JPH11211741A - Method and apparatus for measuring flow velocity - Google Patents

Method and apparatus for measuring flow velocity

Info

Publication number
JPH11211741A
JPH11211741A JP1441498A JP1441498A JPH11211741A JP H11211741 A JPH11211741 A JP H11211741A JP 1441498 A JP1441498 A JP 1441498A JP 1441498 A JP1441498 A JP 1441498A JP H11211741 A JPH11211741 A JP H11211741A
Authority
JP
Japan
Prior art keywords
magnetic field
flow velocity
measured
detection
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1441498A
Other languages
Japanese (ja)
Other versions
JP3575264B2 (en
Inventor
Kaneyuki Oota
金幸 太田
Koji Fujimoto
幸二 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP01441498A priority Critical patent/JP3575264B2/en
Publication of JPH11211741A publication Critical patent/JPH11211741A/en
Application granted granted Critical
Publication of JP3575264B2 publication Critical patent/JP3575264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for measuring a flow velocity whereby a flow velocity of a conductive moving object to be measured (e.g. high-temperature liquid metal) can be stably and accurately measured even when a measurement face is wavy. SOLUTION: According to a method and an apparatus for measuring a flow velocity, a magnetic field perpendicular to a surface of a moving conductive object to be measured is excited (excitation winding P), and magnetic fields at the surface of the object and in a direction parallel to a movement direction are detected in two ranges (detection windings S1 , S2 ), whereby a flow velocity of the object is calculated from the detected magnetic field signals. In the method and the apparatus, magnetic fields in the direction parallel to the movement direction of the object are detected in two ranges outside the detection ranges of the detection windings S1 , S2 (detection windings S3 , S4 ), and the calculated flow velocity of the object is corrected on the basis of information related to an inclination of the surface of the object which is obtained on the basis of the detected magnetic field signals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は例えば、連続鋳造プ
ロセスにおいて溶鋼を鋳込む鋳型内溶鋼流の表面の流速
等を測定する流速測定方法及び装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a flow velocity of a surface of a molten steel flow in a mold for casting molten steel in a continuous casting process.

【0002】[0002]

【従来の技術】連続鋳造ラインにおいては、図24のよ
うに溶鋼103はタンディッシュ101よりノズル10
2を通して銅製の鋳型104中に注ぎ込まれ鋳造され
る。鋳型中に注ぎ込まれた溶鋼は、鋳型壁面に当たり上
昇流107と下降流108に分かれる。上昇流は表面で
流れ109a、109bを作るが、ここで表面の溶鋼流
動の左右のバランスが崩れると、渦が発生し溶鋼表面上
に撒いたパウダー105を巻き込む(111)。また表
面の溶鋼流動が過大になると、溶鋼表面のパウダーを削
り込む(110)。何れにおいても鋳片中に介在物が捕
捉され、製品欠陥の原因となる。この理由から、鋳型内
溶鋼流動を安定化させることは極めて重要な課題であ
り、特に溶鋼表面近傍の流速を連続的に計測することが
強く求められている。
2. Description of the Related Art In a continuous casting line, as shown in FIG.
2 and poured into a copper mold 104 and cast. The molten steel poured into the mold hits the mold wall and is divided into an upflow 107 and a downflow 108. The ascending flow creates flows 109a and 109b on the surface. If the left and right balance of the molten steel flow on the surface is lost, a vortex is generated and the powder 105 scattered on the molten steel surface is involved (111). When the molten steel flow on the surface becomes excessive, powder on the molten steel surface is shaved (110). In any case, inclusions are trapped in the slab, which causes product defects. For this reason, stabilizing the flow of molten steel in a mold is a very important task, and it is strongly required to continuously measure the flow velocity near the surface of molten steel.

【0003】従来溶鋼の流速は、例えば特開平5−60
774号公報に示されたような接触型の計測が主であっ
た。これは図25のようにファインセラミックス製の棒
112を溶鋼114に浸漬して、その棒が溶鋼流動によ
り受ける圧力を、受圧センサ113により検出して、流
速を測定するものである。この方法では高温の溶鋼にセ
ラミックス製棒を浸漬させるため、長時間の連続測定が
不可能であった。
Conventionally, the flow rate of molten steel is, for example, disclosed in
Contact type measurement as shown in Japanese Patent No. 774 is mainly used. In this method, as shown in FIG. 25, a rod 112 made of fine ceramics is immersed in molten steel 114, and the pressure received by the rod due to the molten steel flow is detected by a pressure receiving sensor 113 to measure the flow velocity. In this method, a ceramic rod is immersed in high-temperature molten steel, so that long-term continuous measurement is impossible.

【0004】これに対し、磁気を用いて非接触で速度を
計測できることが知られている。図26の(a)のよう
に均等な磁場Bo 中で導体115が動くと、その導体中
にEv =v×Bo なる速度起電力が生じる。この速度起
電力Ev により、導体中に誘導電流Jv が誘起され、導
体上に誘導磁場Bv が発生して、元の磁場は導体の速度
方向に引きずられるようにBo からBへと歪む。このよ
うに磁場が導体の運動により歪む効果を以下磁場の速度
効果と呼ぶ。この速度効果による歪みの程度は導体の速
度に対応して変化するので、歪み量を測ることで対象導
体の速度を知ることができる。なおこの歪みを測定する
ことは、歪みのもとが速度効果による誘導磁場Bv なの
で、Bv を測定していることに他ならないことは明らか
である。なおBv は下記(1)式で表せる。
On the other hand, it is known that the speed can be measured in a non-contact manner using magnetism. When the conductor 115 moves in the uniform magnetic field Bo as shown in FIG. 26A, a speed electromotive force Ev = v × Bo is generated in the conductor. The velocity electromotive force Ev induces an induced current Jv in the conductor, generates an induced magnetic field Bv on the conductor, and distorts the original magnetic field from Bo to B so as to be dragged in the velocity direction of the conductor. Such an effect that the magnetic field is distorted by the movement of the conductor is hereinafter referred to as a velocity effect of the magnetic field. Since the degree of distortion due to the speed effect changes in accordance with the speed of the conductor, the speed of the target conductor can be known by measuring the amount of distortion. It is clear that measuring this distortion is nothing but measuring Bv because the source of the distortion is the induced magnetic field Bv due to the velocity effect. Bv can be expressed by the following equation (1).

【0005】[0005]

【数1】 (Equation 1)

【0006】なお、磁場を用いて流速を測定する方法で
は、図26の(b)のように測定すべき速度起電力によ
る信号磁場Bv の他に、励磁磁場が交流の場合には測定
対象中に流れる−dB/dtによる渦電流Je が発生
し、その渦電流による渦電流磁場Be が検出される。い
ま、測定しようとする鋳型内溶鋼流の流速は、0〜0.
3m/sec程度と小さいため、速度起電力による信号
磁場Bv も小さく、励磁周波数が数十Hz以上と高い場合
には渦電流磁場Be に比べ大幅に小さくなってしまい、
Be が変動するとその変動の中にBv が埋もれ、大きな
測定誤差を生じてしまうという問題点がある。この渦電
流磁場Be は対象の流速と関係なく、流速信号のオフセ
ット分の変動を引き起こす。
[0006] In the method of measuring the flow velocity using a magnetic field, in addition to the signal magnetic field Bv due to the velocity electromotive force to be measured as shown in FIG. An eddy current Je is generated due to -dB / dt flowing through the eddy current, and an eddy current magnetic field Be due to the eddy current is detected. Now, the flow velocity of the molten steel flow in the mold to be measured is 0 to 0.
Since it is as small as about 3 m / sec, the signal magnetic field Bv due to the speed electromotive force is also small, and when the excitation frequency is as high as several tens Hz or more, it becomes significantly smaller than the eddy current magnetic field Be.
When Be fluctuates, Bv is buried in the fluctuation, and there is a problem that a large measurement error occurs. The eddy current magnetic field Be causes an offset of the flow velocity signal to vary irrespective of the flow velocity of the target.

【0007】このような磁気を用いて非接触で速度を計
測する装置として特開平2−311766号公報に示さ
れるものがある。これは図27の(a)のように溶鋼の
流れ118と平行に1次コイル119、その水平方向両
側に2つの2次コイル120a、120bを配置したも
のである。1次コイルに交流電流を印加して溶鋼面と平
行な交流磁場117を溶鋼表面に印加し、2次コイルに
より対象面と平行な磁場を検出する。導体が静止してい
るときには磁場は1次コイルを挟んで対称となり、2つ
の2次コイルの起電力に差はなく出力は零である。導体
が動いている場合には、図27の(b)のように速度効
果により磁場は導体の速度方向に歪み、励磁コイルを挟
んで対称でなくなるため、2つの2次コイルに生じる起
電力に差が生じ、磁場の歪み量、即ち速度に対応した信
号が2つの2次コイルの差分信号として得られる。
An apparatus for measuring the speed in a non-contact manner using such magnetism is disclosed in Japanese Patent Application Laid-Open No. 2-31766. As shown in FIG. 27A, a primary coil 119 is arranged in parallel with a flow 118 of molten steel, and two secondary coils 120a and 120b are arranged on both sides in the horizontal direction. An alternating current is applied to the primary coil to apply an alternating magnetic field 117 parallel to the molten steel surface, and the secondary coil detects a magnetic field parallel to the target surface. When the conductor is stationary, the magnetic field becomes symmetrical with respect to the primary coil, and there is no difference between the electromotive forces of the two secondary coils and the output is zero. When the conductor is moving, the magnetic field is distorted in the velocity direction of the conductor due to the velocity effect and is not symmetrical across the exciting coil as shown in FIG. 27B, so that the electromotive force generated in the two secondary coils is reduced. A difference is generated, and a signal corresponding to the distortion amount of the magnetic field, that is, the speed is obtained as a difference signal between the two secondary coils.

【0008】また磁気による方法では、装置と測定対象
物体との距離(以下リフトオフと呼ぶ)により速度感度
が変化するが、特開平2−311766号公報に示され
たものでは、装置と測定対象物体との距離を、対象面と
平行な磁場を検出する2次コイルの片方の出力電圧によ
り測定し、補正を行っていた。
In the method using magnetism, the speed sensitivity changes depending on the distance between the device and the object to be measured (hereinafter, referred to as lift-off). Is measured by the output voltage of one of the secondary coils for detecting a magnetic field parallel to the target surface, and correction is performed.

【0009】また磁気を用いて速度を計測する別の方法
として特開平5−297012号公報に示されたものが
ある。これは図28のように1次コイル151を測定対
象152に対して垂直に配置し、1次コイル151に交
流電流を印加し、磁界153を生じさせ、1次コイル1
51を挟んで両側に測定対象152に対して垂直に2次
コイル154a、154bを配置し、1次コイル15
1、2次コイル154a、154bを巻いた鉄心15
5、156a、156bを備えたものである。そして流
速は2次コイル154a、154bに生じた起電力の位
相から検出するものであった。
Another method for measuring speed using magnetism is disclosed in Japanese Patent Application Laid-Open No. 5-297012. As shown in FIG. 28, the primary coil 151 is arranged perpendicular to the measurement object 152, an alternating current is applied to the primary coil 151, a magnetic field 153 is generated, and the primary coil 151
The secondary coils 154a and 154b are disposed on both sides of the primary coil
Iron core 15 wound with primary and secondary coils 154a and 154b
5, 156a and 156b. The flow rate was detected from the phase of the electromotive force generated in the secondary coils 154a and 154b.

【0010】また磁気を用いて速度を計測する別の方法
として、本発明者らにより提案している特開平8−21
1084号公報によるものがある。これは図29のよう
に、中心の脚204bを中心として左右対称形のE型の
形状をした磁心202に対し、中心の脚204bに励磁
用の巻線203bを巻き、両端の脚204a、cに検出
用の巻線203a,cをそれぞれが同じ向きの磁束を検
出するように巻いたものである。これを移動する導電性
の測定対象物体201の上に、脚の開いた面が対象面に
向き、かつ各脚が対象面の移動方向に対し平行に並ぶよ
うに配置する。
As another method of measuring speed using magnetism, Japanese Patent Application Laid-Open No. 8-21 proposed by the present inventors has been proposed.
No. 1084 publication. As shown in FIG. 29, an exciting winding 203b is wound around the center leg 204b with respect to an E-shaped core 202 which is symmetrical about the center leg 204b as shown in FIG. Are wound so as to detect magnetic fluxes in the same direction. It is arranged on the moving conductive measurement object 201 so that the open surface of the leg faces the target surface and each leg is arranged in parallel to the moving direction of the target surface.

【0011】そして励磁巻線に交流電流を流し、導体面
に垂直な交流磁場を作り、2つの検出巻線の出力差を検
出するものである。この時、図30の(a)のように導
体201が停止していれば、磁場は中心の脚を中心とし
て左右対象であり、左右の検出巻線の出力は等しく、そ
の差分は零となる。導体が動くと、図30の(b)のよ
うにその流速に対応して磁場が歪み、両端の巻線の位置
での磁束に差が出て、その差分信号が変化する。この変
化量は対象の流速に対応しており、この変化量から、対
象の流速を測定することができる。またこの方法でも、
リフトオフにより速度感度が変化するが、特開平8−2
11084号公報においては、このリフトオフを、図3
1のように装置に併設した渦流距離計256を用いて検
出し、補正を行っていた。
Then, an alternating current is passed through the exciting winding to create an alternating magnetic field perpendicular to the conductor surface, and the output difference between the two detecting windings is detected. At this time, if the conductor 201 is stopped as shown in FIG. 30A, the magnetic field is symmetric with respect to the center leg, the outputs of the left and right detection windings are equal, and the difference is zero. . When the conductor moves, the magnetic field is distorted in accordance with the flow velocity as shown in FIG. 30 (b), a difference occurs in the magnetic flux at the positions of the windings at both ends, and the difference signal changes. The amount of change corresponds to the flow velocity of the target, and the flow velocity of the target can be measured from the amount of change. Also in this method,
The speed sensitivity changes due to lift-off.
In Japanese Patent Publication No. 11084, this lift-off is described in FIG.
As in the case of No. 1, detection and correction were performed using an eddy current distance meter 256 attached to the apparatus.

【0012】また磁気を用いて流速を計測する別の方法
として、本発明者により提案している特願平8−255
861号によるものがある。これは図32のように、移
動する導電性の測定対象物体の上に、対象面に対しその
中心軸が垂直となるように、セラミックス製パイプ2に
巻いた励磁巻線Pを配置し、その励磁巻線Pと対象面と
の間にセラミックス製の丸棒3に同じ向きに2つの検出
巻線S1 ,S2 を巻いたものを、その中心軸が対象面お
よび対象の移動方向と平行で、かつ2つの検出巻線
1 ,S2 の中間点が励磁巻線Pの中心軸上にくるよう
に配置したものである。ここで励磁巻線Pに電流を流
し、測定対象に磁場を励磁し、検出巻線S1 ,S2 で図
26の(a)に示した誘導磁場Bv を検出し流速を測定
するものである。またこの方法では、リフトオフの変化
により、渦電流磁場Be に起因するオフセット分が変化
し、また流速感度が変化するが、前記特願平8−255
861号では、図32のように励磁装置上下に対象面に
垂直な磁場成分を検出するように巻いた2つの検出巻線
3 ,S4 の出力電圧をもとにリフトオフを検出し、オ
フセットの変化、流速感度の変化を補正していた。
As another method of measuring the flow velocity by using magnetism, Japanese Patent Application No. 8-255 proposed by the present inventor has been proposed.
No. 861. As shown in FIG. 32, an excitation winding P wound around a ceramic pipe 2 is arranged on a moving conductive measurement target object so that its central axis is perpendicular to the target surface. Two detection windings S 1 and S 2 wound in the same direction on a ceramic round bar 3 between the excitation winding P and the target surface, the center axis of which is parallel to the target surface and the moving direction of the target And the intermediate point between the two detection windings S 1 and S 2 is arranged on the central axis of the excitation winding P. Here, a current is applied to the exciting winding P to excite a magnetic field in the measurement object, and the detection windings S 1 and S 2 detect the induction magnetic field Bv shown in FIG. 26A to measure the flow velocity. . Further, in this method, the offset due to the eddy current magnetic field Be changes and the flow velocity sensitivity changes due to the change in lift-off.
In No. 861, lift-off is detected based on output voltages of two detection windings S 3 and S 4 wound so as to detect a magnetic field component perpendicular to a target surface above and below an exciter as shown in FIG. And the change in flow rate sensitivity were corrected.

