JP4585709B2 - Simple calibration method for electromagnetic molten steel level detector - Google Patents

Simple calibration method for electromagnetic molten steel level detector Download PDF

Info

Publication number
JP4585709B2
JP4585709B2 JP2001135052A JP2001135052A JP4585709B2 JP 4585709 B2 JP4585709 B2 JP 4585709B2 JP 2001135052 A JP2001135052 A JP 2001135052A JP 2001135052 A JP2001135052 A JP 2001135052A JP 4585709 B2 JP4585709 B2 JP 4585709B2
Authority
JP
Japan
Prior art keywords
level
detector
molten steel
data
data table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001135052A
Other languages
Japanese (ja)
Other versions
JP2002331342A (en
Inventor
肇 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Elex Co Ltd
Original Assignee
Nittetsu Elex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Elex Co Ltd filed Critical Nittetsu Elex Co Ltd
Priority to JP2001135052A priority Critical patent/JP4585709B2/en
Publication of JP2002331342A publication Critical patent/JP2002331342A/en
Application granted granted Critical
Publication of JP4585709B2 publication Critical patent/JP4585709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Continuous Casting (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被検出体に生じる渦電流を利用して、被検出体までの距離を測定する電磁式溶鋼レベル検出器、特に溶融金属の連続鋳造時に、鋳造モールド内における溶融金属の湯面レベル信号の簡易校正法に関する。
【0002】
【従来の技術】
図3に送・受信コイルを備えた電磁式溶鋼レベル計10の一般的構成を示す。図3において、Bはモールド、Mは溶鋼、Sは検出器である。検出器Sは送信コイルTと受信コイルRで構成されている、11は交流電源、12は交流増幅器、13は交流電圧を直流電圧に変換する同期検波器、14は直流増幅器、15はオフセット調整器、16は線形処理器である。線型処理器16は非線型の直流出力電圧を線型化、即ち測定距離に応じた電圧に変換して出力する装置である。
【0003】
図3の構成においてモールドBから一定距離dmだけ離れた位置に検出器Sを設置しておき、送信コイルTに交流電源11から通電し、送信コイルTで交流磁界を生成する。この磁界中にある受信コイルRには誘導電圧が発生するので、この誘導電圧を交流増幅器12で増幅し、同期検波器13で検波し直流電圧に変換する。この直流電圧の出力値は、主として検出器SとモールドB間の距離dm、及び検出器Sと溶鋼M間の距離により決まる。直流電圧は直流増幅器14に入力されると共に前記検出器Sとモールド間距離dmで決まる電圧値に相当する負の電圧オフセット調整器15から加算される。即ち、オフセット調整器15から加算される電圧によって周辺の金物による信号成分が除去され、これによって得られる直流電圧は、溶鋼Mによる湯面レベル変化による有効信号分のみが得られ、次段の線形処理器16を経て、湯面レベルまでの距離が測定できる。
【0004】
