveform distribution of left and right power spectra when there is no drift,
Figures 3 (a) and (b) show left la when drifting occurs,
lb...short side, 2...immersion hole 3b...discharge hole, 6...molten steel 11a, llb...level meter, 12...13...
Arithmetic unit, 14...it magnetic brakes 15a, 15b...
・Magnetic brake device 1...mold. Zulu, 3a. 8... Protuberance. input device. Key control column device. I6...Display device.

Claims (1)

【特許請求の範囲】[Claims] 鋳型短辺側に向いた溶鋼の吐出孔を有する浸漬ノズルを
鋳型中央に配して連続鋳造を行うに際し、前記浸漬ノズ
ルとその両側の鋳型各短辺との間にそれぞれレベル計を
少なくとも1個ずつ配設し、該レベル計で検出される各
レベル測定値を高速フーリエ変換してパワースペクトル
を求め、両者の周波数成分を比較することにより、鋳型
内における溶鋼偏流の発生の有無、偏流の発生の方向お
よびその程度を判定し、その結果に応じて鋳型内長辺部
に設置した2個の電磁ブレーキ装置の印加電流量を制御
することを特徴とする連続鋳造鋳型内における溶鋼の偏
流制御方法。
When performing continuous casting by disposing a submerged nozzle having a discharge hole for molten steel facing the short side of the mold in the center of the mold, at least one level meter is installed between the submerged nozzle and each short side of the mold on both sides thereof. By fast Fourier transforming each level measurement value detected by the level meter to obtain a power spectrum and comparing the frequency components of the two, it is possible to determine whether or not molten steel drift occurs in the mold. A method for controlling the drift of molten steel in a continuous casting mold, the method comprising: determining the direction and extent of the flow, and controlling the amount of current applied to two electromagnetic brake devices installed on the long sides of the mold according to the results. .
JP9386990A 1990-04-11 1990-04-11 Method for controlling drift flow of molten steel in continuous casting mold Pending JPH03294053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9386990A JPH03294053A (en) 1990-04-11 1990-04-11 Method for controlling drift flow of molten steel in continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9386990A JPH03294053A (en) 1990-04-11 1990-04-11 Method for controlling drift flow of molten steel in continuous casting mold

Publications (1)

Publication Number Publication Date
JPH03294053A true JPH03294053A (en) 1991-12-25

Family

ID=14094465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9386990A Pending JPH03294053A (en) 1990-04-11 1990-04-11 Method for controlling drift flow of molten steel in continuous casting mold

Country Status (1)

Country Link
JP (1) JPH03294053A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623503A (en) * 1992-07-10 1994-02-01 Sumitomo Metal Ind Ltd Method for controlling drift of molten steel in mold for continuous casting
WO1998012008A1 (en) * 1996-09-19 1998-03-26 Hoogovens Staal B.V. Continuous casting machine
KR100801116B1 (en) * 2001-12-22 2008-02-05 재단법인 포항산업과학연구원 A nonuniform flow detection system of submerged entry nozzle in continuous casting mold with free surface height measurement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623503A (en) * 1992-07-10 1994-02-01 Sumitomo Metal Ind Ltd Method for controlling drift of molten steel in mold for continuous casting
WO1998012008A1 (en) * 1996-09-19 1998-03-26 Hoogovens Staal B.V. Continuous casting machine
EP0832704A1 (en) * 1996-09-19 1998-04-01 Hoogovens Staal B.V. Continuous casting machine
US6460606B2 (en) 1996-09-19 2002-10-08 Corus Staal Bv Continuous casting machine
KR100801116B1 (en) * 2001-12-22 2008-02-05 재단법인 포항산업과학연구원 A nonuniform flow detection system of submerged entry nozzle in continuous casting mold with free surface height measurement

Similar Documents

Publication Publication Date Title
EP1166921B1 (en) Method for estimating molten steel flowing pattern in continuous casting
KR101047826B1 (en) Control systems, computer program products, apparatus and methods
KR20010023598A (en) Method and device for control of metal flow during continuous casting using electromagnetic fields
JPH03294053A (en) Method for controlling drift flow of molten steel in continuous casting mold
JPH03275256A (en) Method for controlling drift flow of molten steel in continuous casting mold
JPH105957A (en) Detecting method for fluid of molten steel in continuous casting mold and controlling method thereof
JP2007260693A (en) Method for controlling in-mold molten metal surface level in continuous casting machine
JP2004034090A (en) Continuous casting method for steel
JP3252769B2 (en) Flow control method of molten steel in continuous casting mold
JPH02200362A (en) Method for predicting and restraining nozzle clogging in continuous casting apparatus
JPH10193047A (en) Method for controlling flow of molten steel in continuous casting mold
JP3125661B2 (en) Steel continuous casting method
JPH0484650A (en) Method for restraining drift of molten steel in continuous casting mold
JP3252770B2 (en) Detecting method and control method of molten metal level in continuous casting
JPH09168847A (en) Method for continuously casting steel
JPH04284956A (en) Method for continuously casting steel
JP2962788B2 (en) Control method of drift of molten steel in continuous casting mold
JPH10216914A (en) Method for controlling molten metal surface level in continuous casting
JP2713030B2 (en) Method of controlling molten steel drift in continuous casting mold
JPH1177263A (en) Method for controlling fluid of molten steel in mold for continuous casting
JPH0459160A (en) Method for controlling molten metal surface level in mold in continuous casting
JPH0332456A (en) Method for detecting channeling flow of molten steel in continuous casting mold
KR20030053080A (en) a nonuniform flow detection system of submerged entry nozzle in continuous casting mold with free surface height measurement
JP2000263198A (en) Method for continuously casting molten steel
JPH09277006A (en) Method for continuously casting molten metal