【0013】[0013]

【発明が解決しようとする課題】しかし、従来の特開平
2−311766号公報、特開平5−297012号公
報、特開平8−211084号公報及び特願平8−25
5861号のような磁場を励磁し、速度誘導磁場を検出
し、検出した磁場から流速を算出するタイプの流速測定
方法・装置では、先述のように励磁磁場として交流の磁
場を用いた場合、検出装置で、対象より発生する渦電流
磁場Be を検出してしまい、流速信号のオフセットが変
化してしまう。この変化は対象面が平坦であればリフト
オフにより一意に決まるため、特願平8−255861
号のように別途リフトオフを検出して補正することがで
きる。しかし対象面が平坦でなく波立ちがある場合に
は、図4のように局所的に見ると対象面が傾いており、
この傾きにより渦電流磁場Be が傾く。そのため特開平
5−297012号公報及び特開平8−211084号
公報のような垂直方向の磁場成分を検出する方法でも、
特開平2−311766号公報及び特開平8−2558
61号のような水平方向の磁場成分を検出する方法で
も、リフトオフが一定であっても、波の移動や変化に伴
って装置下の対象面の傾きが変化するため、検出装置で
検出してしまう渦電流磁場Be の大きさが変化して、オ
フセット分が変化するので、リフトオフを検出して補正
しても除去しきれないオフセット変化分が残り、測定誤
差を生じてしまうという問題があった。
However, Japanese Patent Application Laid-Open Nos. Hei 2-31766, Hei 5-297012, Hei 8-211084, and Japanese Patent Application No. Hei 8-25110 are conventional.
In the flow velocity measuring method / apparatus of the type that excites a magnetic field such as No. 5861, detects a velocity induced magnetic field, and calculates a flow velocity from the detected magnetic field, when an AC magnetic field is used as the exciting magnetic field as described above, the detection is performed. The apparatus detects the eddy current magnetic field Be generated from the target, and the offset of the flow velocity signal changes. This change is uniquely determined by lift-off if the target surface is flat.
The lift-off can be separately detected and corrected like the signal. However, when the target surface is not flat and has undulations, the target surface is tilted when viewed locally as shown in FIG.
Due to this inclination, the eddy current magnetic field Be is inclined. Therefore, even in a method for detecting a magnetic field component in the vertical direction as disclosed in JP-A-5-297012 and JP-A-8-211084,
JP-A-2-31766 and JP-A-8-2558
Even in the method of detecting a horizontal magnetic field component such as No. 61, even if the lift-off is constant, the inclination of the target surface under the device changes with the movement or change of the wave, so the detection is performed by the detection device. Since the magnitude of the eddy current magnetic field Be changes and the offset changes, there is a problem that an offset change that cannot be completely removed even if lift-off is detected and corrected remains, causing a measurement error. .

【0014】[0014]

【課題を解決するための手段】本発明の請求項1に係る
流速測定方法は、移動する導電性の測定対象物の表面に
対し垂直な磁場を励磁し、前記測定対象物の表面及びそ
の移動方向と平行な方向の磁場を1箇所以上の範囲で検
出し、該1箇所以上の範囲で検出した磁場信号に基づき
前記測定対象物の流速を算出する流速測定方法におい
て、前記流速を測定するための磁場の検出範囲と一致し
ない1箇所以上の範囲で、前記測定対象物の移動方向と
平行な方向の磁場を検出し、該検出した磁場信号に基づ
き前記測定対象物の表面の傾きに係る情報を求め、該情
報をもとに前記算出した測定対象物の流速を補正するも
のである。
According to a first aspect of the present invention, there is provided a method for measuring a flow velocity, wherein a magnetic field perpendicular to the surface of a moving conductive measuring object is excited, and the surface of the measuring object and its movement are moved. Detecting a magnetic field in a direction parallel to the direction in one or more ranges, and calculating the flow speed of the measurement object based on the magnetic field signal detected in the one or more ranges; In one or more ranges that do not coincide with the magnetic field detection range, a magnetic field in a direction parallel to the moving direction of the measurement object is detected, and information on the inclination of the surface of the measurement object is detected based on the detected magnetic field signal. And corrects the calculated flow velocity of the measurement object based on the information.

【0015】本発明の請求項2に係る流速測定方法は、
前記請求項1に係る流速測定方法において、前記測定対
象物の移動方向に平行で測定対象物の表面に垂直な平面
内で、前記励磁磁場が線対称となる測定対象面に対して
垂直な軸を選択し、前記流速を算出するための磁場の検
出範囲を、前記垂直な軸上の点を中心とした測定対象物
の移動方向に平行な方向における所定長さの範囲とし、
前記流速を補正するための磁場の検出範囲を、前記平面
内で前記垂直な軸に対して励磁磁場が線対称となる第1
及び第2の各点を中心とした、測定対象物の移動方向に
平行な方向におけるそれぞれ等しい長さの範囲とし、か
つ前記垂直な軸から前記第1及び第2の各点までの距離
が、前記垂直な軸から前記流速を算出するための磁場の
検出範囲を2等分した各々の範囲の中心位置までの距離
よりもそれぞれ大きくするものである。
According to a second aspect of the present invention, there is provided a flow velocity measuring method comprising:
2. The flow velocity measuring method according to claim 1, wherein an axis perpendicular to a surface to be measured, in which the exciting magnetic field is line-symmetric, in a plane parallel to a moving direction of the object to be measured and perpendicular to a surface of the object to be measured. Select, the detection range of the magnetic field for calculating the flow velocity, a range of a predetermined length in a direction parallel to the moving direction of the measurement object around the point on the vertical axis,
The detection range of the magnetic field for correcting the flow velocity is set to a first range in which the excitation magnetic field is line-symmetric with respect to the vertical axis in the plane.
And the center of each of the second points, each having a range of equal length in a direction parallel to the moving direction of the measurement object, and the distance from the vertical axis to each of the first and second points is The detection range of the magnetic field for calculating the flow velocity is set to be greater than the distance from the perpendicular axis to the center position of each of the two divided ranges.

【0016】本発明の請求項3に係る流速測定方法は、
前記請求項1に係る流速測定方法において、前記測定対
象物の移動方向に平行で測定対象物の表面に垂直な平面
内で、前記励磁磁場が線対称となる測定対象面に対して
垂直な軸を選択し、前記流速を算出するための磁場の検
出範囲を、前記平面内で前記垂直な軸に対して励磁磁場
が線対称となる第1及び第2の各点を中心とした、測定
対象物の移動方向に平行な方向におけるそれぞれ等しい
長さの範囲とし、前記流速を補正するための磁場の検出
範囲を、前記垂直な軸からの距離が前記第1及び第2の
各点よりもそれぞれ遠方の、前記平面内で前記垂直な軸
に対して励磁磁場が線対称となる第3及び第4の各点を
中心とし、かつ測定対象物の移動方向に平行な方向にお
けるそれぞれ等しい長さの範囲とするものである。
According to a third aspect of the present invention, there is provided a flow velocity measuring method comprising:
2. The flow velocity measuring method according to claim 1, wherein an axis perpendicular to a surface to be measured, in which the exciting magnetic field is line-symmetric, in a plane parallel to a moving direction of the object to be measured and perpendicular to a surface of the object to be measured. And the detection range of the magnetic field for calculating the flow velocity is measured on the first and second points where the excitation magnetic field is line-symmetric with respect to the vertical axis in the plane. The range of the same length in the direction parallel to the moving direction of the object, respectively, the detection range of the magnetic field for correcting the flow velocity, the distance from the vertical axis is more than the first and second points, respectively. Distant, third and fourth points at which the exciting magnetic field is line-symmetric with respect to the vertical axis in the plane, and having equal lengths in directions parallel to the moving direction of the measurement object. Range.

【0017】本発明の請求項4に係る流速測定方法は、
前記請求項1に係る流速測定方法において、前記測定対
象物の移動方向に平行で測定対象物の表面に垂直な平面
内で、前記励磁磁場が線対称となる測定対象面に対して
垂直な軸を選択し、前記流速を算出するための磁場の検
出範囲を、前記平面内で前記垂直な軸に対して励磁磁場
が線対称となる第1及び第2の各点を中心とした、測定
対象物の移動方向に平行な方向におけるそれぞれ等しい
長さの範囲とし、前記流速を補正するための磁場の検出
範囲を、前記垂直な軸上の点を中心とした測定対象物の
移動方向に平行な方向における所定長さの範囲とし、か
つ前記垂直な軸から前記流速を補正するための磁場の検
出範囲を2等分した各々の範囲の中心位置までの距離
が、前記垂直な軸から前記第1及び第2の各点までの距
離よりも、それぞれ大きくするものである。
According to a fourth aspect of the present invention, there is provided a flow velocity measuring method comprising:
2. The flow velocity measuring method according to claim 1, wherein an axis perpendicular to a surface to be measured, in which the exciting magnetic field is line-symmetric, in a plane parallel to a moving direction of the object to be measured and perpendicular to a surface of the object to be measured. And the detection range of the magnetic field for calculating the flow velocity is measured on the first and second points where the excitation magnetic field is line-symmetric with respect to the vertical axis in the plane. The ranges of the same length in the direction parallel to the moving direction of the object are respectively equal, and the detection range of the magnetic field for correcting the flow velocity is parallel to the moving direction of the measuring object around the point on the vertical axis. The distance from the vertical axis to the center position of each of the two ranges obtained by dividing the magnetic field detection range for correcting the flow velocity from the vertical axis to the first position is defined as the first length from the vertical axis. And the distance to each second point, It is intended to hear.

【0018】本発明の請求項5に係る流速測定方法は、
前記請求項1に係る流速測定方法において、前記測定対
象物の移動方向に平行で測定対象物の表面に垂直な平面
内で、前記励磁磁場が線対称となる測定対象面に対して
垂直な軸を選択し、前記流速を算出するための磁場の検
出範囲を、前記垂直な軸上の点を中心とした測定対象物
の移動方向に平行な方向における所定の長さの範囲と
し、前記流速補正するための磁場の検出範囲を、前記垂
直な軸上の点を中心とした、前記流速を算出するための
磁場の検出範囲よりも、測定対象物の移動方向に平行な
方向の長さが、長い範囲とするものである。
According to a fifth aspect of the present invention, there is provided a flow velocity measuring method comprising:
2. The flow velocity measuring method according to claim 1, wherein an axis perpendicular to a surface to be measured, in which the exciting magnetic field is line-symmetric, in a plane parallel to a moving direction of the object to be measured and perpendicular to a surface of the object to be measured. Is selected, and the magnetic field detection range for calculating the flow velocity is a range of a predetermined length in a direction parallel to the moving direction of the measurement object around the point on the vertical axis, and the flow velocity correction is performed. The detection range of the magnetic field for performing, the center on the point on the vertical axis, than the detection range of the magnetic field for calculating the flow velocity, the length in the direction parallel to the moving direction of the measurement target, It is a long range.

【0019】本発明の請求項6に係る流速測定方法は、
前記請求項1から5までのいずれかの請求項に係る流速
測定方法において、前記流速を算出するための磁場の検
出範囲及び流速を補正するための磁場の検出範囲のすべ
てを、前記測定対象面に対して垂直な軸と交差し、かつ
測定対象物の移動方向と平行な直線上に設けるようにし
たものである。
According to a sixth aspect of the present invention, there is provided a flow velocity measuring method comprising:
In the flow velocity measuring method according to any one of claims 1 to 5, the entirety of the detection range of the magnetic field for calculating the flow velocity and the detection range of the magnetic field for correcting the flow velocity may be the measurement target surface. Are provided on a straight line that intersects an axis perpendicular to the axis and is parallel to the moving direction of the measurement object.

【0020】本発明の請求項7に係る流速測定方法は、
前記請求項1から6までのいずれかの請求項に係る流速
測定方法において、前記流速を算出するための磁場の検
出範囲を、前記励磁磁場の中心軸付近とし、前記流速を
補正するための磁場の検出範囲を、前記測定対象物の流
速に対する磁場変化量の最も小さくなる範囲とするよう
にしたものである。
According to a seventh aspect of the present invention, there is provided a flow velocity measuring method comprising:
The flow velocity measuring method according to any one of claims 1 to 6, wherein a detection range of a magnetic field for calculating the flow velocity is near a center axis of the excitation magnetic field, and a magnetic field for correcting the flow velocity. Is a range in which the amount of change in the magnetic field with respect to the flow velocity of the object to be measured is minimized.

【0021】本発明の請求項8に係る流速測定装置は、
移動する導電性の測定対象物の表面に対し垂直な磁場を
印加するように配置された励磁手段と、前記測定対象物
の表面及びその移動方向と平行な方向の磁場を検出する
ように配置された1つ以上の磁場検出手段と、該1つ以
上の磁場検出手段が検出した磁場信号に基づき前記測定
対象物の流速を算出する測定手段とを有する流速測定装
置において、前記磁場検出手段の検出位置と異なる位置
で、前記測定対象物の移動方向と平行な方向の磁場を検
出するように配置された1つ以上の副磁場検出手段と、
前記1つ以上の副磁場検出手段が検出した磁場信号に基
づき前記測定対象物の表面の傾きに係る情報を求め、該
情報をもとに前記測定手段が算出した測定対象物の流速
を補正する補正手段とを備えたものである。
[0021] The flow velocity measuring device according to claim 8 of the present invention comprises:
Exciting means arranged to apply a magnetic field perpendicular to the surface of the moving conductive measurement object, and arranged to detect a magnetic field in a direction parallel to the surface of the measurement object and the moving direction thereof. A flow rate measuring device comprising: at least one magnetic field detecting means; and measuring means for calculating a flow velocity of the object to be measured based on a magnetic field signal detected by the one or more magnetic field detecting means. At a position different from the position, one or more sub-magnetic field detecting means arranged to detect a magnetic field in a direction parallel to the moving direction of the measurement object;
Based on the magnetic field signal detected by the one or more sub-magnetic field detecting means, information on the inclination of the surface of the measuring object is obtained, and the flow rate of the measuring object calculated by the measuring means is corrected based on the information. Correction means.

【0022】本発明の請求項9に係る流速測定装置は、
前記請求項8に係る流速測定装置において、前記測定対
象物の移動方向に平行で測定対象物の表面に垂直な平面
内で、前記励磁磁場が線対称となる測定対象面に対して
垂直な軸を選択し、前記流速を算出するための磁場検出
手段は、1つとして前記垂直な軸上に配置し、かつ測定
対象物の移動方向に平行な方向における所定長さの範囲
にもわたる磁場を検出するようにし、前記流速を補正す
るための副磁場検出手段は、2つとして前記平面内で前
記垂直な軸に対して励磁磁場が線対称となる第1及び第
2の各点上に配置し、さらに各副磁場検出手段は測定対
象物の移動方向に平行な方向におけるそれぞれ等しい長
さの範囲にわたる磁場を検出し、かつ前記垂直な軸から
前記第1及び第2の各点までの距離が、前記垂直な軸か
ら前記流速を算出するための磁場の検出範囲を2等分し
た各々の範囲の中心位置までの距離よりもそれぞれ大き
くなるようにしたものである。
According to a ninth aspect of the present invention, there is provided a flow velocity measuring device comprising:
9. The flow velocity measuring apparatus according to claim 8, wherein an axis perpendicular to a surface to be measured, in which the exciting magnetic field is line-symmetric, in a plane parallel to a moving direction of the object to be measured and perpendicular to a surface of the object to be measured. The magnetic field detecting means for calculating the flow velocity is arranged on the vertical axis as one, and detects a magnetic field over a range of a predetermined length in a direction parallel to the moving direction of the measurement object. And two auxiliary magnetic field detecting means for correcting the flow velocity are disposed on each of the first and second points in the plane where the exciting magnetic field is line-symmetric with respect to the vertical axis. Further, each sub-magnetic field detecting means detects a magnetic field over a range of the same length in a direction parallel to the moving direction of the measurement object, and detects a distance from the vertical axis to each of the first and second points. Calculates the flow velocity from the vertical axis Than the distance to the center position of the detection range bisecting the respective ranges of the magnetic field of the order is obtained by the respectively larger.

【0023】本発明の請求項10に係る流速測定装置
は、前記請求項8に係る流速測定装置において、前記測
定対象物の移動方向に平行で測定対象物の表面に垂直な
平面内で、前記励磁磁場が線対称となる測定対象面に対
して垂直な軸を選択し、前記流速を算出するための磁場
検出手段は、2つとしてそれぞれ前記平面内で前記垂直
な軸に対して励磁磁場が線対称となる第1及び第2の各
点上に配置し、かつ測定対象物の移動方向に平行な方向
におけるそれぞれ等しい長さの範囲にわたる磁場を検出
するようにし、前記流速を補正するための副磁場検出手
段は、2つとして前記垂直な軸からの距離が前記第1及
び第2の各点よりもそれぞれ遠方の、前記平面内で前記
垂直な軸に対して励磁磁場が線対称となる第3及び第4
の各点上に配置し、かつ各副磁場検出手段は測定対象物
の移動方向に平行な方向におけるそれぞれ等しい長さの
範囲にわたる磁場を検出するようにしたものである。
According to a tenth aspect of the present invention, there is provided a flow velocity measuring device according to the eighth aspect, wherein the flow velocity measuring device is arranged in a plane parallel to a moving direction of the measuring object and perpendicular to a surface of the measuring object. The magnetic field detecting means for selecting an axis perpendicular to the measurement target surface in which the exciting magnetic field is line-symmetric and calculating the flow velocity has two exciting magnetic fields with respect to the perpendicular axis in the plane. A magnetic field arranged on each of the first and second points that are axisymmetrical, and detecting a magnetic field over a range of equal lengths in a direction parallel to the moving direction of the measurement object, to correct the flow velocity. The sub-magnetic field detecting means is configured such that the exciting magnetic field is line-symmetric with respect to the vertical axis in the plane, the distance from the vertical axis being farther than the first and second points, respectively. Third and fourth
And each sub-magnetic field detection means detects a magnetic field over a range of equal length in a direction parallel to the moving direction of the measurement object.