図2に検出器Sとモールド間距離dmをパラメータとするレベル特性結果の一例を示し、縦軸は直流増幅器14から出力される直流電圧を示す。検出器Sは、図3に示すようにモールド上部のモールド壁からギャップdm離れた位置に設け、溶鋼レベル計測に供される。なお、検出器Sは絶縁体製ケースに収納され(図示せず)高温環境に適応できる構造としている。
図2から明らかなように検出器Sとモールド間の距離dmが小さくなるに従って、モールドでの渦流損が増加し出力電圧が低下する。ここでdm=15のデータを線形化の基準データとすると他のデータでは自明のように線形化誤差を生じるという問題が発生する。
この問題を解消する方法として、例えば特公平3−48448号公報に記載の溶融金属湯面検出装置が知られており、溶融金属上に近接して、非磁性質でかつ耐熱性を有する一対のコイルを一定の間隔をあけて溶融金属面の垂線を軸とする対称な位置に並設した検出部と、前記一対のコイルの一方のコイルに交流電圧を印加し、これにより生成された電磁界内に設けた他方のコイルの誘起電圧を直流電圧信号とする検波平滑部と、前記溶融金属の容器の作用により定まり前記検出部と溶融金属間の距離に対応しない電圧値を予め記憶する記憶手段と記憶電圧により前記検波平滑部出力電圧の補正を行う補正機能部とを備えて構成されている。
【0005】
【発明が解決しようとする課題】
前記した従来例に係る電磁誘導を検出原理とする溶鋼湯面レベル計では、検出器S周辺の非検出体の金物、例えば、モールドとのギャップdmが変動すると二次コイルの検出電圧が変化し計測誤差が発生する。
また線型処理器16の基準データは、通常模擬湯面(鉛板、ステンレス板など)を用いて単位長毎(例えば10mm)に移動して求める。一方、実際の検出対象である溶鋼と模擬湯面とは材料特性(導電率)が異なるため前記基準データによる線形演算では変換誤差を回避できない。
従来これらの問題を軽減するため、(1)検出器設置位置の再現性確保、(2)実溶鋼の材料特性に限りなく近い材料の選択、(3)基準データの任意の定点と実溶鋼レベルが一致した時(電極式レベル計等で定点判定する)の各電圧との差分値を求め記憶しておき、それ以後逐次得られる検出電圧と該差分値を加算してデータ補正(オフセット調整)を行い線形処理器の入力とする等により対処していたが、誤差低減に限界があった。
また、特公平3−48448号公報に記載の溶融金属湯面検出装置は装置が複雑化し、その測定に手間がかかるという問題があった。
本発明はかかる事情に鑑みてなされたもので、簡便でしかも新規な情報を用いないで実質的に検出誤差の解消を図ることが可能な電磁式溶鋼レベル検出器の簡易校正方法を提供する。
【0006】
【課題を解決するための手段】
前記目的に沿う第1の発明に係る電磁式溶鋼レベル検出器の簡易校正方法は、上下に配置された送信コイル及び受信コイルからなる検出器と、前記送信コイルに電流を印加する交流電源と、前記受信コイルに誘起される交流電圧を直流信号に変換する同期検波器と、該同期検波器によって出力された信号の有効信号分のみを取り出すオフセット調整器とを有する電磁式溶鋼レベル検出器を用い、鋳造開始前に模擬湯面を単位レベル毎に移動させてデータを取得し、該データの間を折れ線近似したデータテーブルを求めておき、実際の使用にあっては、電極レベル計により検出された既知湯面レベルにおける実測値(Vm)と前記データテーブルでの該既知湯面レベルにおけるデータ値(Vd)を求めて、データ値(Vd)/実測値(Vm)からなる正規化係数(K1)を求め、実際の測定値に前記正規化係数(K1)を乗じて、前記データテーブルから溶鋼面までの深さを測定する。
【0007】
また、第2の発明に係る電磁式溶鋼レベル検出器の簡易校正方法は、上下に配置された送信コイル及び受信コイルからなる検出器と、前記送信コイルに電流を印加する交流電源と、前記受信コイルに誘起される交流電圧を直流信号に変換する同期検波器と、該同期検波器によって出力された信号の有効信号分のみを取り出すオフセット調整器とを有する電磁式溶鋼レベル検出器を用い、鋳造開始前に模擬湯面を単位レベル毎に移動させてデータを取得し、該データの間を折れ線近似したデータテーブルを求めておき、実際の使用にあっては、電極レベル計により検出された既知湯面レベルにおける実測値(Vm)と前記データテーブルでの該既知湯面レベルにおけるデータ値(Vd)を求め、実測値(Vm)/データ値(Vd)からなる正規化係数(K2)を求めて、前記データテーブルに前記正規化係数(K2)を乗じて、補正データテーブルを作成し、前記電磁式溶鋼レベル検出器の測定値を前記補正データテーブルに対照して実際の溶鋼面までの深さを測定する。
なお、第1、第2の発明に係る電磁式溶鋼レベル検出器の簡易校正方法において、検出電圧を線型処理してもよい。
