JP2810511B2 - Method and apparatus for measuring meniscus flow velocity of molten metal - Google Patents

Method and apparatus for measuring meniscus flow velocity of molten metal

Info

Publication number
JP2810511B2
JP2810511B2 JP20352990A JP20352990A JP2810511B2 JP 2810511 B2 JP2810511 B2 JP 2810511B2 JP 20352990 A JP20352990 A JP 20352990A JP 20352990 A JP20352990 A JP 20352990A JP 2810511 B2 JP2810511 B2 JP 2810511B2
Authority
JP
Japan
Prior art keywords
electromotive force
molten metal
meniscus
flow velocity
secondary coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20352990A
Other languages
Japanese (ja)
Other versions
JPH0489573A (en
Inventor
正晃 森
三喜夫 川村
伸 寺地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20352990A priority Critical patent/JP2810511B2/en
Publication of JPH0489573A publication Critical patent/JPH0489573A/en
Application granted granted Critical
Publication of JP2810511B2 publication Critical patent/JP2810511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自由表面を有する溶融金属のハンドリング
に際し自由表面直下の流速を非接触で連続測定する方法
および装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for continuously measuring the flow velocity immediately below a free surface in a non-contact manner when handling a molten metal having a free surface.

〔従来の技術〕[Conventional technology]

溶融金属の精錬や鋳造を行なう際に、製品品質や反応
効率の観点から溶融金属の流動は重要な制御因子とな
る。特に、精錬フラックスや保温材等との接触界面であ
る自由表面の流速は重要であり、この流速を適正に制御
することにより良好な処理が行なえる。
When refining or casting molten metal, the flow of molten metal is an important control factor from the viewpoint of product quality and reaction efficiency. In particular, the flow velocity of the free surface, which is the contact interface with the refining flux or the heat insulating material, is important, and good processing can be performed by appropriately controlling the flow velocity.

一般に溶融金属は高温であり、通常のピト−管等の流
速センサを用いての流速計測は、凝固による管の詰り等
の諸問題が生じ不可能である。
Generally, molten metal has a high temperature, and flow rate measurement using a normal flow rate sensor such as a pit-tube cannot cause problems such as clogging of the pipe due to solidification.

このため、例えば「鉄と鋼'82−S920」や特開昭59−1
04512号公報等に見られるように、自由表面を介して溶
接金属中にロッドを浸漬し、該ロッドが受ける動圧をロ
ッドの支持アームに設置された歪ゲージにより検出する
流速計測方法が提案された。
For this reason, for example, "iron and steel '82 -S920" and
As disclosed in Japanese Patent No. 04512, a flow velocity measuring method has been proposed in which a rod is immersed in a weld metal through a free surface, and a dynamic pressure received by the rod is detected by a strain gauge installed on a support arm of the rod. Was.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながらこの方法は、ロッドを直接溶融金属に浸
漬する必要があるために、金属の凝固付着や溶損等によ
るロッドの変形が避けられない。このため、ロッドが受
ける動圧に誤差を生じ、長時間に亘る安定した連続計測
が不可能であった。また、センサロッドが比較的大きい
ため計測装置が大型化し、センサの設置・取り外し等の
ハンドリングが難かしいという欠点もあった。
However, in this method, since the rod needs to be immersed directly in the molten metal, deformation of the rod due to solidification and adhesion of the metal or erosion is inevitable. For this reason, an error occurs in the dynamic pressure received by the rod, and stable continuous measurement for a long time cannot be performed. In addition, there is a disadvantage that the measuring device becomes large because the sensor rod is relatively large, and it is difficult to handle such as installation and removal of the sensor.

一方、渦流式センサにより、溶融金属のメニスカスレ
ベルを非接触で検知するのは一般的であるが、従来の渦
流式レベルセンサでは2次コイルが一個しか無いため、
メニスカスの流速を測定できなかった。
On the other hand, it is common to detect the meniscus level of the molten metal in a non-contact manner by an eddy current sensor, but since the conventional eddy current level sensor has only one secondary coil,
The meniscus flow rate could not be measured.