【0024】本発明の請求項11に係る流速測定装置
は、前記請求項8に係る流速測定装置において、前記測
定対象物の移動方向に平行で測定対象物の表面に垂直な
平面内で、前記励磁磁場が線対称となる測定対象面に対
して垂直な軸を選択し、前記流速を算出するための磁場
検出手段は、2つとしてそれぞれ前記平面内で前記垂直
な軸に対して励磁磁場が線対称となる第1及び第2の各
点上に配置し、かつ測定対象物の移動方向に平行な方向
におけるそれぞれ等しい長さの範囲にわたる磁場を検出
するようにし、前記流速を補正するための副磁場検出手
段は、1つとして前記垂直な軸上に配置し、かつ測定対
象物の移動方向に平行な方向における所定長さの範囲に
わたる磁場を検出するようにし、さらに前記垂直な軸か
ら前記流速を補正するための磁場の検出範囲を2等分し
た各々の範囲の中心位置までの距離が、前記垂直な軸か
ら前記第1及び第2の各点までの距離よりも、それぞれ
大きくなるようにしたものである。
The flow velocity measuring device according to an eleventh aspect of the present invention is the flow velocity measuring device according to the eighth aspect, wherein in the plane parallel to the moving direction of the measurement object and perpendicular to the surface of the measurement object, The magnetic field detecting means for selecting an axis perpendicular to the measurement target surface in which the exciting magnetic field is line-symmetric and calculating the flow velocity has two exciting magnetic fields with respect to the perpendicular axis in the plane. A magnetic field arranged on each of the first and second points that are axisymmetrical, and detecting a magnetic field over a range of equal lengths in a direction parallel to the moving direction of the measurement object, to correct the flow velocity. The sub-magnetic field detection means is arranged as one on the vertical axis, and detects a magnetic field over a range of a predetermined length in a direction parallel to the moving direction of the measurement target, and further detects the magnetic field from the vertical axis. Correct flow velocity The distance to the center position of each of the two divided ranges of the magnetic field for detection is larger than the distance from the vertical axis to each of the first and second points. is there.

【0025】本発明の請求項12に係る流速測定装置
は、前記請求項8に係る流速測定装置において、前記測
定対象物の移動方向に平行で測定対象物の表面に垂直な
平面内で、前記励磁磁場が線対称となる測定対象面に対
して垂直な軸を選択し、前記流速を算出するための磁場
検出手段は、1つとして前記垂直な軸上に配置し、かつ
測定対象物の移動方向に平行な方向における所定長さの
範囲にわたる磁場を検出するようにし、前記流速を補正
するための副磁場検出手段は、1つとして前記垂直な軸
上に配置し、かつ前記流速を算出するための磁場検出手
段の検出範囲よりも、測定対象物の移動方向に平行な方
向の長さが、長い範囲にわたる磁場を検出するようにし
たものである。
A flow velocity measuring apparatus according to a twelfth aspect of the present invention is the flow velocity measuring apparatus according to the eighth aspect, wherein the flow velocity measuring apparatus is arranged such that the plane is parallel to a moving direction of the object and perpendicular to a surface of the object. The magnetic field detecting means for selecting an axis perpendicular to the measurement target surface where the excitation magnetic field is axisymmetric and calculating the flow velocity is disposed on the vertical axis as one, and moving the measurement target object. The magnetic field over a range of a predetermined length in a direction parallel to the direction is detected, and the sub-magnetic field detecting means for correcting the flow velocity is disposed on the vertical axis as one, and calculates the flow velocity. In this case, the magnetic field is detected over a range in which the length in the direction parallel to the moving direction of the measurement object is longer than the detection range of the magnetic field detecting means.

【0026】本発明の請求項13に係る流速測定装置
は、前記請求項8から12までのいずれかの請求項に係
る流速測定装置において、前記磁場検出手段及び副磁場
検出手段のすべてを、前記測定対象面に対して垂直な軸
と交差し、かつ測定対象物の移動方向と平行な直線上に
配置するようにしたものである。
According to a thirteenth aspect of the present invention, in the flow velocity measuring apparatus according to any one of the eighth to twelfth aspects, all of the magnetic field detecting means and the sub-magnetic field detecting means are provided with the same. It is arranged on a straight line that intersects an axis perpendicular to the measurement target surface and is parallel to the moving direction of the measurement target.

【0027】本発明の請求項14に係る流速測定装置
は、前記請求項8から13までのいずれかの請求項に係
る流速測定装置において、前記磁場検出手段の検出範囲
を、前記励磁磁場の中心軸付近とし、前記副磁場検出手
段の検出範囲を、前記測定対象物の流速に対する磁場変
化量の最も小さくなる範囲とするようにしたものであ
る。
[0027] According to a fourteenth aspect of the present invention, in the flow velocity measuring device according to any one of the eighth to thirteenth aspects, the detection range of the magnetic field detecting means is set at a center of the excitation magnetic field. The vicinity of the axis is set, and the detection range of the sub-magnetic field detection means is set to a range in which the amount of change in the magnetic field with respect to the flow velocity of the measurement object is the smallest.

【0028】[0028]

【発明の実施の形態】本発明の実施の形態について説明
する前に、まず本発明の流速測定方法および装置の動作
原理について説明する。 (1)流速測定原理 ここでは元となる流速測定装置として図3のようなセン
サヘッドを用いた場合について説明する。このセンサヘ
ッドは、図3のように、励磁装置として移動する導電性
の測定対象体の上に、対象面に対しその中心軸が垂直と
なるように1つの励磁巻線Pを配置し、流速検出用の検
出装置として、その励磁巻線Pと対象面の間に、2つの
検出巻線S1 ,S2 を対象面および対象の移動方向にそ
の中心軸が平行となり、かつ2つの検出巻線S1 ,S2
の中間点が励磁巻線Pの中心軸上にくるように配置した
ものである。このS1 ,S2 を以下、流速検出用の検出
巻線と呼ぶ。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing the embodiments of the present invention, the operating principle of the flow velocity measuring method and apparatus of the present invention will be described first. (1) Principle of flow velocity measurement Here, a case where a sensor head as shown in FIG. 3 is used as a base flow velocity measurement apparatus will be described. In this sensor head, as shown in FIG. 3, one excitation winding P is arranged on a conductive measurement object moving as an excitation device so that its central axis is perpendicular to the object surface, As a detection device for detection, two detection windings S 1 and S 2 are arranged between the excitation winding P and the target surface so that the central axes thereof are parallel to the target surface and the moving direction of the target, and the two detection windings are parallel to each other. Lines S 1 and S 2
Are arranged so that the intermediate point of the center line is located on the central axis of the exciting winding P. These S 1 and S 2 are hereinafter referred to as detection windings for detecting the flow velocity.

【0029】ここで、励磁巻線Pに交流の励磁電流を供
給し、対象面に対し垂直な磁場を励磁する。すると、前
述の速度効果による誘導磁場Bv が生じる。この誘導磁
場Bv は図5のように励磁巻線Pの直下の検出巻線の位
置では対象面に平行となっており、このBv を、対象面
に平行に配置した2つの検出巻線S1 ,S2 の和信号を
とることで検出する。この検出したBv は対象の流速に
対応しているので、これから対象の流速を測定すること
ができる。実際には検出巻線S1 ,S2 の出力信号を、
ロックインアンプ等を用いて励磁電流と−90゜ずれた
位相の成分を検波し、流速測定の元となる流速元信号と
する(本来は励磁磁場即ち励磁電流と同位相の磁場成分
を検波するが、ここでは磁場の検出に検出巻線を用いて
おり、検出巻線で検出する磁場と検出巻線の検出電圧と
に−90゜の位相差があるため、−90゜ずれた位相成
分を検波する)。
Here, an AC exciting current is supplied to the exciting winding P to excite a magnetic field perpendicular to the target surface. Then, an induced magnetic field Bv is generated due to the speed effect described above. The induction magnetic field Bv is parallel to the target surface at the position of the detection winding immediately below the exciting winding P as shown in FIG. 5, and this detection magnetic field Bv is connected to two detection windings S 1 arranged in parallel to the target surface. is detected by taking the sum signal S 2. Since the detected Bv corresponds to the flow velocity of the target, the flow velocity of the target can be measured from this. Actually, the output signals of the detection windings S 1 and S 2 are
Using a lock-in amplifier or the like, a component having a phase shifted by -90 ° from the excitation current is detected and used as a flow velocity source signal which is a source of flow velocity measurement (original magnetic field, ie, a magnetic field component having the same phase as the excitation current is detected. However, in this case, the detection winding is used for detecting the magnetic field, and since the magnetic field detected by the detection winding and the detection voltage of the detection winding have a phase difference of −90 °, the phase component shifted by −90 ° is used. Detection).

【0030】(2)波立ちの影響対策 波立ちにより装置下の対象面が傾いていると、先述のよ
うにこの流速検出用の検出巻線S1 ,S2 の出力信号で
ある流速元信号のオフセットが変化し、正確な流速測定
が不可能となる。そこで図3の様に新たに検出巻線
3 ,S4 を、その中心軸が流速検出用の検出巻線
1 ,S2 の中心軸と同じとなるように、かつ励磁装置
の中心軸を中心として対称の位置に、S1 ,S2 の外側
に近接して配置する(請求項1〜6、8〜13に対
応)。そしてこの検出巻線S3 ,S4 の和信号を、
1 ,S2 と同様に、ロックインアンプ等を用いて励磁
電流と−90゜ずれた位相の成分を検波する。
(2) Countermeasures for Influence of Rippling When the target surface under the apparatus is tilted due to the rippling, as described above, the offset of the flow velocity original signal which is the output signal of the detection windings S 1 and S 2 for detecting the flow velocity is used. Changes, and accurate flow velocity measurement becomes impossible. Therefore, as shown in FIG. 3, the detection windings S 3 and S 4 are newly added so that the central axes thereof are the same as the central axes of the detection windings S 1 and S 2 for detecting the flow velocity, and the central axis of the excitation device is changed. Are arranged close to the outside of S 1 and S 2 at positions symmetrical with respect to the center (corresponding to claims 1 to 6 and 8 to 13). And the sum signal of the detection windings S 3 and S 4 is
Similarly to S 1 and S 2 , a component having a phase shifted by −90 ° from the exciting current is detected by using a lock-in amplifier or the like.

【0031】この新たな検出巻線S3 ,S4 は、流速検
出用の検出巻線S1 ,S2 に近い位置で、S1 ,S2
同じ方向の磁場を検出しているため、対象面の傾きによ
る渦電流磁場Be の変化の影響をS1 ,S2 とほぼ同じ
ように受ける。そのためこのS3 ,S4 の和信号からS
1 ,S2 の和信号つまり流速元信号の傾きによるオフセ
ット分の変化を演算することができ、傾きによるオフセ
ット分の変化を補正することが可能となる(補正法は図
8,9及び図12,13で説明する)。以下このS3
4 のことを流速検出用の検出巻線S1 ,S2 に対応し
て、傾き検出用の検出巻線、その和信号の検波後の信号
を傾き元信号と呼ぶ。
[0031] In this new detection winding S 3, S 4 are the in position close to the detection winding S 1, S 2 for flow rate detection, and detects the magnetic field in the same direction as the S 1, S 2, The influence of the change of the eddy current magnetic field Be due to the inclination of the target surface is almost the same as that of S 1 and S 2 . Therefore, from the sum signal of S 3 and S 4 , S
1, S can be calculated the change in the offset due to tilt of the second sum signal, that the flow velocity based signal, it is possible to correct the change in the offset due to tilt (corrected method FIGS. 8, 9 and 12 , 13). This S 3 ,
Corresponds to a S 4 in the detection coil S 1, S 2 for flow rate detection, detection winding for tilt detection, it referred to as a source signal tilt signals after detection of the sum signal.

【0032】図8に図3のセンサヘッドの対象面の傾き
に対する流速元信号と傾き元信号の変化の様子を示す。
ここでは測定対象として、図6のようにSUS316製
の板を用い、板を傾ける試験を行った。試験の結果、図
8の実線で示す流速元信号(S1 +S2 )、破線で示す
傾き元信号(S3 +S4 )は、ともに傾きに対する変化
はほぼ直線的であった。
FIG. 8 shows how the flow velocity original signal and the inclination original signal change with respect to the inclination of the target surface of the sensor head of FIG.
Here, an SUS316 plate as shown in FIG. 6 was used as a measurement target, and a test of tilting the plate was performed. As a result of the test, both the flow velocity original signal (S 1 + S 2 ) shown by the solid line and the gradient original signal (S 3 + S 4 ) shown by the broken line in FIG.

【0033】そこで、図8の傾き−流速元信号特性直線
の勾配(特性直線の傾き)をAf 、傾き−傾き元信号特
性直線の勾配(特性直線の傾き)をAs とすると、次の
(2)式で決まる係数αを用いて、(3)式のようにす
れば、傾きの影響を補正できることが分かる。 α=Af /As …(2) (傾き補正後の信号)=(流速元信号)−α・(傾き元信号) …(3) なお、図8で傾き0でも各信号が0となっていないが、
これは対象面の傾きが0であっても、対象から渦電流磁
場Be が生じており、これによるオフセット分である。
この傾き0でのオフセット分は、対象面とのリフトオフ
により一意に決まり、特願平8−255861号と同様
に、何らかの方法でリフトオフを検出し補正することが
できる。
Therefore, assuming that the gradient of the gradient-flow rate original signal characteristic line (gradient of the characteristic line) in FIG. 8 is Af and the gradient of the gradient-gradient original signal characteristic line (gradient of the characteristic line) is As, the following (2) It is understood that the influence of the inclination can be corrected by using the coefficient α determined by the expression (3) and by using the expression (3). α = Af / As (2) (signal after inclination correction) = (flow velocity original signal) −α · (tilt original signal) (3) In FIG. 8, even if the inclination is 0, each signal is not 0. But,
This is because even if the inclination of the target surface is 0, the eddy current magnetic field Be is generated from the target, and this is the offset amount.
The offset at the inclination of 0 is uniquely determined by the lift-off with respect to the target surface, and the lift-off can be detected and corrected by any method as in Japanese Patent Application No. 8-2555861.

【0034】(3)傾き検出用の検出巻線の最適位置 前記(2)で説明したように、傾き検出用の検出巻線S
3 ,S4 と流速検出用の検出巻線S1 ,S2 とは、渦電
流磁場Beに対する特性がほぼ同じとなるが、同様に速
度効果による誘導磁場Bv に対してもほぼ特性が同じと
なり、流速元信号から適当な係数をかけて傾き元信号を
引くと、対象面の傾きの影響を補正することができる反
面、流速に対する信号の大きさもまた低減してしまうと
いう問題がある。図9に対象の流速に対する流速元信号
と傾き元信号の変化の様子を示す。ここでは図7のよう
にSUS316製の円板を回転させ、その上に本装置の
センサヘッドを配置して各信号を測定した。図7の
(a)はこの試験装置を正面からみた図、(b)は真上
からみた図である。図7の試験装置による試験の結果、
図9の実線で示す流速元信号(S1 +S2)、破線で示
す傾き元信号(S3 +S4 )は、ともに対象の流速に対
する変化はほぼ直線的で、両者の特性がほぼ等しいこと
が分かる。
(3) Optimal position of detection winding for detecting inclination As described in (2) above, detection winding S for detecting inclination
3, the S 4 and the detection winding S 1, S 2 for flow rate detection, but characteristics for an eddy current magnetic field Be is almost the same, likewise becomes substantially similar characteristics are also to induce the magnetic field Bv by the speed effect If the slope original signal is subtracted by multiplying the flow velocity original signal by an appropriate coefficient, the influence of the inclination of the target surface can be corrected, but the magnitude of the signal with respect to the flow velocity also decreases. FIG. 9 shows how the flow velocity original signal and the gradient original signal change with respect to the target flow velocity. Here, as shown in FIG. 7, a disk made of SUS316 was rotated, and the sensor head of the present apparatus was disposed thereon to measure each signal. FIG. 7A is a view of the test apparatus as viewed from the front, and FIG. 7B is a view of the test apparatus as viewed from directly above. As a result of the test using the test device of FIG.
The flow velocity original signal (S 1 + S 2 ) shown by the solid line and the gradient original signal (S 3 + S 4 ) shown by the dashed line in FIG. 9 both show that the change with respect to the target flow velocity is almost linear, and that the characteristics of both are almost equal. I understand.

【0035】そこで、図8の流速−流速元信号特性直線
の勾配(特性直線の傾き)をBf 、流速−傾き元信号特
性直線の勾配(特性直線の傾き)をBs とし、係数βを
次の(4)式とおき、 β=Bf /Bs …(4) また係数kを次の(5)、(6)式とおくと、 k=1/(1−α/β) …(5) =1/(1−Af /As ・Bs /Bf ) …(6) 前記(3)式による(傾き補正後の流速に対する信号)
の大きさは、補正前に比べ、1/kに低減する。たとえ
ば図8,図9の特性を持つ装置の場合には、傾き補正
後、流速に対する信号は、補正前に比べ約1/15に減
衰してしまうこととなる。
Then, the gradient of the flow velocity-flow velocity original signal characteristic line (gradient of the characteristic line) in FIG. 8 is Bf, the gradient of the flow velocity-gradient original signal characteristic line (gradient of the characteristic line) is Bs, and the coefficient β is Equation (4), β = Bf / Bs (4) Also, when the coefficient k is expressed by the following equations (5) and (6), k = 1 / (1−α / β) (5) = 1 / (1−Af / As · Bs / Bf) (6) According to the above equation (3) (signal for flow velocity after inclination correction)
Is reduced to 1 / k as compared to before the correction. For example, in the case of the apparatus having the characteristics shown in FIGS. 8 and 9, the signal for the flow velocity after the inclination correction is attenuated to about 1/15 of that before the correction.