【0008】
第1、第2の発明に係る電磁式溶鋼レベル検出器の簡易校正方法は、前述のように、電磁式溶鋼レベル検出器の検出電圧は、主として検出器SとモールドB間の距離dm、及び検出器Sと溶鋼M間の距離により決まるが、出力電圧に対する周囲の金物による影響は、検出器Sが特定されれば、一定の比例関係を有している。従って、任意の検出器Sについて、予め予備実験を行って、基準となる単位レベル毎のデータを含む折れ線近似したデータテーブルを求めておき、実際の使用にあっては、特定の湯面レベルに対するデータテーブル値(Vd)と、実測値(Vm)との比を求めれば、任意の湯面レベルについても、この比率関係を維持することになる。
第1の発明においては、データテーブルを基準として、データ値(Vd)/実測値(Vm)からなる正規化係数(K1)を求め、この正規化係数(K1)を実測値に掛けて実測値を修正し、この修正値を前記データテーブルに照らして湯面レベルを測定し、これを出力する。
第2の発明においては、データテーブルを測定状態に合わせて補正し、実際の実測値をこの補正したデータテーブルに照合して距離を測定するものである。
なお、第1、第2の発明においては、最終出力は、測定距離に比例した電圧に変換して、即ち線型処理を行って出力するのが好ましい。
【0009】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明する。
ここに、図1は本発明の一実施の形態に係る電磁式溶鋼レベル検出器の簡易校正方法を適用した装置のブロック図である。なお、図1において、図3に使用した構成要素と同一の構成要素については同一の符号を用いて詳しい説明を省略する。
【0010】
ここに、図1において、20は本発明の一実施の形態に係る電磁式溶鋼レベル検出器の簡易校正方法を適用した装置を、21は直流増幅器14からの出力を処理する補正演算器を、22は割り込み信号発生器で、例えば、湯面が所定レベルに達したら導通する接点信号を入力してもよい。なお、装置20は従来の電磁式溶鋼レベル検出器に新たな補正演算器を加えて構成されている。
補正演算器21内には、前記した検出器Sが、モールドBに対して所定の距離dmを設けて配置し、各レベル毎の出力電圧からオフセット電圧を引いた直流電圧を記録したデータテーブルが記憶されている。このデータテーブルは、例えば図2のグラフに示されるように10mm(単位レベル)毎のデータとなっているので、その間は直線と見做して折れ線近似をしている。従って、この折れ線近似のデータテーブルは、湯面までの実測値と出力電圧が一対一に対応している。
【0011】
次に、この検出器Sを任意の即ち測定対象となるモールドB1に取付ける。この場合、モールドB1と検出器Sとの距離は測定する必要はないが、検出器SはモールドB1に対して固定位置に設定する必要がある。
モールドB1内の湯面が上昇すると、電極センサーGが湯面に接し、これによって、割り込み信号発生器22から補正演算器21に出力される。電極センサーGが湯面に接したときの湯面レベルは既知であるので、この時の直流増幅器14からの出力、即ち既知湯面レベルの実測値(Vm)を記憶すると同時に、前記データテーブルでの既知湯面レベルでのデータ値(Vd)を出力して記憶し、これらを演算器にて以下の式(1)を実行する。
データ値(Vd)/実測値(Vm)=正規化係数(K1) ・・・・・(1)
そして、この正規化係数(K1)を記憶し、検出器Sを用いる本装置20を用いて、このモールドB1の湯面の任意の湯面を測定する場合には、直流増幅器14からの実際の測定値である出力値(Vmx)に正規化係数(K1)を掛けて補正値(Vam)を算出し、この補正値(Vam)を前記データテーブルに対照させると、湯面のレベルが分かる。算出された湯面のレベルは、線型処理が行われ、測定距離に比例する電圧に換算されて出力される。
【0012】
前記実施の形態においては、検出器Sの受信コイルRに発生する電圧に基づいて直流増幅器14から出力される実測値(Vm)を正規化係数(K1)で補正しているが、他の実施の形態に係る方法として以下の方法でも本発明は実施できる。
即ち、割り込み信号発生器22から発生する信号に基づき、この時の直流増幅器14からの出力、即ち既知湯面レベルの実測値(Vm)を記憶するのと同時に、前記データテーブルでの既知湯面レベルでのデータ値(Vd)を出力して記憶し、これらを演算器にて、実測値(Vm)/データ値(Vd)からなる正規化係数(K2)を演算して記憶する。そして、データテーブルの各単位レベル毎の電圧データに正規化係数(K2)を掛けて、補正データテーブルを作成する。この補正データテーブルの各単位レベル間は当然直線補完、即ち折れ線近似が成されている。