本発明は、自由表面直下に流れを有する溶融金属にお
いて、メニスカス部の流速を長時間安定して計測可能な
方法および装置を提供することを目的とする。
An object of the present invention is to provide a method and an apparatus capable of stably measuring the flow velocity of a meniscus portion for a long time in a molten metal having a flow just below a free surface.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するための本発明の要旨は次の通りで
ある。
The gist of the present invention for achieving the above object is as follows.

(1)自由表面直下に流れを有するメニスカス直上に、
その流れ方向と平行に1次コイル,該1次コイルの水平
方向両側に2次コイルを配置し、1次コイルに交流電流
を印加して磁力線を形成し、自由表面直下の流れによる
磁力線の歪により各2次コイルに生じた起電力差からメ
ニスカス流速を検出する、溶融金属のメニスカス流速測
定において、 いずれか一側の2次コイルの起電力をもとに、メニス
カス位置を同時に検出することを特徴とするメニスカス
流速測定方法。
(1) Immediately above the meniscus having a flow just below the free surface,
A primary coil is arranged in parallel with the flow direction, and a secondary coil is arranged on both sides of the primary coil in the horizontal direction. In the measurement of the meniscus flow velocity of the molten metal, which detects the meniscus flow velocity from the electromotive force difference generated in each secondary coil, it is possible to simultaneously detect the meniscus position based on the electromotive force of one of the secondary coils. Characteristic meniscus flow velocity measurement method.

(2)上記(1)に加えて更に、いずれか一側の2次コ
イルの起電力より検出されるメニスカス位置により、両
側の2次コイルに生じた起電力差を補正しメニスカス流
速を検出することを特徴とするメニスカス流速測定方
法。
(2) In addition to the above (1), based on the meniscus position detected from the electromotive force of the secondary coil on either side, the electromotive force difference generated in the secondary coils on both sides is corrected to detect the meniscus flow velocity. A method for measuring meniscus flow velocity, characterized in that:

(3)1次コイル; 該1次コイルの両側に備わる第1および第2の2次コ
イル; 前記1次コイルに接続された交流電源; 前記第1の2次コイルに接続され、その起電力を検出
する第1の電圧検出手段; 前記第2の2次コイルに接続され、その起電力を検出
する第2の電圧検出手段; 前記第1あるいは第2のいずれか一方の2次コイルに
生じた起電力に基づいて、2次コイルと溶融金属メニス
カス位置間の距離を検出する演算手段;および、 前記第1の電圧検出手段が検出した第1の2次コイル
の起電力と、前記第2の電圧検出手段が検出した第2の
2次コイルの起電力との差と、前記2次コイルと溶融金
属メニスカス位置間の距離とから溶融金属の流速を検出
する演算手段; を備える溶融金属のメニスカス流速測定装置。
(3) a primary coil; first and second secondary coils provided on both sides of the primary coil; an AC power supply connected to the primary coil; an electromotive force connected to the first secondary coil. A second voltage detecting means connected to the second secondary coil and detecting an electromotive force of the first voltage detecting means; a voltage generated in one of the first and second secondary coils; Calculating means for detecting a distance between the secondary coil and the molten metal meniscus position based on the generated electromotive force; and an electromotive force of the first secondary coil detected by the first voltage detecting means; Calculating means for detecting the flow rate of the molten metal from the difference between the electromotive force of the second secondary coil detected by the voltage detecting means and the distance between the secondary coil and the molten metal meniscus position. Meniscus flow velocity measuring device.

〔作用〕[Action]

本発明による溶融金属のメニスカス流速測定の原理を
図面に基づいて説明する。
The principle of measuring the meniscus flow velocity of the molten metal according to the present invention will be described with reference to the drawings.

第1図,第2図および第3図を参照されたい。これら
の図面において、1は1次コイル、2aおよび2bは2次コ
イル、3は溶融金属自由表面、および、,4は磁力線を示
す。2次コイル2aおよび2bは巻数が等しく、1次コイル
1の水平方向両側に配置されている。
Please refer to FIG. 1, FIG. 2 and FIG. In these figures, 1 is a primary coil, 2a and 2b are secondary coils, 3 is a molten metal free surface, and, 4 are lines of magnetic force. The secondary coils 2a and 2b have the same number of turns and are arranged on both sides of the primary coil 1 in the horizontal direction.

このような構成では、溶融金属自由表面3の直下に流
れが無い場合には、1次コイル1に交流電流を流すと第
1図に示すように左右対称な磁力線4が誘導され、2次
コイル2aに誘起される起電力と2次コイル2bに誘起され
る起電力は等しくなる。しかし、溶融金属自由表面3の
直下に流れがあると、1次コイル1を流れる交流電流に
より誘導された磁界中を溶融金属が動くために誘導電流
が生じ、第2図に示すように、磁力線4は下流側へ歪
む。このため、上流側に配置された2次コイル2aに誘起
される起電力と下流側に配置された2次コイル2bに誘起
される起電力に差が生じる。
In such a configuration, when there is no flow directly below the free surface 3 of the molten metal, when an alternating current is applied to the primary coil 1, the symmetrical magnetic lines of force 4 are induced as shown in FIG. The electromotive force induced in the secondary coil 2b is equal to the electromotive force induced in the secondary coil 2b. However, if there is a flow directly below the free surface 3 of the molten metal, the molten metal moves in a magnetic field induced by the alternating current flowing through the primary coil 1 to generate an induced current, and as shown in FIG. 4 is distorted downstream. Therefore, there is a difference between the electromotive force induced in the secondary coil 2a arranged on the upstream side and the electromotive force induced in the secondary coil 2b arranged on the downstream side.

そこで、流速vが既知でかつ、2次コイル2a,2bと自
由表面との距離が一定の溶融金属に関して、2次コイル
2aに誘起される起電力と2次コイル2bに誘起される起電
力との差ΔEoを測定したところ、第4図に示すようなグ
ラフが得られた。これに示される様に、溶融金属のメニ
スカス流速vと各2次コイルの起電力差ΔEoとは一義的
な対応関係にあり、起電力差ΔEoを測定して流速vを知
ることができる。
Therefore, for a molten metal whose flow velocity v is known and the distance between the secondary coils 2a and 2b and the free surface is constant,
When the difference ΔEo between the electromotive force induced in 2a and the electromotive force induced in the secondary coil 2b was measured, a graph as shown in FIG. 4 was obtained. As shown in the figure, the meniscus flow velocity v of the molten metal and the electromotive force difference ΔEo of each secondary coil have a unique correspondence, and the flow velocity v can be known by measuring the electromotive force difference ΔEo.

しかしながら、2次コイル2a,2bと溶融金属の自由表
面3との距離lが変わることでも、各2次コイル2a,2b
に誘起される起電力が変化する。第5図に、静止溶融金
属に対し、2次コイル2a,2bと自由表面3との距離(メ
ニスカス位置)lを変えた場合の各2次コイル2a,2bに
誘起される起電力を調査した結果を示す。この様に2次
コイル2a,2bと溶融金属の自由表面3との距離lと、各
2次コイル2a,2bに誘起される起電力とも一義的な対応
関係にあり、メニスカス位置測定が可能である。
However, even if the distance l between the secondary coils 2a, 2b and the free surface 3 of the molten metal changes, each secondary coil 2a, 2b
The induced electromotive force changes. In FIG. 5, the electromotive force induced in each of the secondary coils 2a, 2b when the distance (meniscus position) 1 between the secondary coils 2a, 2b and the free surface 3 was changed with respect to the static molten metal was investigated. The results are shown. In this way, the distance l between the secondary coils 2a, 2b and the free surface 3 of the molten metal and the electromotive force induced in each of the secondary coils 2a, 2b have a unique correspondence, and the meniscus position can be measured. is there.

実際の溶融金属メニスカス流速測定においては、メニ
スカス位置(l)の変動は、測定したメニスカス流速の
誤差となる。そこで、2次コイルに誘起される起電力を
測定し、第5図の関係から2次コイル2a,2bのいずれか
一方と溶融金属の自由表面との距離lを算出するととも
に、上流側と下流側の各2次コイル2a,2bに誘起された
起電力差ΔEを下記(1)式に基づいて補正することで
正確なメニスカス流速を算出できる。
In the actual measurement of the molten metal meniscus flow velocity, a change in the meniscus position (l) results in an error in the measured meniscus flow velocity. Therefore, the electromotive force induced in the secondary coil is measured, and the distance l between one of the secondary coils 2a and 2b and the free surface of the molten metal is calculated from the relationship shown in FIG. The correct meniscus flow velocity can be calculated by correcting the electromotive force difference ΔE induced in each of the secondary coils 2a and 2b on the side based on the following equation (1).

v∝ΔEo=ΔE・l-n …(1) v:メニスカス流速(m/sec) ΔE :2次コイル間の起電力差(mV) ΔEO:2次コイルと溶融金属のメニスカス位置の距離lが
基準値の場合の第1,第2の2次コイル間の起電力差(m
V) l:2次コイルと溶融金属のメニスカス位置との距離
(mm) n:次数(通常0.2) 〔実施例〕 第6図に本発明の流速測定装置の構成を示した。この
装置は、1次コイル1,2次コイル2a,2b,交流電源5,電圧
センサ6a,6b,距離演算器15,および、流速演算器7より
なる(前述と同じ要素については同記号を用た)。な
お、1次コイル1,2次コイル2aおよび2bは、同軸に巻回
されており、2次コイル2aと2bは巻数が等しく、2次コ
イル2aは溶融金属流れに対して1次コイル1の上流に、
2次コイル2bは溶融金属流れに対して1次コイル1の下
流に配置されている。
v∝ΔEo = ΔE · l− n (1) v: meniscus flow velocity (m / sec) ΔE: electromotive force difference between secondary coils (mV) ΔE O : distance l between the secondary coil and the meniscus position of the molten metal Is the reference value, the electromotive force difference between the first and second secondary coils (m
V) l: distance (mm) between the secondary coil and the meniscus position of the molten metal n: order (normally 0.2) Example FIG. 6 shows the configuration of the flow velocity measuring apparatus of the present invention. This device comprises a primary coil 1, a secondary coil 2a, 2b, an AC power supply 5, voltage sensors 6a, 6b, a distance calculator 15, and a flow rate calculator 7 (the same symbols are used for the same elements as described above). T). The primary coils 1, 2a and 2b are wound coaxially, and the secondary coils 2a and 2b have the same number of turns. Upstream,
The secondary coil 2b is arranged downstream of the primary coil 1 with respect to the flow of the molten metal.

交流電源5は1次コイル1に接続されており、そこに
数アンペア程度の交流電流を流して磁界を生じさせる。
電圧センサ6aは2次コイル2aに誘起された起電力を検出
し、電圧センサ6bは2次コイル2bに誘起された起電力を
検出する。距離演算器15は、電圧センサ6a又は6bのいず
れか一方(本例の場合6b)より検出された2次コイル2b
に誘起された起電力より、第5図に示した距離l対起電
力の関係より、2次コイルと溶融金属自由表面間距離l
を求める。
The AC power supply 5 is connected to the primary coil 1 and supplies an AC current of about several amps there to generate a magnetic field.
Voltage sensor 6a detects an electromotive force induced in secondary coil 2a, and voltage sensor 6b detects an electromotive force induced in secondary coil 2b. The distance calculator 15 detects the secondary coil 2b detected by one of the voltage sensors 6a and 6b (6b in this example).
From the relationship between the distance l and the electromotive force shown in FIG.
Ask for.

流速演算器7は、電圧センサ6aが検出した2次コイル
2aに誘起された起電力Eaと電圧センサ6bが検出した2次
コイル2bに誘起された起電力Ebとの差ΔE=Ea−Ebを演
算し、距離演算器15で求められた、2次コイル2a,2bと
溶融金属自由表面間距離lから基準距離時の起電力差Δ
EOを次式 ΔEO=ΔE(l/lO-n …(2) ΔEO:基準距離時の起電力差 l:2次コイルと溶融金属自由表面間距離 lO:基準距離 n:次数(通常2.0) により算出し、第4図に示したグラフに示す、流速v対
起電力差ΔEOの関係より溶融金属のメニスカス流速vを
求める。
The flow rate calculator 7 is a secondary coil detected by the voltage sensor 6a.
The difference ΔE = Ea−Eb between the electromotive force Ea induced in the secondary coil 2b and the electromotive force Eb induced in the secondary coil 2b detected by the voltage sensor 6b is calculated, and the secondary coil obtained by the distance calculator 15 is calculated. Electromotive force difference Δ at reference distance from distance 1 between 2a and 2b and molten metal free surface
E O is given by the following equation: ΔE O = ΔE (l / l O ) -n (2) ΔE O : Difference in electromotive force at reference distance l: Distance between secondary coil and free surface of molten metal l O : Reference distance n: The meniscus flow velocity v of the molten metal is calculated from the relationship between the flow velocity v and the electromotive force difference ΔE O shown in the graph shown in FIG.

このような流速測定装置は、例えば、溶鋼の連続鋳造
モールド内におけるメニスカス流速の測定に利用され
る。
Such a flow rate measuring device is used, for example, for measuring a meniscus flow rate in a continuous casting mold of molten steel.

第7図を参照して一例を説明する。第7図において、
8はタンディッシュ、9は浸漬ノズル、10は第6図に示
した構成を有する溶融金属メニスカス流速測定装置、11
はメニスカス流(上向反転流)、12はモールド、13はシ
ェル、および、14は厚さ約50mmのパウダー層をそれぞれ
示している。
An example will be described with reference to FIG. In FIG.
8 is a tundish, 9 is an immersion nozzle, 10 is a molten metal meniscus flow velocity measuring device having the configuration shown in FIG.
Denotes a meniscus flow (upward inversion flow), 12 denotes a mold, 13 denotes a shell, and 14 denotes a powder layer having a thickness of about 50 mm.

流速測定装置10は、コイルの軸を浸漬ノズル9から水
冷鋳型12内に供給された溶鋼の上向き反転流11の流れる
方向と平行にして、2次コイル2aが上流に、2次コイル
2bが下流になるようにタンディッシュ8の底部に吊設し
てある(他の方式でメニスカス直上に配置しても良
い。) これにおいて、タンディッシュ8の容量を60トンと
し、温度1550℃の低炭アルミキルド鋼を吐出口径70mm,
吐出角度45゜の逆Y型浸漬ノズル9を介して水冷銅モー
ルド12に注入し、引抜速度1.8m/minにて、厚さ250mm×
幅1400mmのサイズの鋳片を連続して、鋳造した。この
間、流速測定装置10の1次コイル1に5A,2K Hzの交流電
流を流して磁場を形成させ、溶鋼メニスカス流速を測定
した。第8図は測定結果の一例を示す。
The flow velocity measuring device 10 is arranged such that the axis of the coil is parallel to the flowing direction of the upward reversal flow 11 of the molten steel supplied from the immersion nozzle 9 into the water-cooled mold 12, and the secondary coil 2 a moves upstream and the secondary coil
The tundish 8 is suspended at the bottom of the tundish 8 so that 2b is located downstream (the tundish 8 may be arranged directly above the meniscus by another method). Low carbon aluminum killed steel discharge port diameter 70mm,
Injected into a water-cooled copper mold 12 through an inverted Y-shaped immersion nozzle 9 with a discharge angle of 45 °, and with a drawing speed of 1.8 m / min, a thickness of 250 mm
A slab having a width of 1400 mm was continuously cast. During this time, an alternating current of 5 A, 2 KHz was applied to the primary coil 1 of the flow velocity measuring device 10 to form a magnetic field, and the meniscus flow velocity of the molten steel was measured. FIG. 8 shows an example of the measurement result.

第8図中の最上欄は、メニスカス位置lに対する補正
をしないで、第4図に示す流速v対起電力差の関係に測
定した2次コイル間の起電力差を導入して該起電力差に
対応する流速vを算出した結果を示し、第8図中の中間
欄は、第5図に示す距離lと起電力との関係に、測定し
た2次コイルの1つの起電力を導入して算出したメニス
カス位置lを示し、かつ、第8図の最下欄は、算出した
メニスカス位置lに対応した補正演算〔上述の第(2)
式〕により算出した流速vを示す。
In the uppermost column in FIG. 8, the electromotive force difference between the secondary coils measured in the relationship between the flow velocity v and the electromotive force difference shown in FIG. 4 is introduced without correcting the meniscus position l. FIG. 8 shows the result of calculating the flow velocity v. The middle column in FIG. 8 shows the relationship between the distance 1 and the electromotive force shown in FIG. 5 by introducing one measured electromotive force of the secondary coil. The lowermost column of FIG. 8 shows the calculated meniscus position l, and the correction operation corresponding to the calculated meniscus position l [the above (2)
Equation] is shown.

上流側と下流側の2次コイルに誘起される起電力差か
ら直接メニスカス流速を算出すると、メニスカス位置の
変動の影響を受け、精度の高いメニスカス流速測定がで
きていない(第8図の最上欄)。一方いずれかの2次コ
イルに誘起される起電力から求まるメニスカス位置の値
(第8図の中間欄)から、(2)式を用いて補正した起
電力差からメニスカス流速を算出すると安定して精度の
高いメニスカス流速測定ができた(第8図の最下欄)。
When the meniscus flow velocity is directly calculated from the difference between the electromotive forces induced in the upstream and downstream secondary coils, the meniscus flow rate is affected and the meniscus flow velocity cannot be measured with high accuracy (the uppermost column in FIG. 8). ). On the other hand, from the value of the meniscus position obtained from the electromotive force induced in any one of the secondary coils (the middle column in FIG. 8), the meniscus flow velocity is stably calculated from the electromotive force difference corrected using the equation (2). Highly accurate meniscus flow velocity measurement was possible (bottom column in FIG. 8).

〔発明の効果〕〔The invention's effect〕

以上説明したとおり、本発明においては電磁気的作用
を利用した非接触による流速測定が行なわれるため、測
定装置への金属の付着、あるいは装置の焼損という不具
合が防止され、長時間の安定した連続測定が可能にな
り、例えば、連続鋳造等においては非金属介在物の少な
い良好な鋳片の製造が可能となる。
As described above, in the present invention, non-contact flow velocity measurement using electromagnetic action is performed, so that a problem such as adhesion of metal to the measurement apparatus or burning of the apparatus is prevented, and stable continuous measurement for a long time is performed. For example, in continuous casting or the like, it is possible to manufacture a good cast piece with less nonmetallic inclusions.

また、本発明に基づく装置は、非接触であるためにコ
ンパクトになり、設備費が安価であり、かつ、メンテナ
ンスも容易で長寿命である。
In addition, the device according to the present invention is compact because it is non-contact, has low equipment costs, is easy to maintain, and has a long life.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図及び第3図は、本発明の原理を説明する
ための説明図である。 第4図は、溶融金属の流速と第1図および第2図に示し
た各2次コイル2a,2bに誘起される起電力の差との関係
を示したグラフである。 第5図は、2次コイル2a,2bと溶融金属自由表面間距離
lにより各2次コイルに誘起される起電力の関係を示す
グラフである。 第6図は、本発明を一例で実施した溶融金属の流速測定
装置の構成を示すブロック図である。 第7図は、第6図に示した装置の適用例を示した説明図
である。 第8図は、第7図の適用例において実際にメニスカス流
速を測定算出した結果を示すグラフであるり、最上欄は
距離l変動の補正を加えないで算出したメニスカス流速
vを示し、中間欄は算出した距離lを示し、最下欄は算
出した距離lに関連する補正を施こして算出したメニス
カス流速vを示す。 1:1次コイル(1次コイル) 2a,2b:2次コイル(第1,第2の2次コイル) 3:溶融金属自由表面、4:磁力線 5:交流電源(交流電源) 6a,6b:電圧センサ(第1,第2の電圧検出手段) 7:流速演算器(演算手段) 8:タンディッシュ、11:浸漬ノズル 10:溶融金属のメニスカス流速測定装置 11:メニスカス流れ、12:モールド 13:シェル、14:パウダー 15:距離演算器
FIG. 1, FIG. 2, and FIG. 3 are explanatory diagrams for explaining the principle of the present invention. FIG. 4 is a graph showing the relationship between the flow rate of the molten metal and the difference between the electromotive force induced in each of the secondary coils 2a and 2b shown in FIGS. FIG. 5 is a graph showing the relationship between the electromotive force induced in each secondary coil by the distance l between the secondary coils 2a and 2b and the free surface of the molten metal. FIG. 6 is a block diagram showing a configuration of a molten metal flow velocity measuring device in which the present invention is implemented as an example. FIG. 7 is an explanatory diagram showing an application example of the device shown in FIG. FIG. 8 is a graph showing the results of actual measurement and calculation of the meniscus flow velocity in the application example of FIG. 7, and the uppermost column shows the meniscus flow velocity v calculated without correcting the distance l fluctuation, and the middle column. Indicates the calculated distance l, and the lowermost column indicates the meniscus flow velocity v calculated by performing a correction related to the calculated distance l. 1: Primary coil (primary coil) 2a, 2b: Secondary coil (first and second secondary coils) 3: Free surface of molten metal, 4: Line of magnetic force 5: AC power supply (AC power supply) 6a, 6b: Voltage sensor (first and second voltage detection means) 7: Flow velocity calculator (calculation means) 8: Tundish, 11: immersion nozzle 10: Meniscus flow velocity measuring device for molten metal 11: Meniscus flow, 12: Mold 13: Shell, 14: Powder 15: Distance calculator

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01P 5/08 G01F 1/58──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) G01P 5/08 G01F 1/58

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】自由表面直下に流れを有するメニスカス直
上に、その流れ方向と平行に1次コイル,該1次コイル
の水平方向両側に2次コイルを配置し、1次コイルに交
流電流を印加して磁力線を形成し、自由表面直下の流れ
による磁力線の歪により各2次コイルに生じた起電力差
からメニスカス流速を検出する、溶融金属のメニスカス
流速測定において、 いずれか一側の2次コイルの起電力をもとに、メニスカ
ス位置を同時に検出することを特徴とする溶融金属のメ
ニスカス流速測定方法。
1. A primary coil is disposed immediately above a meniscus having a flow directly below a free surface in parallel with a flow direction thereof, and secondary coils are disposed on both sides in a horizontal direction of the primary coil, and an alternating current is applied to the primary coil. In the measurement of the meniscus flow velocity of the molten metal, the secondary coil on either side is used to detect the meniscus flow velocity from the difference in electromotive force generated in each secondary coil due to the distortion of the magnetic flux due to the flow just below the free surface. A meniscus position is simultaneously detected based on the electromotive force of the molten metal.
【請求項2】いずれか一側の2次コイルの起電力より検
出されるメニスカス位置により、両側の2次コイルに生
じた起電力差を補正しメニスカス流速を検出することを
特徴とする前記特許請求の範囲第(1)項記載の方法。
2. The method according to claim 1, wherein the meniscus position detected from the electromotive force of the secondary coil on either side corrects an electromotive force difference generated in the secondary coils on both sides to detect a meniscus flow velocity. The method according to claim (1).
【請求項3】1次コイル; 該1次コイルの両側に備わる第1および第2の2次コイ
ル; 前記1次コイルに接続された交流電源; 前記第1の2次コイルに接続され、その起電力を検出す
る第1の電圧検出手段; 前記第2の2次コイルに接続され、その起電力を検出す
る第2の電圧検出手段; 前記第1あるいは第2のいずれか一方の2次コイルに生
じた起電力に基づいて、2次コイルと溶融金属メニスカ
ス位置間の距離を検出する演算手段;および、 前記第1の電圧検出手段が検出した第1の2次コイルの
起電力と、前記第2の電圧検出手段が検出した第2の2
次コイルの起電力との差と、前記2次コイルと溶融金属
メニスカス位置間の距離とから溶融金属の流速を検出す
る演算手段;を備える溶融金属のメニスカス流速測定装
置。
A primary coil; first and second secondary coils provided on both sides of the primary coil; an AC power supply connected to the primary coil; and an AC power supply connected to the first secondary coil. First voltage detecting means for detecting electromotive force; second voltage detecting means connected to the second secondary coil and detecting the electromotive force; one of the first and second secondary coils Calculating means for detecting the distance between the secondary coil and the molten metal meniscus position based on the electromotive force generated in the first voltage detecting means; and the electromotive force of the first secondary coil detected by the first voltage detecting means; The second voltage detected by the second voltage detecting means
Calculating means for detecting a flow velocity of the molten metal from a difference between an electromotive force of the secondary coil and a distance between the secondary coil and the molten metal meniscus position;
JP20352990A 1990-07-31 1990-07-31 Method and apparatus for measuring meniscus flow velocity of molten metal Expired - Lifetime JP2810511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20352990A JP2810511B2 (en) 1990-07-31 1990-07-31 Method and apparatus for measuring meniscus flow velocity of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20352990A JP2810511B2 (en) 1990-07-31 1990-07-31 Method and apparatus for measuring meniscus flow velocity of molten metal

Publications (2)

Publication Number Publication Date
JPH0489573A JPH0489573A (en) 1992-03-23
JP2810511B2 true JP2810511B2 (en) 1998-10-15

Family

ID=16475667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20352990A Expired - Lifetime JP2810511B2 (en) 1990-07-31 1990-07-31 Method and apparatus for measuring meniscus flow velocity of molten metal

Country Status (1)

Country Link
JP (1) JP2810511B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188273B2 (en) * 1994-03-29 2001-07-16 新日本製鐵株式会社 Control method of flow in mold by DC magnetic field

Also Published As

Publication number Publication date
JPH0489573A (en) 1992-03-23

Similar Documents

Publication Publication Date Title
JP2810511B2 (en) Method and apparatus for measuring meniscus flow velocity of molten metal
JP4842195B2 (en) Slab surface temperature measuring device and slab surface temperature measuring method
JP2714437B2 (en) Method and apparatus for measuring meniscus flow velocity of molten metal
JPH06320245A (en) Heat extraction control device in mold
JPH0513746B2 (en)
JPH09168847A (en) Method for continuously casting steel
JPH08211084A (en) Flow velocity measuring device
JP2895580B2 (en) Level control method of molten metal level in mold in continuous casting
JPH05297012A (en) Method and device for measuring of meniscus flow velocity of molten metal
JPH11304566A (en) Method and device for detecting level of molten steel in immersion nozzle of continuous casting
JP3575264B2 (en) Flow velocity measuring method and device
JP3088917B2 (en) Continuous casting method of molten metal
JP2916830B2 (en) Flow control method of molten metal in continuous casting
JPS6167550A (en) Instrument for measuring bulging of steel ingot
JPH08327647A (en) Current velocity measuring apparatus
JPH06328213A (en) Method and instrument for measuring bulging quantity
JP3546288B2 (en) Flow velocity measuring method and device
JP4505536B2 (en) Slab surface temperature measuring device and slab surface temperature measuring method
KR100270114B1 (en) Method and apparatus for distortion of hot metal plate
JPH0513747B2 (en)
JPH10104038A (en) Method and apparatus for measurement of flow velocity
JP4106919B2 (en) Non-contact flow velocity measuring method and non-contact flow velocity measuring apparatus for molten metal
JPH05149770A (en) Method for protecting in-mold molten metal level detecting device utilizing eddy current
JPS5913301B2 (en) Molten steel passage slag detection device
JPH08201412A (en) Eddy current type current meter