【0036】そこでここでは、傾き補正用の検出巻線と
流速検出用の検出巻線との位置を変え、この流速信号の
低減率を小さくすることを試みる。いま、図10のよう
に1つの検出巻線の位置を、巻線の中心軸を対象の流速
方向と平行に保ったまま、流速の方向と平行な方向(X
方向、X=0は励磁巻線中心軸上の点)に走査して、そ
の検出巻線の出力信号における、流速特性直線の勾配
(特性直線の傾き)B(Bf ,Bs に対応)および傾き
特性直線の勾配(特性直線の傾き)A(Af ,As に対
応)の変化の様子を調べ、その結果を図11に示す(図
11ではX=0mmの値で正規化している)。なお、図
10の測定対象は、傾き特性の場合はSUS板、流速特
性の場合はSUS円板とした。
Therefore, here, the position of the detection winding for inclination correction and the position of the detection winding for flow velocity detection are changed to try to reduce the reduction rate of the flow velocity signal. Now, as shown in FIG. 10, the position of one detection winding is set in a direction parallel to the direction of the flow velocity (X
Direction, X = 0 is a point on the central axis of the exciting winding), and the gradient (gradient of the characteristic straight line) B (corresponding to Bf and Bs) and the gradient of the flow velocity characteristic straight line in the output signal of the detecting winding. The state of the change in the gradient of the characteristic line (the gradient of the characteristic line) A (corresponding to Af and As) is examined, and the result is shown in FIG. 11 (in FIG. 11, normalized by the value of X = 0 mm). The measurement target in FIG. 10 was a SUS plate in the case of the inclination characteristic, and a SUS disk in the case of the flow velocity characteristic.

【0037】図10及び図11の結果から、以下のこと
が分かる。 (a)流速特性直線の勾配Bは励磁磁場中心軸付近が最
大である。すなわち流速感度は中心軸付近が最大であ
る。 (b)流速特性直線の勾配B、傾き特性直線の勾配A共
に、励磁巻線の中心軸からの距離が離れると減少する
が、流速特性直線の勾配Bの減衰率は傾き特性直線の勾
配Aの減衰率に比べ大きく、Aよりも励磁巻線中心軸に
近い点で0になる。よってB=0となる点(即ち対象物
の流速に対する磁場変化量の最も小さくなる位置)に、
傾き検出巻線を配置すれば、(6)式からk=1とな
り、流速感度を低下させることなく傾き補正を行うこと
ができる。
The following can be understood from the results shown in FIGS. (A) The gradient B of the flow velocity characteristic straight line is maximum near the central axis of the exciting magnetic field. That is, the flow velocity sensitivity is maximum near the central axis. (B) Both the gradient B of the flow-rate characteristic line and the gradient A of the gradient characteristic line decrease as the distance from the center axis of the exciting winding increases, but the attenuation rate of the gradient B of the flow-rate characteristic line becomes smaller. And becomes 0 at a point closer to the exciting winding center axis than A. Therefore, at the point where B = 0 (that is, the position where the amount of change in the magnetic field with respect to the flow velocity of the target becomes minimum)
If the inclination detecting winding is arranged, k = 1 from the equation (6), and the inclination can be corrected without lowering the flow velocity sensitivity.

【0038】以上から、各検出巻線の最適な位置が以下
であることが分かった(請求項7、14に対応)。 (a)流速検出用の検出巻線:可能な限り励磁磁場の中
心軸に近い位置 (b)傾き検出用の検出巻線:流速特性直線の勾配Bが
0となる位置この最適な検出巻線配置は例えば図2のよ
うになるが、この場合の流速元信号と傾き元信号の、対
象面の傾きに対する変化の様子及び対象の流速の対する
変化の様子を、それぞれ図12及び図13に示す。
From the above, it has been found that the optimum position of each detection winding is as follows (corresponding to claims 7 and 14). (A) a detection winding for detecting the flow velocity: a position as close as possible to the center axis of the exciting magnetic field; (b) a detection winding for detecting the inclination: a position where the gradient B of the flow velocity characteristic line becomes zero. The arrangement is, for example, as shown in FIG. 2. FIGS. 12 and 13 show how the flow velocity original signal and the inclination original signal change with respect to the inclination of the target surface and how the flow velocity changes with respect to the target surface in this case, respectively. .

【0039】(4)リフトオフ変動の補正 本装置のセンサヘッドの流速検出位置と測定対象面との
間の距離(即ちリフトオフ)が変化すると、傾きの影響
補正後の信号に含まれる、傾き0でのリフトオフにより
一意に決まるオフセット分が変化し、さらに本装置の流
速感度が変化するが、後で説明する実施形態では、これ
らのリフトオフ変動の影響を、リフトオフを検出して補
正する。ここでリフトオフの検出方法、リフトオフ変動
の補正方法について簡単に説明する。ここでは、特願平
8−255861号と同様に、図2のように励磁巻線P
と対象面との間、およびそれと励磁巻線Pを中心に対称
な位置に、励磁巻線Pと同軸に、対象面に対し垂直方向
でそれぞれが同じ向きの磁場を検出するように2つの検
出巻線S5 ,S6 を配置し、その差分信号からリフトオ
フの検出を行う。この検出巻線S5 ,S6 を以下リフト
オフ検出用の検出巻線と呼ぶ。
(4) Correction of Lift-off Fluctuation When the distance (ie, lift-off) between the flow velocity detection position of the sensor head of the present apparatus and the surface to be measured changes, the inclination 0 included in the signal after the influence of the inclination is corrected. The offset amount uniquely determined by the lift-off changes, and the flow velocity sensitivity of the present apparatus also changes. In the embodiment described later, the influence of these lift-off fluctuations is detected and corrected. Here, a lift-off detection method and a lift-off fluctuation correction method will be briefly described. Here, similarly to Japanese Patent Application No. 8-2555861, the excitation winding P
The two detections are carried out so as to detect a magnetic field which is coaxial with the excitation winding P in a direction perpendicular to the target surface and in the same direction, respectively, at a position symmetrical with respect to the excitation winding P, and at a position symmetrical with respect to the excitation winding P. The windings S 5 and S 6 are arranged, and lift-off is detected from the difference signal. The detection winding S 5, S 6 is referred to as a detection coil for lift-off detection below.

【0040】このとき図5のように対象面に対し流速測
定用の励磁巻線により垂直に磁場が励磁されているの
で、この磁場により対象中に流れる渦電流Je によっ
て、対象面に対し垂直な渦電流磁場Beが生じる。この
渦電流磁場Be は、対象面との距離によって変化するの
で、この渦電流磁場を検出巻線S5 ,S6 で検出すれ
ば、対象面との距離すなわちリフトオフを検出すること
ができる。さらにリフトオフを変化させたときに、この
傾き0でのリフトオフにより一意に決まるオフセット分
がどう変化するかという、リフトオフ−オフセット特
性、および流速感度がどう変化するかという、リフトオ
フ−流速感度特性をあらかじめ測定しておき、この特性
を元に検出したリフトオフ信号を用いて、リフトオフ変
動の影響を補正する。以上で本発明の流速測定方法及び
装置の動作原理についての説明が終了したので、次に本
発明の実施形態について説明する。
At this time, since the magnetic field is excited perpendicularly to the target surface by the excitation winding for measuring the flow velocity as shown in FIG. 5, the eddy current Je flowing through the target by the magnetic field causes the magnetic field perpendicular to the target surface. An eddy current magnetic field Be is generated. Since the eddy current magnetic field Be changes depending on the distance to the target surface, if the eddy current magnetic field is detected by the detection windings S 5 and S 6 , the distance to the target surface, that is, the lift-off can be detected. Furthermore, when the lift-off is changed, the lift-off-offset characteristic, which is how the offset uniquely determined by the lift-off at the slope of 0, and the lift-off-flow velocity sensitivity, which is how the flow velocity sensitivity changes, are determined in advance. The influence of the lift-off fluctuation is corrected by using the lift-off signal detected based on this characteristic beforehand measured. Now that the description of the operation principle of the flow velocity measuring method and apparatus of the present invention has been completed, an embodiment of the present invention will be described next.

【0041】実施形態1 図1は本発明の実施形態1に係る流速測定装置の構成図
であり、図の装置は図2のような構成のセンサへッド1
と、速測定回路30、傾き検出回路40、リフトオフ測
定回路50及び補正回路70とからなる。
Embodiment 1 FIG. 1 is a configuration diagram of a flow velocity measuring apparatus according to Embodiment 1 of the present invention. The illustrated apparatus has a sensor head 1 having a configuration as shown in FIG.
And a speed measurement circuit 30, a tilt detection circuit 40, a lift-off measurement circuit 50, and a correction circuit 70.

【0042】センサヘッド1は、図2のように、移動す
る導電性の測定対象物体の上に、対象面に対しその中心
軸が垂直となるようにセラミックス製丸パイプ2に巻い
た励磁巻線Pを配置し、その励磁巻線Pと対象面との間
にセラミックス製の丸棒3を、その中心軸が対象面およ
び対象の移動方向と平行となるように配置し、この丸棒
3に励磁巻線Pの中心軸を中心として対称の位置に、2
つの流速検出用の検出巻線S1 ,S2 を隣接して巻き、
さらにセラミックス製の丸パイプ2より外側に、励磁巻
線の中心軸を中心として対称の位置に、2つの傾き検出
用の検出巻線S3 ,S4 を巻、さらに励磁巻線Pを巻い
たセラミックス製丸パイプ2に対し、励磁巻線Pと対象
との間に1つ、およびそれと励磁巻線Pを挟んで対称な
位置に1つ、計2つのリフトオフ検出用の検出巻線
5 ,S6 を巻いたものである。なおここで用いた装置
の場合は、図2の傾き検出用の検出巻線の位置がほぼ最
適な位置であり、このS3 ,S4 の位置で、流速特性直
線の勾配Bはほぼ0となる。
As shown in FIG. 2, the sensor head 1 is an excitation winding wound on a ceramic round pipe 2 on a moving conductive measuring object such that the center axis thereof is perpendicular to the object surface. P, a ceramic round bar 3 is arranged between the exciting winding P and the target surface such that the center axis thereof is parallel to the target surface and the moving direction of the target. In a position symmetrical about the center axis of the exciting winding P, 2
Winding two detection windings S 1 and S 2 for flow velocity detection,
Further, two detection windings S 3 and S 4 for detecting inclination, and an excitation winding P are further wound outside the round pipe 2 made of ceramics at positions symmetrical about the center axis of the excitation winding. For the round pipe 2 made of ceramics, one detection winding S 5 for lift-off detection, one between the exciting winding P and the target, and one at a position symmetrical with the exciting winding P and the exciting winding P. in which wound S 6. In the case of the apparatus used here, the position of the detection winding for detecting the inclination in FIG. 2 is almost the optimum position, and the gradient B of the flow velocity characteristic straight line is almost 0 at the positions of S 3 and S 4. Become.

【0043】流速測定回路30は図1のように、励磁回
路10及び検出回路20からなる。励磁回路10は、発
振器11及び定電流アンプ12からなる。また検出回路
20は、ブリッジ回路21、バンドパスフィルタ22及
びロックインアンプ23からなる。励磁回路10は、励
磁巻線Pに電流を流し、測定対象に磁場を励磁する。こ
のため、発振器11により1Hz〜1kHz の正弦波を発生
させ、定電流アンプ12を介して励磁巻線Pに励磁電流
を供給する。ここでは励磁周波数は70Hzとした。
The flow velocity measuring circuit 30 comprises an exciting circuit 10 and a detecting circuit 20, as shown in FIG. The excitation circuit 10 includes an oscillator 11 and a constant current amplifier 12. The detection circuit 20 includes a bridge circuit 21, a band pass filter 22, and a lock-in amplifier 23. The excitation circuit 10 supplies a current to the excitation winding P to excite a magnetic field in the measurement target. Therefore, a sine wave of 1 Hz to 1 kHz is generated by the oscillator 11, and an exciting current is supplied to the exciting winding P via the constant current amplifier 12. Here, the excitation frequency was set to 70 Hz.

【0044】流速検出用の検出巻線S1 ,S2 からの出
力信号は、検出回路20に入る。ここで2つの検出巻線
からの2信号はまずブリッジ回路21で加算されて、そ
の和信号が算出される。このブリッジ回路21は、セン
サヘッド周囲に磁性あるいは導電性のもの、あるいは電
磁場を発生するものがない状態で、その出力信号がゼロ
となるようにあらかじめ調節しておく。このようにする
ことで、2つの検出巻線S1 ,S2 で検出してしまう不
要な励磁磁場信号をキャンセルするようにブリッジ回路
21を調整できる。その調整後の信号は、励磁回路10
の励磁電流の周波数を中心周波数とし、所定帯域幅のバ
ンドパスフィルタ22により、不要帯域のノイズ信号を
あらかじめ除去した後に、ロックインアンプ23によっ
て、励磁回路10の励磁電流に対し−90°ずれた位相
の成分が検波される。この検波用の基準位相信号(re
f)が発振器11からロックインアンプ23に供給され
る。そしてロックインアンプ23による検波後の信号が
流速測定の元となる流速元信号である。
Output signals from the detection windings S 1 and S 2 for flow velocity detection enter a detection circuit 20. Here, the two signals from the two detection windings are first added by the bridge circuit 21, and the sum signal is calculated. The bridge circuit 21 is adjusted in advance so that its output signal becomes zero in a state where there is no magnetic or conductive thing or anything that generates an electromagnetic field around the sensor head. By doing so, the bridge circuit 21 can be adjusted so as to cancel unnecessary excitation magnetic field signals detected by the two detection windings S 1 and S 2 . The signal after the adjustment is supplied to the excitation circuit 10
After the noise signal in the unnecessary band is removed in advance by the band-pass filter 22 having a predetermined bandwidth with the center frequency of the exciting current of, the lock-in amplifier 23 shifts the exciting current of the exciting circuit 10 by −90 °. The phase component is detected. This reference phase signal for detection (re
f) is supplied from the oscillator 11 to the lock-in amplifier 23. The signal after the detection by the lock-in amplifier 23 is the flow velocity original signal which is the basis of the flow velocity measurement.

【0045】また傾き検出用の検出巻線S3 ,S4 から
の出力信号は、傾き検出回路40に入る。傾き検出回路
40はブリッジ回路41、バンドパスフィルタ42及び
ロックインアンプ43からなる。ここで2つの検出巻線
3 ,S4 からの2信号はまずブリッジ回路41で加算
され、その和信号が算出される。このブリッジ回路41
は、センサヘッドの周囲に磁性あるいは導電性のもの、
あるは電磁場を発生するものがない状態で、その出力信
号がゼロとなるようにあらかじめ調節しておく。この調
整後の信号は励磁回路10の励磁電流の周波数を中心周
波数とし、所定帯域幅のバンドパスフィルタ42によ
り、不要帯域のノイズ信号をあらかじめ除去した後に、
ロックインアンプ43によって、励磁回路10の励磁電
流に対し−90°ずれた位相の成分が検波される。この
検波用の基準位相信号が発振器11からロックインアン
プ43に供給される。そしてロックインアンプ43によ
る検波後の信号が傾き補正の元となる傾き元信号であ
る。
The output signals from the detection windings S 3 and S 4 for detecting the inclination enter the inclination detection circuit 40. The inclination detection circuit 40 includes a bridge circuit 41, a band-pass filter 42, and a lock-in amplifier 43. Here, the two signals from the two detection windings S 3 and S 4 are first added by the bridge circuit 41, and the sum signal is calculated. This bridge circuit 41
Is magnetic or conductive around the sensor head,
Or, in a state where no electromagnetic field is generated, the output signal is previously adjusted so as to become zero. The signal after this adjustment has the frequency of the exciting current of the exciting circuit 10 as a center frequency, and after removing a noise signal in an unnecessary band in advance by a band-pass filter 42 having a predetermined bandwidth,
The lock-in amplifier 43 detects a component having a phase shifted by −90 ° with respect to the exciting current of the exciting circuit 10. This reference phase signal for detection is supplied from the oscillator 11 to the lock-in amplifier 43. The signal after detection by the lock-in amplifier 43 is a slope original signal that serves as a slope correction source.