この補正データテーブルを用いて、実際の測定電圧、即ち直流増幅器14の出力と対照させることによって、湯面レベルを出力できる。
【0013】
以上の実施の形態においては、折れ線近似のための基準データは複数個必要としない。電磁誘導を検出原理とする検出器は非線形な特性を有するが、本実施の形態のように溶鋼Mが存在しない点絶対基点と、校正のための電極レベル計(即ち、電極センサーG)等で計測するもう一つの点の合計2点を決め、利得補正することによって理論的に基準データへ変換再現できる。これを四則演算のみで可能としたので処理時間を問題とすることなく簡便でしかも実用的な補正方法を実現したものである。
【0014】
なお、参考までに、本発明の基本となる本発明の一実施の形態を適用した装置の調整手順を、更に具体的に説明すると、以下の(1)〜(4)の通りである。
(1)まず、測定対象のモールドB1に検出器Sを設置する。
(2)基準データテーブルの作成:模擬湯面を除きオフセット調整器15を調整し直流増幅器14の出力電圧を零とする。これによって、モールドB1等の近接する導体の影響が除去される。
(3)次に、模擬湯面をセットし湯面を10mm毎移動し基準データテーブルを作成する。
(4)実測湯面による検出信号の校正:モールドへ溶鋼を入れて、鋳込み湯面が上昇してくると、別途設けた定点検出の例えば電極式レベル計からの割り込み信号を受け直流増幅器14の出力電圧を取り込み、同時に前述(1)式に示す演算を行い正規化係数(K1)を求め記憶する。次いで、検出信号の補正データを得るために逐次得られる検出信号の即ち直流増幅器14の出力電圧(Vmx)と正規化係数(K1)との乗算を行う。
(5)利得補正された補正データは、基準データを用い公知の折れ線近似(二点間の直線近似)による線形変換を行い出力する。
以上のような補正演算処理によって、被検出体の材質の影響、検出器とモールド間ギャップの特性への影響等の補償を可能とする簡便な溶鋼湯面レベル計の校正方法を実現した。
【0015】
【発明の効果】
以上の説明からも明らかなように、第1の発明に係る電磁式溶鋼レベル検出器の簡易校正方法は、既知湯面レベルでの実測値(Vm)とデータテーブルでのデータ値(Vd)を求めて、データ値(Vd)/実測値(Vm)からなる正規化係数(K1)を求め、実際の測定値に正規化係数(K1)を乗じて、データテーブルから溶鋼面までの深さを測定している。そして、第2の発明に係る電磁式溶鋼レベル検出器の簡易校正方法においては、既知湯面レベルでの実測値(Vm)とデータテーブルでのデータ値(Vd)を求め、実測値(Vm)/データ値(Vd)からなる正規化係数(K2)を求めて、データテーブルに正規化係数(K2)を乗じて、補正データテーブルを作成し、実際の溶鋼面まので深さを、電磁式溶鋼レベル検出器の測定値を補正データテーブルに対照して実際の溶鋼面までの深さを測定している。従って、装置構成が簡便で、しかも新規な情報を用いないで実質的に検出誤差の解消を図ることが可能で、更には信頼性の高い電磁式溶鋼レベル検出器の簡易校正方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る電磁式溶鋼レベル検出器の簡易校正方法の装置構成を示すブロック図である。
【図2】直流増幅器の出力と湯面レベルとの関係を表すグラフである。
【図3】従来例に係る電磁式溶鋼レベル検出器のブロック図である。
【符号の説明】
11:交流電源、12:交流増幅器、13:同期検波器、14:直流増幅器、15:オフセット調整器、16:線形処理器、20:装置、21:補正演算器、22:割り込み信号発生器、S:検出器、B1:モールド、M:溶鋼、T:送信コイル、R:受信コイル、G:電極センサー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic molten steel level detector that measures the distance to a detected object by using eddy current generated in the detected object, and particularly to a molten metal level in a casting mold during continuous casting of the molten metal. The present invention relates to a simple signal calibration method.
[0002]
[Prior art]
FIG. 3 shows a general configuration of an electromagnetic molten steel level meter 10 provided with a transmission / reception coil. In FIG. 3, B is a mold, M is molten steel, and S is a detector. The detector S is composed of a transmission coil T and a reception coil R, 11 is an AC power source, 12 is an AC amplifier, 13 is a synchronous detector that converts AC voltage into DC voltage, 14 is a DC amplifier, and 15 is offset adjustment. 16 is a linear processor. The linear processor 16 is a device that outputs a non-linear DC output voltage into a linear form, that is, converts the voltage into a voltage corresponding to the measurement distance.
[0003]
In the configuration of FIG. 3, the detector S is installed at a position away from the mold B by a certain distance dm, the transmission coil T is energized from the AC power supply 11, and an AC magnetic field is generated by the transmission coil T. Since an induced voltage is generated in the receiving coil R in this magnetic field, this induced voltage is amplified by the AC amplifier 12, detected by the synchronous detector 13, and converted into a DC voltage. The output value of the DC voltage is mainly determined by the distance dm between the detector S and the mold B and the distance between the detector S and the molten steel M. A DC voltage is input to the DC amplifier 14 and a negative voltage corresponding to a voltage value determined by the distance S between the detector S and the mold is added from the offset adjuster 15. That is, the signal component due to the surrounding hardware is removed by the voltage added from the offset adjuster 15, and the DC voltage obtained by this is obtained only for the effective signal due to the molten metal surface level change by the molten steel M, and the linearity of the next stage The distance to the hot water level can be measured via the processor 16.
[0004]
FIG. 2 shows an example of the level characteristic result using the detector S and the distance dm between the molds as parameters, and the vertical axis shows the DC voltage output from the DC amplifier 14. As shown in FIG. 3, the detector S is provided at a position away from the mold wall at the upper part of the mold by a gap dm, and is used for molten steel level measurement. The detector S is housed in an insulator case (not shown) and can be adapted to a high temperature environment.
As apparent from FIG. 2, as the distance dm between the detector S and the mold decreases, the eddy current loss in the mold increases and the output voltage decreases. Here, if the data of dm = 15 is used as the reference data for linearization, there is a problem that a linearization error occurs in other data as is obvious.
As a method for solving this problem, for example, a molten metal surface detecting device described in Japanese Patent Publication No. 3-48448 is known, and a pair of non-magnetic and heat resistant materials close to the molten metal. An electromagnetic field generated by applying an alternating voltage to one of the pair of coils, and a detection unit in which the coils are arranged in parallel at a symmetric position about the perpendicular of the molten metal surface with a certain interval. A detecting / smoothing unit that uses the induced voltage of the other coil provided therein as a DC voltage signal, and a storage unit that stores in advance a voltage value that is determined by the action of the molten metal container and does not correspond to the distance between the detecting unit and the molten metal And a correction function unit that corrects the output voltage of the detection / smoothing unit using the stored voltage.
[0005]
[Problems to be solved by the invention]
In the molten steel level meter based on the detection principle of electromagnetic induction according to the above-described conventional example, the detection voltage of the secondary coil changes when the gap dm with the non-detection object around the detector S, for example, the mold, fluctuates. Measurement error occurs.
Further, the reference data of the linear processor 16 is usually obtained by moving the unit length (for example, 10 mm) using a simulated hot water surface (lead plate, stainless plate, etc.). On the other hand, the molten steel that is the actual detection target and the simulated molten metal surface have different material properties (conductivity), so that a conversion error cannot be avoided by linear calculation using the reference data.
Conventionally, in order to reduce these problems, (1) Reproducibility of detector installation position, (2) Selection of material close to the material characteristics of actual molten steel, (3) Arbitrary fixed point of reference data and actual molten steel level When the values match (determine a fixed point with an electrode-type level meter, etc.), the difference value with each voltage is obtained and stored, and thereafter the detected voltage obtained successively and the difference value are added to perform data correction (offset adjustment) However, there was a limit to error reduction.
Moreover, the molten metal surface detecting device described in Japanese Patent Publication No. 3-48448 has a problem that the apparatus becomes complicated and the measurement takes time.
The present invention has been made in view of such circumstances, and provides a simple calibration method for an electromagnetic molten steel level detector that is simple and can substantially eliminate detection errors without using new information.
[0006]
[Means for Solving the Problems]
A simple calibration method for an electromagnetic molten steel level detector according to the first invention that meets the above-mentioned object is a detector comprising a transmitting coil and a receiving coil arranged above and below, an AC power source that applies a current to the transmitting coil, Using an electromagnetic molten steel level detector having a synchronous detector that converts an AC voltage induced in the receiving coil into a DC signal, and an offset adjuster that extracts only an effective signal output from the synchronous detector Before starting casting , move the simulated molten metal for each unit level to obtain data, obtain a data table that approximates the broken line between the data, and in actual use, it is detected by the electrode level meter actual values in the known molten metal surface level (Vm) and data values in該既Chiyumen levels in the data table for the (Vd), the data value (Vd) / measured value (Vm) Ranaru obtains a normalization factor (K1), by multiplying the normalization factor with the actual measured value (K1), to measure the depth to the molten steel surface from said data table.
[0007]
In addition, a simple calibration method for an electromagnetic molten steel level detector according to a second aspect of the present invention includes a detector comprising a transmission coil and a reception coil arranged above and below, an AC power source for applying a current to the transmission coil, and the reception Casting using an electromagnetic molten steel level detector having a synchronous detector that converts an AC voltage induced in a coil into a DC signal and an offset adjuster that extracts only an effective signal output from the synchronous detector. Before starting , move the simulated hot water surface for each unit level to obtain data, obtain a data table that approximates the broken line between the data, and in actual use, known data detected by the electrode level meter Found in molten metal surface level (Vm) and data values in該既Chiyumen levels in the data table and the seeking (Vd), consisting of the measured value (Vm) / data value (Vd) A normalization factor (K2) is obtained, the data table is multiplied by the normalization factor (K2), a correction data table is created, and the measured value of the electromagnetic molten steel level detector is compared with the correction data table. And measure the depth to the actual molten steel surface.
In the simple calibration method for the electromagnetic molten steel level detector according to the first and second inventions, the detected voltage may be linearly processed.
[0008]
As described above, in the simple calibration method of the electromagnetic molten steel level detector according to the first and second inventions, the detected voltage of the electromagnetic molten steel level detector is mainly the distance dm between the detector S and the mold B, and Although determined by the distance between the detector S and the molten steel M, the influence of surrounding hardware on the output voltage has a certain proportional relationship if the detector S is specified. Therefore, a preliminary experiment is performed in advance for an arbitrary detector S to obtain a data table that approximates a polygonal line including data for each unit level serving as a reference. If the ratio between the data table value (Vd) and the actual measurement value (Vm) is obtained, this ratio relationship is maintained even for an arbitrary hot water level.
In the first invention, based on the data table, the data value sought (Vd) / measured value normalization factor consisting of (Vm) (K1), by multiplying the measured value of the normalization factor (K1) The actual measurement value is corrected, and the molten metal level is measured by comparing the correction value with the data table and output.
In the second invention, the data table is corrected in accordance with the measurement state, and the actual measured value is collated with the corrected data table to measure the distance.
In the first and second inventions, it is preferable that the final output is converted into a voltage proportional to the measurement distance, that is, it is output by performing linear processing.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a block diagram of an apparatus to which a simple calibration method for an electromagnetic molten steel level detector according to an embodiment of the present invention is applied. In FIG. 1, the same components as those used in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0010]
Here, in FIG. 1, 20 is a device to which a simple calibration method of an electromagnetic molten steel level detector according to an embodiment of the present invention is applied, 21 is a correction computing unit that processes the output from the DC amplifier 14, 22 is an interrupt signal generator, and for example, a contact signal that conducts when the molten metal level reaches a predetermined level may be input. The device 20 is configured by adding a new correction calculator to the conventional electromagnetic molten steel level detector.
A data table in which the detector S described above is disposed in the correction calculator 21 with a predetermined distance dm from the mold B 1 and records a DC voltage obtained by subtracting an offset voltage from the output voltage for each level. Is remembered. Since this data table is data for every 10 mm (unit level) as shown in the graph of FIG. 2, for example, the data table is regarded as a straight line and approximated by a broken line. Therefore, in the data table of the polygonal line approximation, the actual measurement value up to the molten metal surface and the output voltage correspond one-to-one.
[0011]
Next, the detector S is attached to an arbitrary mold B1 that is to be measured. In this case, it is not necessary to measure the distance between the mold B1 and the detector S, but the detector S needs to be set at a fixed position with respect to the mold B1.
When the molten metal surface in the mold B1 rises, the electrode sensor G comes into contact with the molten metal surface, and is output from the interrupt signal generator 22 to the correction calculator 21. Since the level of the molten metal when the electrode sensor G is in contact with the molten metal surface is known, the output from the DC amplifier 14 at this time, that is, the measured value (Vm) of the known molten metal surface level is stored at the same time as the data table. The data value (Vd) at the known hot water level is output and stored, and the following equation (1) is executed by an arithmetic unit.
Data value (Vd) / actual value (Vm) = normalization coefficient (K1) (1)
Then, when the normalization coefficient (K1) is stored and the apparatus 20 using the detector S is used to measure an arbitrary molten metal surface of the mold B1, the actual value from the DC amplifier 14 is measured. The correction value (Vam) is calculated by multiplying the output value (Vmx), which is a measured value, by the normalization coefficient (K1), and this correction value (Vam) is compared with the data table to determine the level of the molten metal surface. The calculated hot water level is subjected to linear processing, converted into a voltage proportional to the measurement distance, and output.
[0012]
In the above embodiment, the actual measurement value (Vm) output from the DC amplifier 14 is corrected with the normalization coefficient (K1) based on the voltage generated in the receiving coil R of the detector S. As a method according to the embodiment, the present invention can also be implemented by the following method.
That is, based on the signal generated from the interrupt signal generator 22, the output from the DC amplifier 14 at this time, that is, the actual measured value (Vm) of the known molten metal level is stored, and at the same time, the known molten metal level in the data table is stored. The data value (Vd) at the level is output and stored, and the arithmetic unit calculates and stores the normalization coefficient (K2) composed of the actual measurement value (Vm) / data value (Vd). Then, by multiplying the normalization factor (K2) to the voltage data of each unit for each level of the data table, to create the correction data table. Naturally, linear interpolation, that is, polygonal line approximation is performed between the unit levels of the correction data table.
By using this correction data table and comparing it with the actual measured voltage, that is, the output of the DC amplifier 14, it is possible to output the molten metal level.
[0013]
In the above embodiment, a plurality of reference data for polygonal line approximation is not required. The detector based on the detection principle of electromagnetic induction has non-linear characteristics. However, unlike the present embodiment, the point where the molten steel M does not exist ( absolute base point ) and the electrode level meter for calibration (ie, the electrode sensor G). It is possible to theoretically convert and reproduce the reference data by determining a total of two other points to be measured by the above method and correcting the gain. Since this is made possible only by four arithmetic operations, a simple and practical correction method is realized without causing any problem of processing time.
[0014]
For reference, the adjustment procedure of the apparatus to which the embodiment of the present invention that is the basis of the present invention is applied will be described more specifically as follows (1) to (4).
(1) First, the detector S is installed in the mold B1 to be measured.
(2) Creation of reference data table: The offset adjuster 15 is adjusted except for the simulated molten metal surface, and the output voltage of the DC amplifier 14 is set to zero. