JPH09101321A - Flow velocity measuring method and measuring apparatus therefor - Google Patents

Flow velocity measuring method and measuring apparatus therefor

Info

Publication number
JPH09101321A
JPH09101321A JP25768595A JP25768595A JPH09101321A JP H09101321 A JPH09101321 A JP H09101321A JP 25768595 A JP25768595 A JP 25768595A JP 25768595 A JP25768595 A JP 25768595A JP H09101321 A JPH09101321 A JP H09101321A
Authority
JP
Japan
Prior art keywords
magnetic field
flow velocity
detection
measurement object
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25768595A
Other languages
Japanese (ja)
Inventor
Kaneyuki Oota
金幸 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25768595A priority Critical patent/JPH09101321A/en
Publication of JPH09101321A publication Critical patent/JPH09101321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow velocity measuring method and a measuring apparatus therefor which enables highly accurate measurement of the flow velocity by eliminating effect of a metal body in the perimeter of a magnetic sensor head. SOLUTION: An AC magnetic field is excited to a moving conductive object to be measured to detect magnetic field components thereof and the from velocity of the object to be measured is measured flow a magnetic field signal detected. In addition, a magnetic sensor head 100 is provided with exciting windings 102a and 102b and detection windings 103, 104/105 and 106 for detecting magnetic fields arranged vertically at different positions, a subtraction circuit 115 to determine a difference signal of the pair of detection windings 103 and 104, a subtraction circuit 116 to determine a difference signal of a pair of the detection windings 105 and 106, an addition circuit 117 to add output of the subtraction circuit 115 to output of the subtraction circuit 116 and a detection circuit 120 to determine the flow velocity of the object to be measured from an output of the addition circuit 117.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は連続鋳造プロセスにおい
て溶鋼を鋳込む鋳型内溶鋼流の表面の流速を測定する流
速測定方法及びその測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow velocity measuring method and a measuring apparatus for measuring the flow velocity on the surface of a molten steel flow in a mold into which molten steel is cast in a continuous casting process.

【0002】[0002]

【従来の技術】連続鋳造ラインにおいては、図9に示さ
れるように溶鋼3はタンディッシュ1よりノズル2を通
して銅製の鋳型4中に注ぎ込まれて鋳造される。鋳型4
中に注ぎ込まれた溶鋼3は、鋳型壁面に当たり上昇流7
と下降流8とに分かれる。上昇流は表面で流れ9a,9
bを作るが、ここで表面の溶鋼流動の左右のバランスが
崩れると、図示のように渦11が発生し溶鋼表面上に撒
いたパウダー5を巻き込んでしまう。また、表面の溶鋼
流動が過大になると、図示のように溶鋼表面のパウダー
の一部10を削り込んでしまう。
2. Description of the Related Art In a continuous casting line, molten steel 3 is poured from a tundish 1 through a nozzle 2 into a copper mold 4 for casting as shown in FIG. Mold 4
The molten steel 3 poured into the mold hits the wall surface of the mold and rises 7
And downflow 8. Upflow flows on the surface 9a, 9
Although b is created, if the left-right balance of the molten steel flow on the surface is lost here, a vortex 11 is generated as shown in the figure, and the powder 5 sprinkled on the molten steel surface is entrained. Further, when the molten steel flow on the surface becomes excessive, a part 10 of the powder on the molten steel surface is scraped as shown in the figure.

【0003】何れの場合においても、鋳片中に介在物が
捕捉されることになり、製品欠陥の原因となる。このよ
うな理由から鋳型内溶鋼流動を安定化させることは極め
て重要な課題となっており、特に、溶鋼表面近傍の流速
を連続的に計測することが強く求められていた。
In any case, inclusions are trapped in the slab, causing product defects. For these reasons, stabilizing the molten steel flow in the mold has become an extremely important issue, and in particular, continuous measurement of the flow velocity near the surface of the molten steel has been strongly demanded.

【0004】従来の溶鋼表面近傍の流速の計測は、例え
ば特開平5−60774号公報に記載されているような
接触型の計測が主であった。これは、図10に示される
ようにファインセラミック製の棒12を溶鋼14に浸漬
して、その棒が溶鋼流動により受ける圧力Fを、受圧セ
ンサ13により検出して、流速を測定するものである。
しかし、この方法では、高温の溶鋼14にセラミックス
製の棒12を浸漬させるため、長時間の連続測定が不可
能なものであった。
The conventional measurement of the flow velocity near the surface of molten steel has mainly been a contact type measurement as described in, for example, JP-A-5-60774. In this, as shown in FIG. 10, a fine ceramic rod 12 is immersed in molten steel 14 and the pressure F received by the molten steel flow is detected by a pressure sensor 13 to measure the flow velocity. .
However, according to this method, the ceramic rod 12 is immersed in the high temperature molten steel 14, so that continuous measurement for a long time is impossible.

【0005】これに対し、磁気を用いて非接触で流体の
速度を計測できることも知られている。例えば図11に
示されるような磁気センサヘッド200を用いて測定対
象物の流速を測定する方法がある。同図において、磁気
センサヘッド200は左右対称形のコ字型の磁心202
に対し、2つの脚の間の対象面と平行になっている中心
部分に励磁巻線203bを巻き、両端の対象面に垂直に
なっている脚の部分に検出巻線203a,203cをそ
れぞれを同じ向きに巻いて構成されている。そして、コ
字型の磁心202を移動する導電性の測定対象物201
の上に、脚の開いた面が対象面に向き、且つ2つの脚が
対象面の移動方向に対し平行に並ぶように配置する。な
お、流速の方向は予め分かっている場合が多いので、こ
の流速方向に平行に、コ字型の磁心202の2つの脚を
配置するようになっている。
On the other hand, it is also known that the velocity of a fluid can be measured in a non-contact manner using magnetism. For example, there is a method of measuring the flow velocity of an object to be measured using a magnetic sensor head 200 as shown in FIG. In the figure, a magnetic sensor head 200 is a symmetrical U-shaped magnetic core 202.
On the other hand, the excitation winding 203b is wound around the center portion between the two legs which is parallel to the target surface, and the detection windings 203a and 203c are respectively attached to the leg portions which are perpendicular to the target surfaces at both ends. It is constructed by winding in the same direction. Then, the conductive measurement object 201 moving in the U-shaped magnetic core 202
Is placed on the top of the two so that the open surface of the leg faces the target surface and the two legs are aligned in parallel to the moving direction of the target surface. Since the direction of the flow velocity is often known in advance, the two legs of the U-shaped magnetic core 202 are arranged in parallel with the direction of the flow velocity.

【0006】ここで、中心の励磁巻線203bに交流電
流を供給し、導体面に垂直に磁場を励磁する。この時、
導体201が停止していれば、コ字型の磁心202が左
右対称の形状をしているため、励磁磁場は左右の検出巻
線203a,203の位置では、大きさは等しく向きは
逆となり、各検出巻線203a,203cの出力の和を
とると0となる。また、導体が動くと、その流速に対応
して導体中に発生する渦電流により磁場が歪み、コ字型
の磁心202両端の各検出巻線203a,203cの位
置での磁束の垂直成分に差が出て、各検出巻線203
a,203cの和信号が変化する。この変化量は対象の
流速に対応しており、この変化量から、対象の流速を測
定することができる。
Here, an alternating current is supplied to the central excitation winding 203b to excite a magnetic field perpendicular to the conductor surface. At this time,
When the conductor 201 is stopped, the U-shaped magnetic core 202 has a symmetrical shape, so that the exciting magnetic fields are equal in magnitude and opposite in direction at the positions of the left and right detection windings 203a and 203, The sum of the outputs of the detection windings 203a and 203c is 0. Also, when the conductor moves, the magnetic field is distorted by the eddy current generated in the conductor corresponding to the flow velocity, and the vertical component of the magnetic flux at the positions of the detection windings 203a and 203c at both ends of the U-shaped magnetic core 202 becomes different. Each detection winding 203
The sum signal of a and 203c changes. This change amount corresponds to the flow velocity of the target, and the flow velocity of the target can be measured from this change amount.

【0007】[0007]

【発明が解決しようとする課題】ところで、この種の流
速測定においては、磁気センサヘッド200を鋳型中に
配置して測定する。図12に示されるように、磁気セン
サヘッド200を鋳型中に配置すると、その近傍には銅
製の鋳型4等の金属体が存在する。このため、その金属
体の影響により磁場がゆがみ、磁気センサヘッド200
の出力にその影響がでる。なお、図12は銅製の鋳型の
短辺方向からみた断面図である。
By the way, in this type of flow velocity measurement, the magnetic sensor head 200 is placed in a mold for measurement. As shown in FIG. 12, when the magnetic sensor head 200 is placed in the mold, a metal body such as the copper mold 4 exists in the vicinity thereof. Therefore, the magnetic field is distorted due to the influence of the metal body, and the magnetic sensor head 200
Output is affected. It should be noted that FIG. 12 is a cross-sectional view of the copper mold viewed from the short side direction.

【0008】図13(a)に示されるように、磁気セン
サヘッド200と金属体210とが平行に配置された場
合には、検出巻線203a,203cに対して金属体2
10が対称となっており、検出巻線203a,203c
の出力は一致しその差分に基づいて信号処理を施した場
合には、金属体210の影響を受けない。ところが、図
13(b)に示されるように、磁気センサヘッド200
が傾くなどして、磁気センサヘッド200と金属体21
0とが平行でなくなると、検出巻線203a,203c
に対して金属体210は非対称となり、検出巻線203
a,203cの出力に差が生じ、磁気センサヘッド20
0の零点がずれてしまい正確な測定ができなくなる。
As shown in FIG. 13A, when the magnetic sensor head 200 and the metal body 210 are arranged in parallel, the metal body 2 is attached to the detection windings 203a and 203c.
10 is symmetrical, and the detection windings 203a and 203c
When the outputs of the two coincide with each other and the signal processing is performed based on the difference, the influence of the metal body 210 is not exerted. However, as shown in FIG. 13B, the magnetic sensor head 200
When the magnetic sensor head 200 and the metal body 21
When 0 is no longer parallel, the detection windings 203a and 203c
The metal body 210 is asymmetrical with respect to the detection winding 203.
a and 203c are different in output, and the magnetic sensor head 20
The zero point of 0 shifts and accurate measurement cannot be performed.

【0009】本発明は、このような問題点を解決するた
めになされたものであり、磁気センサヘッドの周辺の金
属体の影響を排除して高精度に流速を測定することを可
能にした流速測定方法及びその測定装置を提供すること
を目的とする。
The present invention has been made in order to solve such a problem, and eliminates the influence of the metal body around the magnetic sensor head and makes it possible to measure the flow velocity with high accuracy. It is an object to provide a measuring method and a measuring device therefor.

【0010】[0010]

【課題を解決するための手段】本発明の一つの態様に係
る流速測定方法は、移動する導電性の測定対象物に対し
て交流磁場を励磁し、その磁場成分を検出して、その検
出した磁場信号に基づいて、測定対象物の流速を測定す
る方法において、対象面に対して垂直方向の異なった2
カ所の磁場成分を検出し、その垂直方向の2つの磁場信
号の差分信号をそれぞれ求め、その差信号に基づいて測
定対象物の流速を求める。本発明の他の態様に係る流速
測定方法は、移動する導電性の測定対象物に対して交流
磁場を励磁し、その磁場成分を検出して、その検出した
磁場信号に基づいて、測定対象物の流速を測定する方法
において、対象面上の2カ所において、対象面に対して
垂直方向の異なった2カ所の磁場成分をそれぞれ検出
し、その垂直方向の2つの磁場信号の差分信号をそれぞ
れ求め、その差信号を加算することにより測定対象物の
流速を求める。
A flow velocity measuring method according to one aspect of the present invention detects a magnetic field component by exciting an alternating magnetic field with respect to a moving conductive object to be measured. In the method of measuring the flow velocity of a measuring object based on a magnetic field signal, it is possible to measure the flow velocity of the object different in the direction perpendicular to the object surface
The magnetic field component at the location is detected, the differential signal between the two magnetic field signals in the vertical direction is determined, and the flow velocity of the measurement target is determined based on the differential signal. A flow velocity measuring method according to another aspect of the present invention is to excite an alternating magnetic field on a moving conductive measurement object, detect a magnetic field component thereof, and based on the detected magnetic field signal, the measurement object. In the method of measuring the flow velocity of, the magnetic field components at two different locations in the vertical direction with respect to the target surface are respectively detected at two locations on the target surface, and differential signals of the two magnetic field signals in the vertical direction are respectively obtained. , The difference signal is added to obtain the flow velocity of the measurement object.

【0011】本発明の他の態様に係る流速測定装置は、
移動する導電性の測定対象物に対して交流磁場を励磁
し、その磁場成分を検出して、その検出した磁場信号に
基づいて、測定対象物の流速を測定する装置において、
励磁装置、垂直方向に異なった位置の磁場を検出する第
1の1対の検出装置及び第1の1対の検出装置とは異な
った位置に配置され、垂直方向に異なった位置の磁場を
検出する第2の1対の検出装置を備えた磁気センサヘッ
ドと、第1の1対の検出装置の差信号を求める第1の減
算回路と、第2の1対の検出装置の差信号を求める第2
の減算回路と、第1の減算回路の出力と第2の減算回路
の出力とを加算する加算回路と、加算回路の出力に基づ
いて測定対象物の流速を求める検出回路とを有する。
A flow velocity measuring device according to another aspect of the present invention is
An alternating magnetic field is excited with respect to a moving conductive measurement object, the magnetic field component is detected, and based on the detected magnetic field signal, a device for measuring the flow velocity of the measurement object,
Exciting device, first pair of detectors for detecting magnetic fields at different positions in the vertical direction, and magnetic field at different positions in the vertical direction, arranged at positions different from the first pair of detectors And a magnetic sensor head having a second pair of detection devices, a first subtraction circuit that obtains a difference signal between the first pair of detection devices, and a difference signal between a second pair of detection devices. Second
Of the first subtraction circuit, an addition circuit for adding the output of the first subtraction circuit and the output of the second subtraction circuit, and a detection circuit for obtaining the flow velocity of the measurement object based on the output of the addition circuit.

【0012】例えば鋳型中における測定においては、影
響が大きいのは銅製の鋳型であり、これは対象面の垂直
方向には対称である。そこで、上記のように、磁気セン
サヘッドが銅製の鋳型に対して傾いても、上下の検出点
に対して銅製の鋳型は対称となり、検出時において上下
の検出装置の差分をとればその影響はなくなる。
[0012] For example, in the measurement in the mold, it is a copper mold that has a large influence, and this is symmetric in the direction perpendicular to the target surface. Therefore, as described above, even if the magnetic sensor head is tilted with respect to the copper mold, the copper mold is symmetrical with respect to the upper and lower detection points, and if the difference between the upper and lower detection devices is taken at the time of detection, the effect is Disappear.

【0013】[0013]

【発明の実施の形態】次に、本発明の測定原理を、基本
構成、流速検出原理、及び周囲金属体の影響の項に分け
て説明する。 (a)基本構成 本発明において、磁気センサヘッド100は図2又は図
3の構成をとっている。図2においては、磁気センサヘ
ッド100は左右対称形のコ字型のセラミックスボビン
101に対し、両端の対象面に垂直になっている脚の部
分に検出巻線103,105をそれぞれを同じ向きに巻
き、更に、これらの検出巻線103,105の上部に検
出巻線104,106を巻き、その上に励磁巻線102
a,102bを巻いて構成されている。また、図2にお
いては、励磁巻線102a,102bを検出巻線104
と103との間及び検出巻線106と105との間にそ
れぞれ巻いている点が異なるだけであり、検出巻線の構
成は図1と同じである。本発明においては、検出巻線1
03と104との差分、検出巻線105と106との差
分を求める点に特徴がある。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the measurement principle of the present invention will be described in terms of the basic configuration, the flow velocity detection principle, and the influence of the surrounding metal body. (A) Basic Configuration In the present invention, the magnetic sensor head 100 has the configuration shown in FIG. 2 or 3. In FIG. 2, the magnetic sensor head 100 has a U-shaped ceramic bobbin 101 having a symmetrical shape, and the detection windings 103 and 105 are arranged in the same direction on the leg portions which are perpendicular to the target surface at both ends. Further, the detection windings 104 and 106 are wound on the detection windings 103 and 105, and the excitation winding 102 is wound on the detection windings 104 and 106.
a and 102b are wound. Further, in FIG. 2, the excitation windings 102a and 102b are connected to the detection winding 104.
1 and 103 and between the detection windings 106 and 105, respectively, and the structure of the detection winding is the same as that in FIG. In the present invention, the detection winding 1
It is characterized in that the difference between 03 and 104 and the difference between the detection windings 105 and 106 are obtained.

【0014】本発明においては、励磁巻線102a,1
02bに交流電流を供給して対称な垂直磁場を生成し、
そして、図4に示されるように均等な磁場中で導体15
が動くと、その導体中にE=v×Bなる速度起電力が生
じ、この速度起電力により、導体中に渦電流Jvが誘起
され、導体15上に誘導磁場Bvが発生して、元の磁場
は導体の速度方向に引きずられるようにBからB′へと
歪むという、磁場が導体の運動により歪む効果(以下、
磁場の速度効果という)を利用したものであり、この歪
みの程度は導体の速度に対応して変化するので、歪み量
を測ることにより対象導体の速度を計測することができ
る。即ち、本発明においては、この誘導磁場を検出巻線
103〜106により検出し、位相検波器等により励磁
磁場と同じ周波数成分の信号を取り出して流速を求め
る。その際、検出巻線は図2又は図3に示されるように
上下左右に4個施されており、左右2対それぞれの上下
の差分を求めて(103−104,105−106)、
周囲の金属体の影響をなくし、更に、左右の検出巻線の
和を求めることにより流速を検出する。
In the present invention, the exciting windings 102a, 1a
An alternating current is supplied to 02b to generate a symmetric vertical magnetic field,
Then, as shown in FIG. 4, the conductor 15 is subjected to a uniform magnetic field.
When E moves, a velocity electromotive force of E = v × B is generated in the conductor, and this velocity electromotive force induces an eddy current Jv in the conductor, and an induced magnetic field Bv is generated on the conductor 15. The magnetic field is distorted from B to B ′ so that it is dragged in the velocity direction of the conductor.
This is called the velocity effect of the magnetic field), and the degree of this strain changes according to the velocity of the conductor. Therefore, the velocity of the target conductor can be measured by measuring the amount of strain. That is, in the present invention, this induction magnetic field is detected by the detection windings 103 to 106, and a signal having the same frequency component as the exciting magnetic field is extracted by the phase detector or the like to obtain the flow velocity. At that time, as shown in FIG. 2 or FIG. 3, four detection windings are provided on the upper, lower, left and right sides, and the difference between the upper and lower sides of each of the two pairs of right and left is obtained (103-104, 105-106),
The flow velocity is detected by eliminating the influence of the surrounding metal body and obtaining the sum of the left and right detection windings.

【0015】(b)流速検出原理 誘導磁場はBvは、jv=σv×Bで表される誘導電流
により派生しており、この誘導電流からの距離、即ち対
象面からの距離が大きくなると、図5に示されるように
誘導磁場は小さくなる。従って、上下の検出巻線の差分
をとると、速度に対する起電力は測定対象物に近い方の
検出巻線の方が大きくなり、差をとっても速度に対する
信号は残る。また、左右では励磁磁場は逆向きであり、
速度に対する磁場は同じ向きなので、左右の和を取れば
励磁磁場の成分はなくなり、速度に対する信号のみを精
度よく検出することができる。
(B) Principle of Flow Velocity Detection The induced magnetic field Bv is derived from the induced current represented by jv = σv × B. When the distance from this induced current, that is, the distance from the target surface becomes large, As shown in 5, the induced magnetic field becomes small. Therefore, when the difference between the upper and lower detection windings is taken, the electromotive force with respect to the speed becomes larger in the detection winding closer to the object to be measured, and even if the difference is taken, the signal with respect to the speed remains. In addition, the excitation magnetic field is opposite in the left and right,
Since the magnetic fields with respect to the velocity are in the same direction, if the sum of the left and right is taken, the component of the exciting magnetic field disappears and only the signal with respect to the velocity can be accurately detected.

【0016】(c)周囲金属体の影響 磁気センサヘッド100が傾いて左右のいずれか一方の
検出巻線が金属体に近くなっても、上下の検出巻線の差
を求めると、金属体に近接した効果は上下の検出巻線で
等しくなるので、その影響は無くなる。図6はその時の
状態を示した図であり、同図(a)は横から見た状態の
図であり、同図(b)は上から見た状態の図である。左
側の検出巻線103,104と右側の検出巻線105,
106とは金属体210に対して異なった距離となって
も、検出巻線103,104の差分をとることにより距
離l1(=l2)に対する影響が排除され、また、検出
巻線105,106の差分をとることにより距離l3
(=l4)に対する影響が排除される。即ち、検出巻線
103,104の差分及び検出巻線105,106の差
分はそれぞれ金属体からの距離の因子を排除した情報と
なっている。
(C) Influence of surrounding metal body Even if the magnetic sensor head 100 is tilted so that either one of the detection windings on the left and right becomes closer to the metal body, if the difference between the upper and lower detection windings is obtained, the metal body is detected. Since the effect of proximity is equal in the upper and lower detection windings, the effect is eliminated. FIG. 6 is a diagram showing the state at that time, FIG. 6A is a diagram as seen from the side, and FIG. 6B is a diagram as seen from above. Detection windings 103, 104 on the left side and detection windings 105 on the right side,
Even if the distance is different from the metal body 210 with respect to 106, the influence on the distance l1 (= 12) is eliminated by taking the difference between the detection windings 103 and 104, and the detection windings 105 and 106 have different distances. By taking the difference, the distance l3
The effect on (= 14) is eliminated. That is, the difference between the detection windings 103 and 104 and the difference between the detection windings 105 and 106 are information excluding the factor of the distance from the metal body.

【0017】本発明の測定原理が明らかになったところ
で、次に、本発明の実施の形態の一例を説明する。図1
は本発明の実施の形態の一例に係る流速測定装置の構成
を示すブロック図である。この流速測定装置は、磁気セ
ンサヘッド100、励磁回路110、減算器115,1
16、加算器117及び検出回路120から構成され
る。励磁回路110は、発振器111及び定電流アンプ
112から構成されており、励磁巻線102a,102
bに励磁電流を供給し、測定対象物に磁場を励磁する。
ここでは、発振器111により1〜100Hzの正弦波
を発生させて、定電流アンプ112を介して励磁巻線1
02a,102bに励磁電流を供給するようになってい
る。
Now that the measurement principle of the present invention has been clarified, an example of the embodiment of the present invention will be described. FIG.
FIG. 1 is a block diagram showing a configuration of a flow velocity measuring device according to an example of an embodiment of the present invention. This flow velocity measuring device includes a magnetic sensor head 100, an exciting circuit 110, subtractors 115, 1
16, an adder 117, and a detection circuit 120. The excitation circuit 110 is composed of an oscillator 111 and a constant current amplifier 112, and has excitation windings 102a and 102.
An exciting current is supplied to b to excite the magnetic field on the object to be measured.
Here, a sine wave of 1 to 100 Hz is generated by the oscillator 111, and the excitation winding 1 is passed through the constant current amplifier 112.
An exciting current is supplied to 02a and 102b.

【0018】ここで励磁周波数としては、あまり高すぎ
ると(1kHz程度以上)測定対象物に生じる渦電流が
大きくなり、流速計としてよりも渦流距離計としての性
質が強くなり、対象表面の波立ちによるノイズが強くな
る。また、周波数があまり低すぎると(1Hz程度以
下)、検出巻線103〜106に生じる起電力が弱くな
り検出感度が落ちる。従って、励磁周波数としてはここ
では14Hzとした。
Here, if the excitation frequency is too high (about 1 kHz or more), the eddy current generated in the object to be measured becomes large, and the property of the eddy current rangefinder becomes stronger than that of the anemometer, and the undulation of the object surface is caused. The noise becomes stronger. Further, if the frequency is too low (about 1 Hz or less), the electromotive force generated in the detection windings 103 to 106 becomes weak and the detection sensitivity is lowered. Therefore, the excitation frequency is set to 14 Hz here.

【0019】検出巻線103の出力及び検出巻線104
の出力は減算器115においてその差分が求められ、ま
た、検出巻線105の出力及び検出巻線106の出力も
減算器116においてその差分が求められ、そして、左
右の検出巻線のそれぞれの差分は加算器117において
加算され、その加算結果は検出回路120に入力する。
検出回路120において、入力信号は励磁周波数を中心
周波数に持つバンドパスフィルタ121を通して不要な
ノイズ信号が除去され、位相検波器122によって励磁
電流と−90度ずれた位相の成分が検波される。この検
波後の信号の大きさが、流速に対応した磁場歪み信号と
なる。
Output of detection winding 103 and detection winding 104
Of the output of the detection winding 105, the difference between the output of the detection winding 105 and the output of the detection winding 106 is calculated in the subtractor 116, and the difference between the left and right detection windings is obtained. Are added in the adder 117, and the addition result is input to the detection circuit 120.
In the detection circuit 120, an unnecessary noise signal is removed from the input signal through a bandpass filter 121 having an excitation frequency as a center frequency, and a phase detector 122 detects a component having a phase shifted by −90 degrees from the excitation current. The magnitude of the signal after this detection becomes a magnetic field distortion signal corresponding to the flow velocity.

【0020】図7は低融点合金の流速測定結果を示す特
性図である。出力信号(速度信号)は、同図(a)の実
際の流速に対して、同図(b)に示されるように、高精
度に検出されていることが分かる。なお、同図(b)の
特性は磁気センサヘッド100の周囲に金属体がない状
態の特性である。
FIG. 7 is a characteristic diagram showing the results of measuring the flow velocity of the low melting point alloy. It can be seen that the output signal (velocity signal) is detected with high accuracy as shown in (b) of the figure with respect to the actual flow velocity of (a) of the figure. It should be noted that the characteristic shown in FIG. 7B is the characteristic in the state where no metal body is present around the magnetic sensor head 100.

【0021】図8(a)は磁気センサヘッド100を銅
板130に対して傾斜角θ傾けたときの状態を示してお
り、同図(b)はそのときの傾斜角θと出力信号の変化
との関係を示した特性図である。なお、この特性図にお
いて、従来型と本方式とでは流速に対する感度が異なる
ため、それぞれ出力電圧ではなく、低融点合金に対する
流速に換算した値を示している。同図(b)から明らか
なように、本方式によれば傾斜角θが大きく変化しても
出力信号の変化が少ないことが分かる。
FIG. 8A shows a state in which the magnetic sensor head 100 is inclined with respect to the copper plate 130 by an inclination angle θ, and FIG. 8B shows a change in the inclination angle θ and the output signal at that time. It is a characteristic view showing the relationship of. In this characteristic diagram, since the conventional type and the present system have different sensitivities to the flow velocity, the values converted into the flow velocity with respect to the low melting point alloy are shown instead of the output voltage. As is clear from FIG. 7B, according to this method, even if the inclination angle θ changes greatly, the output signal changes little.

【0022】なお、上述の説明においては磁気センサヘ
ッドに空心U型(コ字型)のものを使用した例について
説明したが、本発明においては空心E型であってもよ
い。
In the above description, an example in which the air-core U-shaped (U-shaped) magnetic sensor head is used has been described, but the air-core E-shaped magnetic head may be used in the present invention.

【0023】[0023]

【発明の効果】以上のように本発明によれば、対象面に
対して垂直方向の異なった2カ所の磁場成分をそれぞれ
検出し、その垂直方向の2つの磁場信号の差分信号をそ
れぞれ求め、その差信号に基づいて測定対象物の流速を
求めるようにしたので、周囲の金属体に対する相対位置
が変化しても、その影響を受けずに精度良く流速を測定
することができる。
As described above, according to the present invention, the magnetic field components at two different positions in the vertical direction with respect to the target surface are respectively detected, and the differential signals of the two magnetic field signals in the vertical direction are obtained, Since the flow velocity of the measurement object is obtained based on the difference signal, even if the relative position to the surrounding metal body changes, the flow velocity can be measured accurately without being affected by the change.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例に係る流速測定装置
の回路構成を示すブロック図である。
FIG. 1 is a block diagram showing a circuit configuration of a flow velocity measuring device according to an example of an embodiment of the present invention.

【図2】本発明の磁気センサヘッドの一例の構成を示し
た説明図である。
FIG. 2 is an explanatory diagram showing a configuration of an example of a magnetic sensor head of the present invention.

【図3】本発明の磁気センサヘッドの他の構成を示した
説明図である。
FIG. 3 is an explanatory diagram showing another configuration of the magnetic sensor head of the present invention.

【図4】本発明における磁場の速度効果を説明するため
の説明図である。
FIG. 4 is an explanatory diagram for explaining a velocity effect of a magnetic field in the present invention.

【図5】誘導磁場と垂直方向の検出位置との関係を示し
た説明図である。
FIG. 5 is an explanatory diagram showing a relationship between an induction magnetic field and a detection position in a vertical direction.

【図6】本発明の磁気センサヘッドと周辺の金属体との
相対位置についての説明図である。
FIG. 6 is an explanatory diagram of relative positions of a magnetic sensor head of the present invention and a surrounding metal body.

【図7】低融点合金の流速測定結果を示す特性図であ
る。
FIG. 7 is a characteristic diagram showing the results of measuring the flow velocity of a low melting point alloy.

【図8】磁気センサヘッドを銅板に対して傾けたときの
状態及びそのときの傾斜角θと出力信号の変化との関係
を示した特性図である。
FIG. 8 is a characteristic diagram showing a state when the magnetic sensor head is tilted with respect to the copper plate, and a relationship between a tilt angle θ and a change in an output signal at that time.

【図9】連続鋳造を説明するための説明図である。FIG. 9 is an explanatory diagram for explaining continuous casting.

【図10】従来の接触式による高温液体金属の流速測定
法を説明するための説明図である。
FIG. 10 is an explanatory diagram for explaining a conventional contact-type flow velocity measuring method for high-temperature liquid metal.

【図11】従来の磁気による非接触式高温液体金属の流
速測定法を説明するための説明図である。
FIG. 11 is an explanatory view for explaining a conventional non-contact type high-temperature liquid metal flow velocity measuring method.

【図12】磁気センサヘッドを銅製の鋳型内に配置した
状態を示した説明ずである。
FIG. 12 is an explanation without showing a state in which the magnetic sensor head is arranged in a copper mold.

【図13】従来の磁気センサヘッドと周辺の金属体との
相対位置についての説明図である。
FIG. 13 is an explanatory diagram of a relative position between a conventional magnetic sensor head and a surrounding metal body.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 移動する導電性の測定対象物に対して交
流磁場を励磁し、その磁場成分を検出して、その検出し
た磁場信号に基づいて、測定対象物の流速を測定する方
法において、 対象面に対して垂直方向の異なった2カ所の磁場成分を
それぞれ検出し、その垂直方向の2つの磁場信号の差分
信号を求め、その差信号に基づいて測定対象物の流速を
求めることを特徴とする流速測定方法。
1. A method of exciting an alternating magnetic field to a moving conductive measurement object, detecting the magnetic field component, and measuring the flow velocity of the measurement object based on the detected magnetic field signal, Characteristic of detecting magnetic field components at two different locations in the vertical direction with respect to the target surface, obtaining the difference signal between the two magnetic field signals in the vertical direction, and obtaining the flow velocity of the measurement object based on the difference signal Measuring method of flow velocity.
【請求項2】 移動する導電性の測定対象物に対して交
流磁場を励磁し、その磁場成分を検出して、その検出し
た磁場信号に基づいて、測定対象物の流速を測定する方
法において、 対象面上の2カ所において、対象面に対して垂直方向の
異なった2カ所の磁場成分をそれぞれ検出し、その垂直
方向の2つの磁場信号の差分信号をそれぞれ求め、その
差信号を加算することにより測定対象物の流速を求める
ことを特徴とする流速測定方法。
2. A method of exciting an alternating magnetic field to a moving conductive measurement object, detecting the magnetic field component, and measuring the flow velocity of the measurement object based on the detected magnetic field signal, At two locations on the target surface, the magnetic field components at two different locations in the vertical direction with respect to the target surface are respectively detected, the difference signals of the two magnetic field signals in the vertical direction are respectively obtained, and the difference signals are added. A flow velocity measuring method, characterized in that the flow velocity of an object to be measured is obtained by.
【請求項3】 移動する導電性の測定対象物に対して交
流磁場を励磁し、その磁場成分を検出して、その検出し
た磁場信号に基づいて、測定対象物の流速を測定する装
置において、 励磁装置、垂直方向に異なった位置の磁場を検出する第
1の1対の検出装置及び前記第1の1の対の検出装置と
は異なった位置に配置され、垂直方向に異なった位置の
磁場を検出する第2の1対の検出装置を備えた磁気セン
サヘッドと、 前記第1の1対の検出装置の差信号を求める第1の減算
回路と、 前記第2の1対の検出装置の差信号を求める第2の減算
回路と、 前記第1の減算回路の出力と前記第2の減算回路の出力
とを加算する加算回路と、 前記加算回路の出力に基づいて測定対象物の流速を求め
る検出回路とを有することを特徴とする流速測定装置。
3. An apparatus for exciting a moving conductive measurement object with an alternating magnetic field, detecting the magnetic field component, and measuring the flow velocity of the measurement object based on the detected magnetic field signal, Exciting device, first pair of detecting devices for detecting magnetic fields at different positions in the vertical direction, and magnetic field at different positions in the vertical direction, which are arranged at different positions from the first pair of detecting devices. Of a magnetic sensor head having a second pair of detection devices for detecting a difference, a first subtraction circuit for obtaining a difference signal between the first pair of detection devices, and a second pair of detection devices A second subtraction circuit that obtains a difference signal, an addition circuit that adds the output of the first subtraction circuit and the output of the second subtraction circuit, and the flow velocity of the measurement object based on the output of the addition circuit. A flow velocity measuring device, comprising: a detection circuit required.
JP25768595A 1995-10-04 1995-10-04 Flow velocity measuring method and measuring apparatus therefor Pending JPH09101321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25768595A JPH09101321A (en) 1995-10-04 1995-10-04 Flow velocity measuring method and measuring apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25768595A JPH09101321A (en) 1995-10-04 1995-10-04 Flow velocity measuring method and measuring apparatus therefor

Publications (1)

Publication Number Publication Date
JPH09101321A true JPH09101321A (en) 1997-04-15

Family

ID=17309691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25768595A Pending JPH09101321A (en) 1995-10-04 1995-10-04 Flow velocity measuring method and measuring apparatus therefor

Country Status (1)

Country Link
JP (1) JPH09101321A (en)

Similar Documents

Publication Publication Date Title
US4279149A (en) Process for measuring the level of metal in vessels, especially in continuous casting molds
JPH0114523B2 (en)
RU2194952C1 (en) Gear measuring level of molten metal in electromagnetic process of continuous casting and method measuring level of molten metal
JPH09101321A (en) Flow velocity measuring method and measuring apparatus therefor
JPH08211085A (en) Flow velocity measuring device
JP3307170B2 (en) Flow velocity measuring method and its measuring device, continuous casting method and its device
US4837510A (en) Device for suppression and/or separation of signals due to magnetic oxide scales in hot cast billets
JP3575264B2 (en) Flow velocity measuring method and device
JP2007152424A (en) Method and device for detecting in-mold molten steel level in continuous casting apparatus
JPS59104545A (en) Hot flaw detection of continuous cast slab
JP3546288B2 (en) Flow velocity measuring method and device
JPH08211084A (en) Flow velocity measuring device
JPH08327647A (en) Current velocity measuring apparatus
JPH08211086A (en) Method and device for measuring flow velocity
JPS624641B2 (en)
JPS63111248U (en)
RU2130609C1 (en) Device for local measurement of ferromagnetic phase of austenitic steel
JPH09101320A (en) Flow velocity measuring method and measuring apparatus therefor
JPH06242076A (en) Electromagnetic flaw detecting equipment
JPS58366A (en) Detection of sand burning of continuous casting steel in mold
JPH10104038A (en) Method and apparatus for measurement of flow velocity
JPS5983004A (en) Method for measuring thickness of wall of refractories for fused metal container
KR100445583B1 (en) Non-contact-type apparatus for measuring the velocity of a moving molten metal, and measuring method therefor
JPH0242162B2 (en)
JPS6011493Y2 (en) Electromagnetic induction detection device