【0046】またリフトオフ検出用の検出巻線S5 ,S
6 からの出力信号は、リフトオフ測定回路50に入る。
リフトオフ測定回路50は、ブリッジ回路51、バンド
パスフィルタ52及びロックインアンプ53からなる。
ここで2つの検出巻線S5 ,S6 からの信号はまずブリ
ッジ回路51で減算され差分信号が算出される。このブ
リッジ回路51は、センサヘッドの周囲に磁性あるいは
導電性のもの、あるいは電磁場を発生するものがない状
態で、その出力信号がゼロとなるようにあらかじめ調節
しておく。その調整後の信号は励磁回路10の励磁電流
の周波数を中心周波数とし、所定帯域幅のバンドパスフ
ィルタ52により、ノイズ信号をあらかじめ除去した後
に、ロックインアンプ53によって、励磁回路10の励
磁電流に対し−180°ずれた位相の成分が検波される
(本来は励磁磁場即ち励磁電流と−90°ずれた磁場成
分を検波するが、ここでは磁場の検出に検出巻線を用い
ており、磁場と検出巻線の検出電圧とが−90°の位相
差があるため、−180°ずれた位相成分が検波され
る)。この検波用の基準位相信号が発振器11からロッ
クインアンプ53に供給される。そしてロックインアン
プ53による検波後の信号がリフトオフ補正の元となる
リフトオフ元信号である。
The detection windings S 5 , S 5 for lift-off detection
The output signal from 6 enters the lift-off measurement circuit 50.
The lift-off measurement circuit 50 includes a bridge circuit 51, a band-pass filter 52, and a lock-in amplifier 53.
Here, the signals from the two detection windings S 5 and S 6 are first subtracted by the bridge circuit 51 to calculate a difference signal. This bridge circuit 51 is adjusted in advance so that its output signal becomes zero in a state where there is no magnetic or conductive thing or anything that generates an electromagnetic field around the sensor head. The signal after the adjustment has the frequency of the exciting current of the exciting circuit 10 as a center frequency, and after removing a noise signal in advance by a band-pass filter 52 having a predetermined bandwidth, the lock-in amplifier 53 converts the signal into an exciting current of the exciting circuit 10. On the other hand, a component having a phase shifted by -180 ° is detected (originally, an exciting magnetic field, that is, a magnetic field component shifted by −90 ° from the exciting current is detected. Here, a detection winding is used for detecting the magnetic field. Since the detection voltage of the detection winding has a phase difference of −90 °, a phase component shifted by −180 ° is detected). The reference phase signal for detection is supplied from the oscillator 11 to the lock-in amplifier 53. The signal detected by the lock-in amplifier 53 is a lift-off source signal that is a source of lift-off correction.

【0047】その後、流速測定回路30の出力信号であ
る流速元信号と、傾き検出回路40の出力信号である傾
き元信号と、リフトオフ測定回路50の出力信号である
リフトオフ元信号とは補正回路70に入る。この補正回
路70は、A/D変換器71、コンピュータ72及びD
/A変換器73からなる。補正回路70では、まずA/
D変換器71により流速元信号と、傾き元信号と、リフ
トオフ元信号とをそれぞれA/D変換し、コンピュータ
72に取り込む。そして以下の処理はコンピュータ72
上でソフトウェアにより行う。 (1)コンピュータ上では、まずリフトオフ元信号から
リフトオフを演算する。ここではあらかじめリフトオフ
を変えたときのリフトオフ元信号の変化の様子を測定し
ておき、このリフトオフ−リフトオフ元信号特性曲線を
もとにリフトオフ元信号からリフトオフを演算してい
る。
After that, the flow velocity original signal which is the output signal of the flow velocity measuring circuit 30, the inclination original signal which is the output signal of the inclination detecting circuit 40, and the lift-off original signal which is the output signal of the lift-off measuring circuit 50 are corrected by the correction circuit 70. to go into. This correction circuit 70 includes an A / D converter 71, a computer 72, and a D
/ A converter 73. In the correction circuit 70, first, A /
The flow velocity original signal, the inclination original signal, and the lift-off original signal are respectively A / D-converted by the D-converter 71 and are taken into the computer 72. The following processing is performed by the computer 72.
Performed by software above. (1) On the computer, first, the lift-off is calculated from the lift-off source signal. Here, the state of the change of the lift-off source signal when the lift-off is changed is measured in advance, and the lift-off is calculated from the lift-off source signal based on the lift-off-lift-off source signal characteristic curve.

【0048】(2)次に(3)式のように傾き元信号に
係数αを掛け流速元信号から引いて、傾きの影響を補正
する。ここでは係数αは一般にリフトオフにより変化す
るため、各リフトオフごとに図8,図12のような傾き
特性をあらかじめ取得しておき、それから(2)式を用
いて求める。 (3)続いて傾きの影響除外後の信号のリフトオフ変動
の補正を行う。ここではまず、先に演算したリフトオフ
を元に、渦電流磁場Beによるオフセット分を演算し、
これを傾きの影響除外後の信号から引く。ここではあら
かじめリフトオフを変えたときの傾き補正後の信号に含
まれるオフセットの変化の様子を測定しておき、このリ
フトオフ−オフセット特性曲線をもとにリフトオフから
オフセット分を演算している。
(2) Next, the slope original signal is multiplied by a coefficient α and subtracted from the flow velocity original signal as shown in equation (3) to correct the influence of the slope. Here, since the coefficient α generally changes due to lift-off, a slope characteristic as shown in FIGS. 8 and 12 is acquired in advance for each lift-off, and is then obtained using the equation (2). (3) Subsequently, the lift-off fluctuation of the signal after the influence of the inclination is removed is corrected. Here, first, based on the lift-off previously calculated, an offset by the eddy current magnetic field Be is calculated,
This is subtracted from the signal after the influence of the inclination is removed. Here, the state of change of the offset included in the signal after the inclination correction when the lift-off is changed is measured in advance, and the offset is calculated from the lift-off based on the lift-off-offset characteristic curve.

【0049】(4)次にオフセット分を差し引いた信号
からリフトオフの変化に伴う流速感度変化分を補正し最
終的な流速値を得る。ここではあらかじめリフトオフを
変えたときの傾き補正後の信号の流速感度(対象の流速
が0m/secと、1m/secの時での傾き補正後の
信号の変化量)の様子を測定しておき、このリフトオフ
−流速感度特性曲線をもとに、そのリフトオフでの流速
感度を演算し、オフセット分を差し引いた後の信号をこ
の演算した流速感度で除算して、最終的な流速値を得
る。
(4) Next, the flow velocity sensitivity change accompanying the change of the lift-off is corrected from the signal from which the offset is subtracted to obtain a final flow velocity value. Here, the state of the flow velocity sensitivity of the signal after inclination correction when the lift-off is changed (the amount of change in the signal after inclination correction when the target flow velocity is 0 m / sec and 1 m / sec) is measured in advance. Based on the lift-off-flow velocity sensitivity characteristic curve, the flow velocity sensitivity at the lift-off is calculated, and the signal after subtracting the offset is divided by the calculated flow velocity sensitivity to obtain a final flow velocity value.

【0050】前記実施形態1では、流速測定用のセンサ
ヘッドとして、図2,3のような構成のもの(即ち磁場
検出巻線の素子数を、流速検出用巻線がS1 ,S2 の2
つ、傾き検出用巻線がS3 ,S4 の2つとし、このS1
〜S4 のすべてを測定対象物の移動方向と平行な同一直
線上に配置した構成のもの)を用いて説明をしたが、他
の構成による数多くのセンサヘッドを実現することがで
きる。本発明の本質は、対象の流速と平行な方向の磁場
を検出する検出装置で流速を検出し、それとはまた別の
位置の対象の流速と平行な方向の磁場を検出する検出装
置で傾きを検出して補正をする点であり、この条件を満
たす様々な形態を含むものである。
In the first embodiment, the sensor head for measuring the flow velocity has a structure as shown in FIGS. 2 and 3 (that is, the number of elements of the magnetic field detection winding is determined by the number of the magnetic flux detection windings S 1 and S 2 ). 2
One, 2 Tsutoshi skew detection winding S 3, S 4, the S 1
While all to S 4 were the moving direction and configuration of those arranged in parallel colinear) with a description of the measurement object, it is possible to realize a number of sensor head by other structure. The essence of the present invention is to detect the flow velocity by a detection device that detects a magnetic field in a direction parallel to the flow velocity of the target, and to tilt the inclination by a detection device that detects a magnetic field in a direction parallel to the flow velocity of the target at another position. This is the point of detection and correction, and includes various forms that satisfy this condition.

【0051】例えば、図14〜19の各々(b),
(c),(d)に示されるように流速検出用の検出巻線
のみを1つ(図示のS1 )とする、あるいは傾き検出用
の検出巻線のみを1つ(図示のS3 )とする、または流
速検出用巻線と傾き検出用巻線の両方をそれぞれ1つと
しても、実施形態1の場合と同様の機能を得ることがで
きる(請求項2,4,5,9,11,12に対応)。こ
のように流速検出用巻線や傾き検出用巻線を1つのみと
した場合は、ブリッジ回路を通すことなく、各検出巻線
の出力信号をロックインアンプなどに直接入力して検波
すればよい。なお、例えば図14の(c)のように長い
巻線を使用した場合、ほぼその全長にわたる磁場の平均
値を検出するが、その検出巻線が励磁磁場中心軸をまた
がない場合は、その巻線の出力は、ほぼその巻線の中心
位置の磁場の大きさに相当する。また検出巻線が励磁磁
場中心軸をまたぐ場合は、励磁磁場中心軸上でその検出
巻線を2つに分け、おのおのの中心位置の磁場の大きさ
を足し合わせた値に相当する出力信号が得られる。
For example, each of FIGS.
As shown in (c) and (d), only one detection winding for detecting the flow velocity is used (S 1 in the drawing), or only one detection winding for detecting the inclination is used (S 3 in the drawing). Or the same function as that of the first embodiment can be obtained by using both one of the flow velocity detection winding and the inclination detection winding. , 12). If only one winding for flow velocity detection and one winding for inclination detection are used, the output signal of each detection winding can be directly input to a lock-in amplifier and detected without passing through a bridge circuit. Good. When a long winding is used as shown in FIG. 14 (c), for example, the average value of the magnetic field over its entire length is detected. The output of the winding corresponds approximately to the magnitude of the magnetic field at the center of the winding. When the detection winding crosses the excitation magnetic field central axis, the detection winding is divided into two on the excitation magnetic field central axis, and an output signal corresponding to a value obtained by adding the magnitudes of the magnetic fields at the respective center positions is obtained. can get.

【0052】また、図14の(c),(d)、図15の
(c),(d)のように、傾き検出用の検出巻線の上に
流速検出用の検出巻線を巻いてもかまわない。また流速
検出用、傾き検出用の検出巻線が2つ以上あっても、そ
れぞれの巻線の和信号をとれば構わない。また図15,
17,19のように傾き検出用の検出巻線を、セラミッ
クス丸パイプの外側でなく、内側に流速検出用の検出巻
線と隣接して配置しても構わない。また図16〜19の
ように流速検出用の検出巻線と傾き検出用の検出巻線と
を同軸の丸棒に巻かずに、別々に巻いても構わない。そ
して両者の対象面からの高さが違っていても構わない。
またすべての場合において、流速検出用の検出巻線と傾
き検出用の検出巻線とを逆に配置しても良いが、これは
(3)式の補正式を見ても明らかなように、流速検出用
の検出巻線を傾き検出用の検出巻線として、傾き検出用
の検出巻線を流速検出用の検出巻線として用いるだけで
本質的には元の場合と変わらない。
As shown in FIGS. 14 (c) and 14 (d) and FIGS. 15 (c) and 15 (d), the detection winding for detecting the flow velocity is wound on the detection winding for detecting the inclination. It doesn't matter. Even if there are two or more detection windings for flow velocity detection and inclination detection, the sum signal of each winding may be obtained. FIG.
As shown in FIGS. 17 and 19, the detection winding for detecting the inclination may be arranged inside the ceramic round pipe instead of outside, and adjacent to the detection winding for detecting the flow velocity. Also, as shown in FIGS. 16 to 19, the detection winding for detecting the flow velocity and the detection winding for detecting the inclination may be wound separately, instead of being wound around a coaxial round bar. The heights of the two from the target surface may be different.
Further, in all cases, the detection winding for detecting the flow velocity and the detection winding for detecting the inclination may be arranged reversely. However, as is apparent from the correction expression of the expression (3), Only the detection winding for detecting the flow velocity is used as the detection winding for detecting the inclination, and the detection winding for detecting the inclination is used as the detection winding for detecting the flow velocity.

【0053】本発明のもう一つの本質は、傾き検出用の
磁場の検出装置を、励磁磁場中心軸から対象の移動方向
と平行な方向に沿って、流速検出用の磁場の検出装置よ
りも離すところにある(請求項7,14に対応)。これ
は例えば、図14の(a)のように傾き検出用の検出巻
線が2つ、流速検出用の検出巻線が2つの場合には、傾
き検出用の検出巻線S3 ,S4 の中心位置は、励磁磁場
中心軸からの距離が、流速検出用の検出巻線S1 ,S2
の中心位置よりも長くなるように、遠方に離せばよい。
また図15の(d)のように傾き検出用の検出巻線が1
つ、流速検出用の検出巻線が1つの場合、傾き検出用の
検出巻線S3 の長さ(図の水平方向の長さ)を流速検出
用の検出巻線S1 よりも長くとればよい。この場合、双
方の検出巻線とも励磁磁場中心軸をまたいでいるため、
先に説明したように、双方の検出巻線を励磁磁場中心軸
で2つに分けて考えればよいが、すると図15の(d)
の構成は、同図の(e)とほぼ同じとなり、よって傾き
検出用の磁場の検出装置は、流速検出用の磁場の検出装
置よりも、励磁磁場中心軸より離れた位置となる。また
図16〜図19の構成は、流速検出用の検出巻線と傾き
検出用の検出巻線とを、それぞれ別個のセラミックス製
丸棒に巻いて、測定対象面からの高さが異なる位置に配
置したが、各々のセラミックス製丸棒を測定対象面から
の高さが同一で、各々の中心軸が流速の方向と平行にな
るように測定対象面に対して水平に並べて(図の前面と
背面に水平に並べて)配置してもよい。
Another essence of the present invention is that the magnetic field detecting device for detecting the inclination is separated from the magnetic field detecting device for detecting the flow velocity along the direction parallel to the moving direction of the target from the central axis of the exciting magnetic field. (Corresponding to claims 7 and 14). For example, as shown in FIG. 14A, when there are two detection windings for detecting the inclination and two detection windings for detecting the flow velocity, the detection windings S 3 and S 4 for detecting the inclination are used. The distance from the excitation magnetic field center axis is the center position of the detection windings S 1 and S 2 for detecting the flow velocity.
It may be far away so that it is longer than the center position of.
In addition, as shown in FIG.
One, if the detection winding for flow rate detection is one, taking longer than the detection winding lines S 1 of the length of the detection winding S 3 for tilt detection (horizontal length in the figure) for the flow rate detection Good. In this case, since both detection windings straddle the center axis of the excitation magnetic field,
As described above, both detection windings may be divided into two parts by the center axis of the excitation magnetic field.
Is almost the same as (e) in the figure, so that the magnetic field detecting device for detecting the tilt is located at a position farther from the center axis of the exciting magnetic field than the magnetic field detecting device for detecting the flow velocity. 16 to 19, the detection winding for detecting the flow velocity and the detection winding for detecting the inclination are wound on separate ceramic round bars, respectively, at different positions from the surface to be measured. The ceramic rods were arranged horizontally with respect to the surface to be measured so that their heights from the surface to be measured were the same, and their central axes were parallel to the direction of flow velocity. (Arranged horizontally on the back).

【0054】前記図14〜19に示した多くのセンサヘ
ッドの構成例のうちから、磁場検出巻線の素子数とその
配置により分類した実施形態を以下に示す。なおこのセ
ンサヘッドの構成により分類した実施形態においては、
前記説明と重複する部分も含まれる。 実施形態2 実施形態2は、例えば図14の(b)、図15の
(b)、図16の(b)、図17の(b)、図18の
(b)、または図19の(b)に示されるように、流速
検出用巻線はS1 の1つとし、傾き検出用巻線はS1
両側に設けたS3 ,S4の2つとするセンサヘッドの構
成である(請求項2,9に対応)。本実施形態2におけ
る各検出巻線の配置及びその検出範囲は次の通りであ
る。まず測定対象物の移動方向に平行で測定対象物の表
面に垂直な平面内で、励磁巻線Pによる励磁磁場が線対
称となる測定対象面に対して垂直な軸を選択し、単一の
流速検出用巻線S1 は、前記垂直な軸上に配置し、かつ
測定対象物の移動方向に平行な方向における所定長さの
範囲にわたる磁場を検出するようにし、2つの傾き検出
用巻線S3 ,S4 は、前記平面内で前記垂直な軸に対し
て励磁磁場が線対称となる第1及び第2の各点上に配置
し、さらに各傾き検出用巻線S3 ,S4 は測定対象物の
移動方向に平行な方向におけるそれぞれ等しい長さの範
囲にわたる磁場を検出し、かつ前記垂直な軸から前記第
1及び第2の各点までの距離が、前記垂直な軸から前記
流速を算出するための磁場の検出範囲を2等分した各々
の範囲の中心位置までの距離よりもそれぞれ大きくなる
ようにする。
Embodiments classified according to the number of elements of the magnetic field detecting winding and the arrangement thereof from among the many examples of the configuration of the sensor head shown in FIGS. 14 to 19 will be described below. In the embodiment classified according to the configuration of the sensor head,
A part overlapping with the above description is also included. Embodiment 2 Embodiment 2 is, for example, shown in FIG. 14 (b), FIG. 15 (b), FIG. 16 (b), FIG. 17 (b), FIG. 18 (b), or FIG. as shown in), the flow rate detection winding is 1 Tsutoshi of S 1, the inclination detecting winding is S 3, configuration of the 2 Tsutosuru sensor heads S 4 provided on both sides of the S 1 (according (Corresponds to items 2 and 9). The arrangement of the detection windings and the detection range in the second embodiment are as follows. First, in a plane parallel to the moving direction of the measurement target and perpendicular to the surface of the measurement target, an axis perpendicular to the measurement target surface where the excitation magnetic field by the excitation winding P is line-symmetric is selected, and a single axis is selected. The flow rate detecting winding S 1 is arranged on the vertical axis, and detects a magnetic field over a range of a predetermined length in a direction parallel to the moving direction of the object to be measured. S 3 and S 4 are arranged on the first and second points where the exciting magnetic field is line-symmetric with respect to the vertical axis in the plane, and further, the respective inclination detecting windings S 3 and S 4 Detects a magnetic field over a range of equal length in a direction parallel to the direction of movement of the measurement object, and the distance from the vertical axis to each of the first and second points is greater than the distance from the vertical axis to the first and second points. The detection range of the magnetic field for calculating the flow velocity is divided into two equal parts. So that each larger than away.

【0055】実施形態3 実施形態3は 例えば図2と重複する図14の(a)、
図3と重複する図15の(a)、図16の(a)、図1
7の(a)、図18の(a)、または図19の(a)に
示されるように、流速検出用巻線はS1 ,S2 の2つと
し、傾き検出用巻線はS1 ,S2 の両側に設けたS3
4 の2つとするセンサヘッドの構成である(請求項
3,10に対応)。本実施形態3における各検出巻線の
配置及びその検出範囲は次の通りである。まず前記測定
対象物の移動方向に平行で測定対象物の表面に垂直な平
面内で、励磁巻線Pによる励磁磁場が線対称となる測定
対象面に対して垂直な軸を選択し、2つの流速検出用巻
線S1 ,S2 は、それぞれ前記平面内で前記垂直な軸に
対して励磁磁場が線対称となる第1及び第2の各点上に
配置し、かつ測定対象物の移動方向に平行な方向におけ
るそれぞれ等しい長さの範囲にわたる磁場を検出するよ
うにし、2つの傾き検出用巻線S3 ,S4 は、前記垂直
な軸からの距離が前記第1及び第2の各点よりもそれぞ
れ遠方の、前記平面内で前記垂直な軸に対して励磁磁場
が線対称となる第3及び第4の各点上に配置し、かつ各
傾き検出用巻線S3 ,S4 は測定対象物の移動方向に平
行な方向におけるそれぞれ等しい長さの範囲にわたる磁
場を検出するようにする。
Embodiment 3 Embodiment 3 is, for example, FIG.
FIG. 15A, FIG. 16A, and FIG.
7 (a), as shown in (a) of (a), or 19 in FIG. 18, 2 Tsutoshi, skew detection winding of the flow rate detection winding S 1, S 2 is S 1 , S 3 provided on both sides of S 2,
It is a structure of 2 Tsutosuru sensor heads S 4 (corresponding to claim 3, 10). The arrangement of each detection winding and the detection range thereof in the third embodiment are as follows. First, in a plane parallel to the moving direction of the object to be measured and perpendicular to the surface of the object to be measured, an axis perpendicular to the surface to be measured in which the exciting magnetic field generated by the exciting winding P is axisymmetric is selected. The flow velocity detecting windings S 1 and S 2 are respectively arranged on first and second points where the exciting magnetic field is line-symmetric with respect to the vertical axis in the plane, and the movement of the measurement object is performed. To detect magnetic fields over an equal length range in a direction parallel to the direction, and the two inclination detecting windings S 3 and S 4 are arranged such that the distance from the vertical axis is equal to the first and second distances. Excitation magnetic fields are disposed on third and fourth points in the plane, which are farther from the point and are line-symmetric with respect to the vertical axis in the plane, and each of the inclination detecting windings S 3 , S 4 Detects a magnetic field over a range of equal length in a direction parallel to the direction of movement of the measuring object. To be in.

【0056】実施形態4 実施形態4は 例えば図14の(c)、図15の
(c)、図16の(c)、図17の(c)、図18の
(c)、または図19の(c)に示されるように、流速
検出用巻線はS1 ,S2 の2つとし、傾き検出用巻線
は、S1 ,S2 を包含する検出範囲よりも測定対象物の
移動方向と平行な方向に長い検出範囲をもつS3 の1つ
とするセンサヘッドの構成である(請求項4,11に対
応)。本実施形態4における各検出巻線の配置及びその
検出範囲は次の通りである。まず前記測定対象物の移動
方向に平行で測定対象物の表面に垂直な平面内で、励磁
巻線Pによる励磁磁場が線対称となる測定対象面に対し
て垂直な軸を選択し、2つの流速検出用巻線S1 ,S2
は、それぞれ前記平面内で前記垂直な軸に対して励磁磁
場が線対称となる第1及び第2の各点上に配置し、かつ
測定対象物の移動方向に平行な方向におけるそれぞれ等
しい長さの範囲にわたる磁場を検出するようにし、単一
の傾き検出用巻線のS3 は、前記垂直な軸上に配置し、
かつ測定対象物の移動方向に平行な方向における所定長
さの範囲にわたる磁場を検出するようにし、さらに前記
垂直な軸から前記傾き検出用巻線S3 の磁場の検出範囲
を2等分した各々の範囲の中心位置までの距離が、前記
垂直な軸から前記第1及び第2の各点までの距離より
も、それぞれ大きくなるようにする。
Fourth Embodiment A fourth embodiment is, for example, shown in FIG. 14 (c), FIG. 15 (c), FIG. 16 (c), FIG. 17 (c), FIG. 18 (c), or FIG. As shown in (c), the number of windings for detecting the flow velocity is two , S 1 and S 2 , and the number of windings for detecting the inclination is the direction of movement of the measuring object more than the detection range including S 1 and S 2. 1 of Tsutosuru sensor head structure S 3 having a long detection range in a direction parallel to the (corresponding to claim 4, 11). The arrangement of the detection windings and the detection range in the fourth embodiment are as follows. First, in a plane parallel to the moving direction of the object to be measured and perpendicular to the surface of the object to be measured, an axis perpendicular to the surface to be measured in which the exciting magnetic field generated by the exciting winding P is axisymmetric is selected. Windings S 1 , S 2
Are respectively arranged on the first and second points where the exciting magnetic field is line-symmetric with respect to the vertical axis in the plane, and have the same length in a direction parallel to the moving direction of the measurement object. And a single tilt detection winding S 3 is arranged on the vertical axis,
Each and to detect the magnetic field over a range of a predetermined length in the direction parallel to the moving direction of the object to be measured, further the detection range of the magnetic field of the gradient detecting winding S 3 from the vertical axis bisecting Is set to be larger than the distance from the vertical axis to each of the first and second points.

【0057】実施形態5 実施形態5は 例えば図14の(d)、図15の
(d)、図16の(d)、図17の(d)、図18の
(d)、または図19の(d)に示されるように、流速
検出用巻線はS1 の1つとし、傾き検出用巻線は、S1
の検出範囲よりも測定対象物の移動方向と平行な方向に
長い検出範囲をもつS3 の1つとするセンサヘッドの構
成である(請求項5,12に対応)。本実施形態5にお
ける各検出巻線の配置及びその検出範囲は次の通りであ
る。まず前記測定対象物の移動方向に平行で測定対象物
の表面に垂直な平面内で、励磁巻線Pによる励磁磁場が
線対称となる測定対象面に対して垂直な軸を選択し、単
一の流速検出用巻線S1 は、前記垂直な軸上に配置し、
かつ測定対象物の移動方向に平行な方向における所定長
さの範囲にわたる磁場を検出するようにし、単一の傾き
検出用巻線S3 も、前記垂直な軸上に配置し、かつ流速
検出用巻線S1 の磁場検出範囲よりも、測定対象物の移
動方向に平行な方向の長さが、長い範囲にわたる磁場を
検出するようにする。
Embodiment 5 Embodiment 5 is, for example, shown in FIG. 14 (d), FIG. 15 (d), FIG. 16 (d), FIG. 17 (d), FIG. 18 (d), or FIG. as shown (d), the flow rate of the detection winding 1 Tsutoshi of S 1, the skew detection winding, S 1
1 of Tsutosuru sensor head structure S 3 having a long detection range in the moving direction parallel to the direction of the measurement object than the detection range of (corresponding to claim 5 and 12). The arrangement of the detection windings and the detection range thereof in the fifth embodiment are as follows. First, in a plane parallel to the moving direction of the object to be measured and perpendicular to the surface of the object to be measured, an axis perpendicular to the surface of the object to be measured in which the exciting magnetic field by the exciting winding P is axisymmetric is selected, and flow rate detection winding lines S 1 of, placed on the vertical axis,
In addition, a magnetic field over a range of a predetermined length in a direction parallel to the moving direction of the measurement object is detected, and a single tilt detection winding S 3 is also arranged on the vertical axis and used for flow velocity detection. than the magnetic field detection range of the winding S 1, the length in the direction parallel to the direction of movement of the measurement object, so as to detect a magnetic field over a long range.

【0058】実施形態6 実施形態6は 例えば図2と重複する図14の(a)及
び図14の(b),(c),(d)、図3と重複する図
15の(a)及び図15の(b),(c),(d)に示
すように、流速検出用巻線及び傾き検出用巻線のすべて
を、前記測定対象面に対して垂直な軸と交差し、かつ測
定対象物の移動方向と平行な直線上に配置するようにし
たものである(請求項6,13に対応)。
Embodiment 6 Embodiment 6 includes, for example, FIGS. 14 (a) and 14 (b), (c), (d) which overlap with FIG. 2, and FIGS. 15 (a) and 15 which overlap with FIG. As shown in FIGS. 15 (b), (c), and (d), all the windings for detecting the flow velocity and the windings for detecting the inclination intersect with the axis perpendicular to the surface to be measured and perform the measurement. It is arranged on a straight line parallel to the moving direction of the object (corresponding to claims 6 and 13).

【0059】実施形態7 実施形態7は 図2と重複する図14の(a)もしくは
(b)、図16の(a)もしくは(b)、または図18
の(a)もしくは(b)に示されるように、また段落
[0037]及び[0038]で説明したように、流検
出用巻線S1 及びS2 、またはS1 の磁場検出範囲を、
励磁巻線Pによる励磁磁場の中心軸付近とし、傾き検出
用巻線S3 ,S4 の磁場検出範囲を、前記測定対象物の
流速に対する磁場変化量の最も小さくなる範囲とするよ
うにしたものである(請求項7,14に対応)。
Embodiment 7 Embodiment 7 corresponds to FIG. 2 (a) or (b), FIG. 16 (a) or (b), or FIG.
(A) or (b), and as described in paragraphs [0037] and [0038], the magnetic field detection range of the flow detection windings S 1 and S 2 , or S 1 ,
The magnetic field detection range of the inclination detecting windings S 3 and S 4 is set to a range in which the amount of change in the magnetic field with respect to the flow velocity of the object to be measured is minimized, in the vicinity of the central axis of the exciting magnetic field by the exciting winding P. (Corresponding to claims 7 and 14).

【0060】その他の実施形態 実施形態1では、流速検出用巻線と、傾き検出用巻線の
直径を同一としているが、両者が異なる直径であっても
よい。また実施形態1では、流速検出用、傾き検出用の
検出装置は、いずれもセラミックス製のボビンに巻線を
巻いた空心タイプのものを用いていたが、フェライト等
の磁性体に巻線を巻いた磁心タイプのものを用いてもか
まわない。また磁気検出手段として、検出巻線でなくホ
ール素子等の他の磁気センサを使用してもよい。さら
に、ここでは補正回路70はコンピュータ上のソフトウ
ェアで処理した例を示したが、ソフトウェアの代わりに
ハードウェア(例えば適当なアナログ回路等)を用いて
処理してもかまわない。また各検出巻線からの信号を検
波するのに、ここではロックインアンプを用いた例で説
明したが、各信号の求めたい位相の成分を検出できれ
ば、ロックインアンプでなくてもよく、例えば代わりに
同期検波器などを用いても良い。
Other Embodiments In the first embodiment, the diameters of the flow velocity detecting winding and the inclination detecting winding are the same, but they may have different diameters. Further, in the first embodiment, the air-core type in which the winding is wound around a ceramic bobbin is used as the detection device for detecting the flow velocity and the inclination is used, but the winding is wound around a magnetic material such as ferrite. A magnetic core type may be used. Further, other magnetic sensors such as a Hall element may be used instead of the detection winding as the magnetic detection means. Further, although the example in which the correction circuit 70 is processed by software on a computer is shown here, the processing may be performed by using hardware (for example, an appropriate analog circuit or the like) instead of software. In addition, although the lock-in amplifier is used here to detect the signal from each detection winding, the lock-in amplifier need not be used as long as the phase component desired for each signal can be detected. Instead, a synchronous detector or the like may be used.

【0061】次に、実施形態1の構成による本流速測定
装置(図2の構成のセンサベッド1と、図1の流速測定
回路30、傾き検出回路40、リフトオフ測定回路50
及び補正回路70とからなる装置)を用いて、波立ち補
正の確認試験を行った結果を示す。試験装置としては、
図20のようにSUS316製の円板を斜めに回転軸に
固定させ、その上に本装置のセンサヘッド1を配置し
て、波立ちを模擬した試験を行った。図20の(a)は
この試験装置を正面からみた図、(b)は真上からみた
図である。この試験では、まず本装置を周囲に磁性、導
電性のもの、あるいは電磁場を発生するもののない場所
に置き、流速測定回路30、傾き検出回路40及びリフ
トオフ測定回路50中の各ブリッジ回路21,41及び
51を調節し、続いて停止したSUS円板上に配置す
る。次に円板を回転させ、しばらくおいて円板を止め、
再び装置をSUS円板上から外し、周囲に磁性、導電性
のもの、あるいは電磁場を発生するもののない場所に置
いた。
Next, the flow velocity measuring apparatus according to the first embodiment (the sensor bed 1 having the configuration shown in FIG. 2, the flow velocity measuring circuit 30, the inclination detecting circuit 40, and the lift-off measuring circuit 50 shown in FIG. 1).
And a correction circuit 70) are shown. As a test device,
As shown in FIG. 20, a disk made of SUS316 was fixed diagonally to the rotating shaft, and the sensor head 1 of the present apparatus was disposed thereon, and a test simulating waving was performed. FIG. 20A is a view of the test apparatus as viewed from the front, and FIG. 20B is a view of the test apparatus as viewed from directly above. In this test, first, the apparatus is placed in a place where there is no magnetic, conductive or electromagnetic field around, and each of the bridge circuits 21 and 41 in the flow velocity measurement circuit 30, the inclination detection circuit 40 and the lift-off measurement circuit 50 And 51 are adjusted and then placed on the stopped SUS disk. Next, rotate the disc, stop the disc after a while,
The device was again removed from the SUS disk and placed in a place where there was no magnetic, conductive or electromagnetic field around.

【0062】図21は図20の試験装置を用いた波立ち
補正の確認試験結果例を示す図である。なお、図21の
横軸は時間(単位は秒)である。図21の(a)は円板
回転速度から求めた測定対象の速度を示しており、
(b)はリフトオフを超音波距離計をもとに測定した値
を示している。また同図の(c)は流速検出用の検出巻
線の出力信号に相当する流速元信号を示しており、
(d)は傾き検出コイルの出力信号である傾き元信号を
示している。そして図21の(e)が測定対象面の傾き
およびリフトオフ変動の補正後の本装置の最終出力であ
る流速値であり、(a)と(e)の両者の波形はほぼ同
一である。このように、傾き補正前は、波による対象面
の傾きの変化により流速値が大きく変化しているが、傾
き補正によりその変化が無くなり、対象の速度に対応し
た高精度の流速信号が得られ、かつ安定して速度の検出
ができていることがわかる。
FIG. 21 is a diagram showing an example of the confirmation test result of the wavy correction using the test apparatus of FIG. The horizontal axis in FIG. 21 is time (unit is seconds). FIG. 21A shows the speed of the measurement target obtained from the disk rotation speed.
(B) shows a value obtained by measuring the lift-off based on the ultrasonic distance meter. (C) of the figure shows a flow velocity original signal corresponding to the output signal of the detection winding for flow velocity detection.
(D) shows a tilt original signal which is an output signal of the tilt detection coil. FIG. 21 (e) shows the flow velocity value which is the final output of the apparatus after correcting the inclination of the measurement target surface and the lift-off fluctuation, and the waveforms of both (a) and (e) are almost the same. As described above, before the inclination correction, the flow velocity value greatly changes due to the change in the inclination of the target surface due to the wave. However, the change is eliminated by the inclination correction, and a high-accuracy flow velocity signal corresponding to the target velocity can be obtained. It can be seen that the speed can be detected stably.

【0063】図23は本流速測定装置の波立ち補正の確
認試験を行ったもう一つの結果を示す図である。ここで
は低融点合金(ウッドメタル)を溶解し、図22のよう
な長細い容器に入れ、容器の長手方向に本装置センサベ
ッド1の検出巻線の中心軸が平行となる(即ち本装置の
流速検知方向と容器の長手方向が平行となる)ように、
低融点合金の上に本装置を配置した。ここで容器の片端
に板を入れて動かし、低融点合金の湯面に波を発生させ
た。なお本試験では低融点合金の流速は零である。この
試験では、まず本装置を周囲に磁性、導電性のもの、あ
るいは電磁場を発生するもののない場所に置き、流速測
定回路30、傾き検出回路40及びリフトオフ測定回路
50中の各ブリッジ回路21,41及び51を調節し、
続いて低融点合金上に本装置を配置し、板で波を生成し
た。なお図23には既に本装置を低融点合金上に配置し
た状態からの信号の様子のみを記載している。
FIG. 23 is a view showing another result of a confirmation test of correction of wavyness of the flow velocity measuring apparatus. Here, a low melting point alloy (wood metal) is melted and put into a long and thin container as shown in FIG. 22. So that the direction of flow velocity detection and the longitudinal direction of the container are parallel)
This device was placed on the low melting point alloy. Here, a plate was placed at one end of the container and moved to generate waves on the surface of the low melting point alloy. In this test, the flow rate of the low melting point alloy was zero. In this test, first, the apparatus is placed in a place where there is no magnetic, conductive or electromagnetic field around, and each of the bridge circuits 21 and 41 in the flow velocity measurement circuit 30, the inclination detection circuit 40 and the lift-off measurement circuit 50 And adjust 51,
Subsequently, the apparatus was placed on the low melting point alloy, and waves were generated by the plate. FIG. 23 shows only the state of signals from a state where the present apparatus is already arranged on a low melting point alloy.

【0064】図23の(a)はリフトオフを超音波距離
計をもとに測定した値を示している。なお、各図の横軸
はそれぞれ時間(単位は秒)を示している。図23の
(b)は流速検出用の検出巻線の出力信号に相当する流
速元信号を示しており、(c)は傾き検出コイルの出力
信号である傾き元信号を示している。図23(d)は測
定対象面の傾きおよびリフトオフ変動補正後の本装置の
最終出力である流速値である。このように、傾き補正前
は、波による対象面の傾きの変化により流速値が大きく
変化しているが、傾き補正によりその変化が無くなり、
対象の速度に対応した流速信号が得られ、安定して速度
の検出ができていることがわかる。
FIG. 23A shows a value obtained by measuring the lift-off based on the ultrasonic range finder. Note that the horizontal axis in each figure indicates time (unit is seconds). FIG. 23 (b) shows a flow velocity original signal corresponding to an output signal of the detection winding for flow velocity detection, and FIG. 23 (c) shows a gradient original signal which is an output signal of the inclination detection coil. FIG. 23D shows the flow velocity value which is the final output of the apparatus after correcting the inclination of the measurement target surface and the lift-off fluctuation. As described above, before the inclination correction, the flow velocity value greatly changes due to the change in the inclination of the target surface due to the wave, but the change disappears due to the inclination correction,
The flow velocity signal corresponding to the target velocity is obtained, and it can be seen that the velocity can be detected stably.

【0065】[0065]

【発明の効果】以上のように本発明によれば、移動する
導電性の測定対象物の表面に対し垂直な磁場を印加する
ように配置された励磁手段と、前記測定対象物の表面及
びその移動方向と平行な方向の磁場を検出するように配
置された1つ以上の磁場検出手段と、該1つ以上の磁場
検出手段が検出した磁場信号に基づき前記測定対象物の
流速を算出する測定手段とを有する流速測定方法及び装
置において、前記磁場検出手段の検出位置と異なる位置
で、前記測定対象物の移動方向と平行な方向の磁場を検
出するように配置された1つ以上の副磁場検出手段と、
前記1つ以上の副磁場検出手段が検出した磁場信号に基
づき前記測定対象物の表面の傾きに係る情報を求め、該
情報をもとに前記測定手段が算出した測定対象物の流速
を補正する補正手段とを備えるようにしたので、測定対
象面に波立ちがあったり、対象面が傾いていても安定し
て流速の測定が可能となる。
As described above, according to the present invention, the exciting means arranged to apply a magnetic field perpendicular to the surface of the moving conductive measuring object, the surface of the measuring object and its One or more magnetic field detecting means arranged to detect a magnetic field in a direction parallel to the moving direction, and a measurement for calculating a flow rate of the measurement object based on a magnetic field signal detected by the one or more magnetic field detecting means Means for detecting a magnetic field in a direction different from the detection position of the magnetic field detection means, in a direction parallel to the moving direction of the measurement object, and at least one sub-magnetic field arranged to detect the magnetic field Detecting means;
Based on the magnetic field signal detected by the one or more sub-magnetic field detecting means, information on the inclination of the surface of the measuring object is obtained, and the flow rate of the measuring object calculated by the measuring means is corrected based on the information. Since the correction means is provided, it is possible to stably measure the flow velocity even when the surface to be measured is wavy or the surface to be measured is inclined.

【0066】また本発明によれば、流速を測定するため
の前記磁場検出手段の検出範囲を、前記励磁磁場の中心
軸付近とし、傾きに係る情報を得るための前記副磁場検
出手段の検出範囲を、前記測定対象物の流速に対する磁
場変化量の最も小さくなる範囲とするようにしたので、
傾きの補正精度が良く、その結果精度の高い流速値を得
ることができる。
Further, according to the present invention, the detection range of the magnetic field detecting means for measuring the flow velocity is set near the central axis of the exciting magnetic field, and the detection range of the sub-magnetic field detecting means for obtaining information on the inclination. Is set to be in a range in which the amount of change in the magnetic field with respect to the flow velocity of the measurement object is minimized.
The inclination correction accuracy is good, and as a result, a flow velocity value with high accuracy can be obtained.

【0067】また本発明によれば、流速を測定するため
の前記磁場検出手段の素子数を1つ以上とし、また傾き
に係る情報を得るための前記副磁場検出手段の素子数を
1つ以上として、それぞれの素子数を組合せて多型式の
センサヘッドを構成することができるので、測定対象物
の種類に応じて適当な型式のセンサヘッドを選択して測
定することができ、本発明の適用範囲が拡大した。
According to the present invention, the number of elements of the magnetic field detecting means for measuring the flow velocity is one or more, and the number of elements of the sub-magnetic field detecting means for obtaining the information on the inclination is one or more. As the number of elements can be combined to form a polymorphic sensor head, an appropriate type of sensor head can be selected and measured according to the type of the object to be measured. Range expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1に係る流速測定装置の構成
図である。
FIG. 1 is a configuration diagram of a flow velocity measuring device according to a first embodiment of the present invention.

【図2】図1のセンサヘッドの構成図(最適化後)であ
る。
FIG. 2 is a configuration diagram (after optimization) of the sensor head of FIG. 1;

【図3】本発明に係るセンサヘッドの別の構成図(最適
化前)である。
FIG. 3 is another configuration diagram (before optimization) of the sensor head according to the present invention.

【図4】測定対象の波立ち影響の説明図である。FIG. 4 is an explanatory diagram of a ripple effect of a measurement target.

【図5】流速およびリフトオフ検出の原理説明図であ
る。
FIG. 5 is a diagram illustrating the principle of flow rate and lift-off detection.

【図6】傾き特性の取得方法の説明図である。FIG. 6 is an explanatory diagram of a method for acquiring a tilt characteristic.

【図7】流速特性の取得方法の説明図である。FIG. 7 is an explanatory diagram of a method for acquiring flow velocity characteristics.

【図8】傾き特性の例を示す図である。FIG. 8 is a diagram illustrating an example of a tilt characteristic.

【図9】流速特性の例を示す図である。FIG. 9 is a diagram illustrating an example of flow velocity characteristics.

【図10】検出装置の位置による傾き、流速特性の取得
方法の説明図である。
FIG. 10 is an explanatory diagram of a method of acquiring inclination and flow velocity characteristics depending on the position of a detection device.

【図11】傾き特性直線の勾配および流速特性直線の勾
配の説明図である。
FIG. 11 is an explanatory diagram of a gradient of a gradient characteristic line and a gradient of a flow velocity characteristic line.

【図12】最適化後の傾き特性の例を示す図である。FIG. 12 is a diagram illustrating an example of a tilt characteristic after optimization.

【図13】最適化後の流速特性の例を示す図である。FIG. 13 is a diagram illustrating an example of flow velocity characteristics after optimization.

【図14】本発明に係るセンサヘッドの別の構成図
(1)である。
FIG. 14 is another configuration diagram (1) of the sensor head according to the present invention.

【図15】本発明に係るセンサヘッドの別の構成図
(2)である。
FIG. 15 is another configuration diagram (2) of the sensor head according to the present invention.

【図16】本発明に係るセンサヘッドの別の構成図
(3)である。
FIG. 16 is another configuration diagram (3) of the sensor head according to the present invention.

【図17】本発明に係るセンサヘッドの別の構成図
(4)である。
FIG. 17 is another configuration diagram (4) of the sensor head according to the present invention.

【図18】本発明に係るセンサヘッドの別の構成図
(5)である。
FIG. 18 is another configuration diagram (5) of the sensor head according to the present invention.

【図19】本発明に係るセンサヘッドの別の構成図
(6)である。
FIG. 19 is another configuration diagram (6) of the sensor head according to the present invention.

【図20】波立ち補正の確認試験方法(その1)の説明
図である。
FIG. 20 is an explanatory diagram of a confirmation test method (part 1) of wavy correction.

【図21】図20の波立ち補正の確認試験結果例を示す
図である。
21 is a diagram illustrating an example of a confirmation test result of the wavy correction in FIG. 20.

【図22】波立ち補正の確認試験方法(その2)の説明
図である。
FIG. 22 is an explanatory diagram of a confirmation test method (part 2) for correction of ripples.

【図23】図22の波立ち補正の確認試験結果例を示す
図である。
FIG. 23 is a diagram showing an example of a confirmation test result of wavy correction in FIG. 22.

【図24】連続鋳造の説明図である。FIG. 24 is an explanatory diagram of continuous casting.

【図25】接触式による従来の高温液体金属の流速測定
装置の説明図である。
FIG. 25 is an explanatory view of a conventional high-temperature liquid metal flow velocity measuring device using a contact method.

【図26】磁場の速度効果及び渦電流の影響に関する説
明図である。
FIG. 26 is an explanatory diagram regarding a velocity effect of a magnetic field and an influence of an eddy current.

【図27】従来の磁気を用いた高温液体金属用非接触流
速測定装置(その1)の説明図である。
FIG. 27 is an explanatory view of a conventional non-contact flow velocity measuring device for high-temperature liquid metal using magnetism (part 1).

【図28】従来の磁気を用いた高温液体金属用非接触流
速測定装置(その2)の説明図である。
FIG. 28 is an explanatory view of a conventional non-contact flow velocity measuring device for high-temperature liquid metal using magnetism (part 2).

【図29】従来の磁気を用いた高温液体金属用非接触流
速測定装置(その3)の説明図である。
FIG. 29 is an explanatory view of a conventional noncontact flow velocity measuring device for high temperature liquid metal using magnetism (part 3).

【図30】従来の磁気を用いた高温液体金属用非接触流
速測定装置の測定原理説明図である。
FIG. 30 is a diagram illustrating the measurement principle of a conventional non-contact flow velocity measuring device for high-temperature liquid metal using magnetism.

【図31】従来の磁気を用いた高温液体金属用非接触流
速測定装置におけるリフトオフ検出方法の説明図であ
る。
FIG. 31 is an explanatory view of a lift-off detection method in a conventional non-contact flow velocity measuring device for high-temperature liquid metal using magnetism.

【図32】従来の磁気を用いた高温液体金属用非接触流
速測定装置のセンサヘッドの構成図である。
FIG. 32 is a configuration diagram of a sensor head of a conventional non-contact flow velocity measuring device for high-temperature liquid metal using magnetism.

【符号の説明】[Explanation of symbols]

1 センサヘッド 2 セラミックス製丸パイプ 3 セラミックス製丸棒 S1 ,S2 流速検出用検出巻線 S3 ,S4 傾き検出用検出巻線 S5 ,S6 リフトオフ検出用検出巻線 10 励磁回路 11 発振器 12 定電流アンプ 20 検出回路 21,41,51 ブリッジ回路 22,42,52 バンドパスフィルタ 23,43,53 ロックインアンプ 30 流速測定回路 40 傾き検出回路 50 リフトオフ測定回路 70 補正回路 71 A/D変換器 72 コンピュータ 73 D/A変換器DESCRIPTION OF SYMBOLS 1 Sensor head 2 Ceramic round pipe 3 Ceramic round bar S 1 , S 2 Flow rate detection detection winding S 3 , S 4 Slope detection detection winding S 5 , S 6 Lift-off detection detection winding 10 Excitation circuit 11 Oscillator 12 Constant current amplifier 20 Detection circuit 21, 41, 51 Bridge circuit 22, 42, 52 Band pass filter 23, 43, 53 Lock-in amplifier 30 Flow velocity measurement circuit 40 Inclination detection circuit 50 Lift-off measurement circuit 70 Correction circuit 71 A / D Converter 72 Computer 73 D / A converter

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 移動する導電性の測定対象物の表面に対
し垂直な磁場を励磁し、前記測定対象物の表面及びその
移動方向と平行な方向の磁場を1箇所以上の範囲で検出
し、該1箇所以上の範囲で検出した磁場信号に基づき前
記測定対象物の流速を算出する流速測定方法において、 前記流速を測定するための磁場の検出範囲と一致しない
1箇所以上の範囲で、前記測定対象物の移動方向と平行
な方向の磁場を検出し、該検出した磁場信号に基づき前
記測定対象物の表面の傾きに係る情報を求め、該情報を
もとに前記算出した測定対象物の流速を補正することを
特徴とする流速測定方法。
1. A magnetic field perpendicular to the surface of a moving conductive measuring object is excited, and a magnetic field in a direction parallel to the surface of the measuring object and a moving direction thereof is detected in one or more ranges. In the flow velocity measuring method for calculating the flow velocity of the object to be measured based on the magnetic field signals detected in the one or more ranges, the measurement may be performed in one or more ranges that do not match the detection range of the magnetic field for measuring the flow velocity. A magnetic field in a direction parallel to the moving direction of the object is detected, information on the inclination of the surface of the object is determined based on the detected magnetic field signal, and the calculated flow rate of the object based on the information is obtained. A flow velocity measuring method, wherein the flow rate is corrected.
【請求項2】 前記測定対象物の移動方向に平行で測定
対象物の表面に垂直な平面内で、前記励磁磁場が線対称
となる測定対象面に対して垂直な軸を選択し、 前記流速を算出するための磁場の検出範囲を、前記垂直
な軸上の点を中心とした測定対象物の移動方向に平行な
方向における所定長さの範囲とし、 前記流速を補正するための磁場の検出範囲を、前記平面
内で前記垂直な軸に対して励磁磁場が線対称となる第1
及び第2の各点を中心とした、測定対象物の移動方向に
平行な方向におけるそれぞれ等しい長さの範囲とし、か
つ前記垂直な軸から前記第1及び第2の各点までの距離
が、前記垂直な軸から前記流速を算出するための磁場の
検出範囲を2等分した各々の範囲の中心位置までの距離
よりもそれぞれ大きいことを特徴とする請求項1記載の
流速測定方法。
2. An axis which is perpendicular to a surface to be measured in which the exciting magnetic field is axisymmetric in a plane parallel to the moving direction of the object to be measured and perpendicular to the surface of the object to be measured, The magnetic field detection range for calculating is a range of a predetermined length in a direction parallel to the moving direction of the measurement object around the point on the vertical axis, and the detection of the magnetic field for correcting the flow velocity The range is defined as a first in which the exciting magnetic field is axisymmetric with respect to the vertical axis in the plane.
And the center of each of the second points, each having a range of equal length in a direction parallel to the moving direction of the measurement object, and the distance from the vertical axis to each of the first and second points is 2. The flow velocity measuring method according to claim 1, wherein the distance from the vertical axis to the center position of each of the bisected magnetic field detection ranges for calculating the flow velocity is larger than the distance.
【請求項3】 前記測定対象物の移動方向に平行で測定
対象物の表面に垂直な平面内で、前記励磁磁場が線対称
となる測定対象面に対して垂直な軸を選択し、 前記流速を算出するための磁場の検出範囲を、前記平面
内で前記垂直な軸に対して励磁磁場が線対称となる第1
及び第2の各点を中心とした、測定対象物の移動方向に
平行な方向におけるそれぞれ等しい長さの範囲とし、 前記流速を補正するための磁場の検出範囲を、前記垂直
な軸からの距離が前記第1及び第2の各点よりもそれぞ
れ遠方の、前記平面内で前記垂直な軸に対して励磁磁場
が線対称となる第3及び第4の各点を中心とし、かつ測
定対象物の移動方向に平行な方向におけるそれぞれ等し
い長さの範囲とすることを特徴とする請求項1記載の流
速測定方法。
3. An axis perpendicular to a surface to be measured in which the exciting magnetic field is line-symmetrical is selected in a plane parallel to a moving direction of the object to be measured and perpendicular to a surface of the object to be measured. Is set to the first detection range in which the excitation magnetic field is line-symmetric with respect to the vertical axis in the plane.
And the center of each of the second points, as a range of the same length in a direction parallel to the moving direction of the measurement object, the detection range of the magnetic field for correcting the flow velocity, the distance from the vertical axis Are centered on third and fourth points, respectively, in which the exciting magnetic field is line-symmetric with respect to the vertical axis in the plane, which are farther from the first and second points, respectively, and 2. The flow velocity measuring method according to claim 1, wherein the lengths are equal to each other in a direction parallel to the moving direction.
【請求項4】 前記測定対象物の移動方向に平行で測定
対象物の表面に垂直な平面内で、前記励磁磁場が線対称
となる測定対象面に対して垂直な軸を選択し、 前記流速を算出するための磁場の検出範囲を、前記平面
内で前記垂直な軸に対して励磁磁場が線対称となる第1
及び第2の各点を中心とした、測定対象物の移動方向に
平行な方向におけるそれぞれ等しい長さの範囲とし、 前記流速を補正するための磁場の検出範囲を、前記垂直
な軸上の点を中心とした測定対象物の移動方向に平行な
方向における所定長さの範囲とし、かつ前記垂直な軸か
ら前記流速を補正するための磁場の検出範囲を2等分し
た各々の範囲の中心位置までの距離が、前記垂直な軸か
ら前記第1及び第2の各点までの距離よりも、それぞれ
大きいことを特徴とする請求項1記載の流速測定方法。
4. An axis perpendicular to a surface to be measured in which the exciting magnetic field is axisymmetric in a plane parallel to a moving direction of the object to be measured and perpendicular to a surface of the object to be measured, and Is set to the first detection range in which the excitation magnetic field is line-symmetric with respect to the vertical axis in the plane.
And the center of each of the second points, ranges of equal length in a direction parallel to the moving direction of the measurement object, and a detection range of the magnetic field for correcting the flow velocity, a point on the vertical axis The center position of each range which is a range of a predetermined length in a direction parallel to the moving direction of the measurement object around the center, and bisects the magnetic field detection range for correcting the flow velocity from the vertical axis 2. The flow velocity measuring method according to claim 1, wherein a distance from the vertical axis to each of the first and second points is larger than a distance from the vertical axis to the first and second points.
【請求項5】 前記測定対象物の移動方向に平行で測定
対象物の表面に垂直な平面内で、前記励磁磁場が線対称
となる測定対象面に対して垂直な軸を選択し、 前記流速を算出するための磁場の検出範囲を、前記垂直
な軸上の点を中心とした測定対象物の移動方向に平行な
方向における所定長さの範囲とし、 前記流速を補正するための磁場の検出範囲を、前記垂直
な軸上の点を中心とした、前記流速を算出するための磁
場の検出範囲よりも、測定対象物の移動方向に平行な方
向の長さが、長い範囲とすることを特徴とする請求項1
記載の流速測定方法。
5. An axis perpendicular to a surface to be measured in which the exciting magnetic field is line-symmetrical is selected in a plane parallel to a moving direction of the object to be measured and perpendicular to a surface of the object to be measured. The magnetic field detection range for calculating is a range of a predetermined length in a direction parallel to the moving direction of the measurement object around the point on the vertical axis, and the detection of the magnetic field for correcting the flow velocity The range, centered on the point on the vertical axis, the detection range of the magnetic field for calculating the flow velocity, the length in the direction parallel to the moving direction of the measurement target, a range that is longer. Claim 1.
The flow velocity measurement method described.
【請求項6】 前記流速を算出するための磁場の検出範
囲及び流速を補正するための磁場の検出範囲のすべて
を、 前記測定対象面に対して垂直な軸と交差し、かつ測定対
象物の移動方向と平行な直線上に設けるようにしたこと
を特徴とする請求項1から5までのいずれかの請求項に
記載の流速測定方法。
6. A magnetic field detection range for calculating the flow velocity and a magnetic field detection range for correcting the flow velocity, all intersecting with an axis perpendicular to the surface to be measured, and The flow velocity measuring method according to any one of claims 1 to 5, wherein the flow velocity measuring method is provided on a straight line parallel to the moving direction.
【請求項7】 前記流速を算出するための磁場の検出範
囲を、前記励磁磁場の中心軸付近とし、 前記流速を補正するための磁場の検出範囲を、前記測定
対象物の流速に対する磁場変化量の最も小さくなる範囲
とするようにしたことを特徴とする請求項1から6まで
のいずれかの請求項に記載の流速測定方法。
7. A detection range of a magnetic field for calculating the flow velocity is set near a central axis of the exciting magnetic field, and a detection range of the magnetic field for correcting the flow velocity is a magnetic field change amount with respect to the flow velocity of the measurement object. The flow velocity measuring method according to any one of claims 1 to 6, wherein the range is set to be the smallest.
【請求項8】 移動する導電性の測定対象物の表面に対
し垂直な磁場を印加するように配置された励磁手段と、
前記測定対象物の表面及びその移動方向と平行な方向の
磁場を検出するように配置された1つ以上の磁場検出手
段と、該1つ以上の磁場検出手段が検出した磁場信号に
基づき前記測定対象物の流速を算出する測定手段とを有
する流速測定装置において、 前記磁場検出手段の検出位置と異なる位置で、前記測定
対象物の移動方向と平行な方向の磁場を検出するように
配置された1つ以上の副磁場検出手段と、 前記1つ以上の副磁場検出手段が検出した磁場信号に基
づき前記測定対象物の表面の傾きに係る情報を求め、該
情報をもとに前記測定手段が算出した測定対象物の流速
を補正する補正手段とを備えたことを特徴とする流速測
定装置。
8. Exciting means arranged to apply a magnetic field perpendicular to the surface of the moving conductive measurement object;
One or more magnetic field detecting means arranged to detect a magnetic field in a direction parallel to a surface of the object to be measured and a moving direction thereof, and the measurement is performed based on a magnetic field signal detected by the one or more magnetic field detecting means. A flow rate measuring device having a measuring means for calculating a flow velocity of the object, wherein the magnetic field detecting means is arranged to detect a magnetic field in a direction parallel to a moving direction of the measuring object at a position different from a detection position of the magnetic field detecting means. One or more sub-magnetic field detection means, and obtains information related to the inclination of the surface of the object to be measured based on the magnetic field signal detected by the one or more sub-magnetic field detection means, and based on the information, the measurement means A flow rate measuring device comprising: a correction unit configured to correct the calculated flow velocity of the measurement target.
【請求項9】 前記測定対象物の移動方向に平行で測定
対象物の表面に垂直な平面内で、前記励磁磁場が線対称
となる測定対象面に対して垂直な軸を選択し、 前記流速を算出するための磁場検出手段は、1つとして
前記垂直な軸上に配置し、かつ測定対象物の移動方向に
平行な方向における所定長さの範囲にわたる磁場を検出
するようにし、 前記流速を補正するための副磁場検出手段は、2つとし
て前記平面内で前記垂直な軸に対して励磁磁場が線対称
となる第1及び第2の各点上に配置し、さらに各副磁場
検出手段は測定対象物の移動方向に平行な方向における
それぞれ等しい長さの範囲にわたる磁場を検出し、かつ
前記垂直な軸から前記第1及び第2の各点までの距離
が、前記垂直な軸から前記流速を算出するための磁場の
検出範囲を2等分した各々の範囲の中心位置までの距離
よりもそれぞれ大きくなるようにしたことを特徴とする
請求項8記載の流速測定装置。
9. An axis perpendicular to a surface to be measured, in which the exciting magnetic field is line-symmetric, is selected in a plane parallel to the moving direction of the object to be measured and perpendicular to the surface of the object to be measured. The magnetic field detecting means for calculating is arranged on the vertical axis as one, and detects a magnetic field over a range of a predetermined length in a direction parallel to the moving direction of the measurement target, and the flow velocity The sub-magnetic field detecting means for correction is disposed on each of the first and second points at which the exciting magnetic field is line-symmetric with respect to the vertical axis in the plane, and Detects a magnetic field over a range of equal length in a direction parallel to the direction of movement of the measurement object, and the distance from the vertical axis to each of the first and second points is greater than the distance from the vertical axis to the first and second points. The detection range of the magnetic field for calculating the flow velocity is 2 Min were respectively than the distance to the center position of the range of flow rate measurement apparatus according to claim 8, characterized in that as each increase.
【請求項10】 前記測定対象物の移動方向に平行で測
定対象物の表面に垂直な平面内で、前記励磁磁場が線対
称となる測定対象面に対して垂直な軸を選択し、 前記流速を算出するための磁場検出手段は、2つとして
それぞれ前記平面内で前記垂直な軸に対して励磁磁場が
線対称となる第1及び第2の各点上に配置し、かつ測定
対象物の移動方向に平行な方向におけるそれぞれ等しい
長さの範囲にわたる磁場を検出するようにし、 前記流速を補正するための副磁場検出手段は、2つとし
て前記垂直な軸からの距離が前記第1及び第2の各点よ
りもそれぞれ遠方の、前記平面内で前記垂直な軸に対し
て励磁磁場が線対称となる第3及び第4の各点上に配置
し、かつ各副磁場検出手段は測定対象物の移動方向に平
行な方向におけるそれぞれ等しい長さの範囲にわたる磁
場を検出するようにしたことを特徴とする請求項8記載
の測定流速装置。
10. An axis perpendicular to a surface to be measured in which the exciting magnetic field is axisymmetric in a plane parallel to the moving direction of the object to be measured and perpendicular to the surface of the object to be measured, and Magnetic field detecting means for calculating the two are arranged on the first and second points, respectively, where the exciting magnetic field is line-symmetric with respect to the vertical axis in the plane, and A secondary magnetic field detecting means for detecting a magnetic field over a range of the same length in a direction parallel to the moving direction, wherein the sub-magnetic field detecting means for correcting the flow velocity has two distances from the vertical axis as the first and the second. The excitation magnetic field is located on each of the third and fourth points that are symmetrical about the axis perpendicular to the vertical axis in the plane, which are farther than the respective points 2 and 2, and each sub-magnetic field detection means is a measuring object. Equal in the direction parallel to the direction of movement of the object Measuring the flow rate apparatus according to claim 8, characterized in that to detect the magnetic field over the range.
【請求項11】 前記測定対象物の移動方向に平行で測
定対象物の表面に垂直な平面内で、前記励磁磁場が線対
称となる測定対象面に対して垂直な軸を選択し、 前記流速を算出するための磁場検出手段は、2つとして
それぞれ前記平面内で前記垂直な軸に対して励磁磁場が
線対称となる第1及び第2の各点上に配置し、かつ測定
対象物の移動方向に平行な方向におけるそれぞれ等しい
長さの範囲にわたる磁場を検出するようにし、 前記流速を補正するための副磁場検出手段は、1つとし
て前記垂直な軸上に配置し、かつ測定対象物の移動方向
に平行な方向における所定長さの範囲にわたる磁場を検
出するようにし、さらに前記垂直な軸から前記流速を補
正するための磁場の検出範囲を2等分した各々の範囲の
中心位置までの距離が、前記垂直な軸から前記第1及び
第2の各点までの距離よりも、それぞれ大きくなるよう
にしたことを特徴とする請求項8記載の流速測定装置。
11. An axis perpendicular to a surface to be measured in which the exciting magnetic field is axisymmetric in a plane parallel to the moving direction of the object to be measured and perpendicular to the surface of the object to be measured, and Magnetic field detecting means for calculating the two are arranged on the first and second points, respectively, where the exciting magnetic field is line-symmetric with respect to the vertical axis in the plane, and In order to detect a magnetic field over a range of equal length in a direction parallel to the moving direction, a sub-magnetic field detecting means for correcting the flow velocity is disposed on the vertical axis as one, and To detect a magnetic field over a range of a predetermined length in a direction parallel to the direction of movement, and further from the vertical axis to the center position of each range obtained by bisecting the magnetic field detection range for correcting the flow velocity. The distance of the vertical From said axis than the first and the distance to the second points of the flow rate measuring apparatus according to claim 8, characterized in that as each increase.
【請求項12】 前記測定対象物の移動方向に平行で測
定対象物の表面に垂直な平面内で、前記励磁磁場が線対
称となる測定対象面に対して垂直な軸を選択し、 前記流速を算出するための磁場検出手段は、1つとして
前記垂直な軸上に配置し、かつ測定対象物の移動方向に
平行な方向における所定長さの範囲にわたる磁場を検出
するようにし、 前記流速を補正するための副磁場検出手段は、1つとし
て前記垂直な軸上に配置し、かつ前記流速を算出するた
めの磁場検出手段の検出範囲よりも、測定対象物の移動
方向に平行な方向の長さが、長い範囲にわたる磁場を検
出するようにしたことを特徴とする請求項8記載の流速
測定装置。
12. An axis perpendicular to a surface to be measured in which the exciting magnetic field is axisymmetric in a plane parallel to the moving direction of the object to be measured and perpendicular to the surface of the object to be measured, and The magnetic field detecting means for calculating is arranged on the vertical axis as one, and detects a magnetic field over a range of a predetermined length in a direction parallel to the moving direction of the measurement target, and the flow velocity The auxiliary magnetic field detecting means for correction is arranged on the vertical axis as one, and is more than the detection range of the magnetic field detecting means for calculating the flow velocity, in a direction parallel to the moving direction of the measurement object. 9. The flow velocity measuring device according to claim 8, wherein a magnetic field having a long range is detected.
【請求項13】 前記磁場検出手段及び副磁場検出手段
のすべてを、前記測定対象面に対して垂直な軸と交差
し、かつ測定対象物の移動方向と平行な直線上に配置す
るようにしたことを特徴とする請求項8から12までの
いずれかの請求項に記載の流速測定装置。
13. All of the magnetic field detecting means and the sub magnetic field detecting means are arranged on a straight line which intersects an axis perpendicular to the surface to be measured and is parallel to a moving direction of the object to be measured. The flow velocity measuring device according to any one of claims 8 to 12, characterized in that:
【請求項14】 前記磁場検出手段の検出範囲を、前記
励磁磁場の中心軸付近とし、 前記副磁場検出手段の検出範囲を、前記測定対象物の流
速に対する磁場変化量の最も小さくなる範囲とするよう
にしたことを特徴とする請求項8から13までのいずれ
かの請求項に記載の流速測定装置。
14. The detection range of the magnetic field detection means is set to be near the center axis of the excitation magnetic field, and the detection range of the sub-magnetic field detection means is set to a range in which the amount of change in the magnetic field with respect to the flow velocity of the object to be measured is minimized. The flow velocity measuring device according to any one of claims 8 to 13, wherein the flow velocity measuring device is configured as described above.
JP01441498A 1998-01-27 1998-01-27 Flow velocity measuring method and device Expired - Fee Related JP3575264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01441498A JP3575264B2 (en) 1998-01-27 1998-01-27 Flow velocity measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01441498A JP3575264B2 (en) 1998-01-27 1998-01-27 Flow velocity measuring method and device

Publications (2)

Publication Number Publication Date
JPH11211741A true JPH11211741A (en) 1999-08-06
JP3575264B2 JP3575264B2 (en) 2004-10-13

Family

ID=11860381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01441498A Expired - Fee Related JP3575264B2 (en) 1998-01-27 1998-01-27 Flow velocity measuring method and device

Country Status (1)

Country Link
JP (1) JP3575264B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211687A (en) * 1999-11-30 2001-08-03 Texas Instr Inc <Ti> Circuit and method for determining speed of voice coil
KR100445583B1 (en) * 2001-08-23 2004-08-25 재단법인 포항산업과학연구원 Non-contact-type apparatus for measuring the velocity of a moving molten metal, and measuring method therefor
JP2006078352A (en) * 2004-09-10 2006-03-23 Nippon Steel Corp Flowrate measurement method and flowrate measuring apparatus for molten metal
JP2018114548A (en) * 2017-01-20 2018-07-26 新日鐵住金株式会社 Method and apparatus for measuring molten-steel flow rate in immersion nozzle, continuous casting tundish, and method for continuously casting bilayer cast piece

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211687A (en) * 1999-11-30 2001-08-03 Texas Instr Inc <Ti> Circuit and method for determining speed of voice coil
KR100445583B1 (en) * 2001-08-23 2004-08-25 재단법인 포항산업과학연구원 Non-contact-type apparatus for measuring the velocity of a moving molten metal, and measuring method therefor
JP2006078352A (en) * 2004-09-10 2006-03-23 Nippon Steel Corp Flowrate measurement method and flowrate measuring apparatus for molten metal
JP4546791B2 (en) * 2004-09-10 2010-09-15 新日本製鐵株式会社 Molten metal flow rate measuring device
JP2018114548A (en) * 2017-01-20 2018-07-26 新日鐵住金株式会社 Method and apparatus for measuring molten-steel flow rate in immersion nozzle, continuous casting tundish, and method for continuously casting bilayer cast piece

Also Published As

Publication number Publication date
JP3575264B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
JPS6057217A (en) Vortex type mold molten metal level meter
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
RU2194952C1 (en) Gear measuring level of molten metal in electromagnetic process of continuous casting and method measuring level of molten metal
JP4736811B2 (en) Method for determining leg interval of complex magnetic permeability measuring device of magnetic material
JP3575264B2 (en) Flow velocity measuring method and device
US11326919B2 (en) Coriolis mass flow meter having a central vibration sensor and method for determining the viscosity of the medium using Coriolis mass flow meter
US6236198B1 (en) Method and device for non-contact measurement of electrically conductive material
JP4192708B2 (en) Magnetic sensor
JP3307170B2 (en) Flow velocity measuring method and its measuring device, continuous casting method and its device
JPH10104038A (en) Method and apparatus for measurement of flow velocity
JPH08211085A (en) Flow velocity measuring device
JP3546288B2 (en) Flow velocity measuring method and device
JPH08211084A (en) Flow velocity measuring device
JPH08211086A (en) Method and device for measuring flow velocity
JP2005315732A (en) Instrument for measuring displacement of ferromagnetic body
JPH08327647A (en) Current velocity measuring apparatus
JP5652093B2 (en) Moving speed detector, continuous casting equipment
JP3233804B2 (en) Eddy current anemometer
JPH08327649A (en) Method and apparatus for measuring current velocity
JPH09101320A (en) Flow velocity measuring method and measuring apparatus therefor
JP2000162227A (en) Method and apparatus for measurement of flow velocity
JP2000146994A (en) Method and apparatus for measurement of flow velocity
JPH09101321A (en) Flow velocity measuring method and measuring apparatus therefor
JPS58127116A (en) Detecting device for angle of inclination
JPH08262051A (en) Method and apparatus for measuring flow velocity

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees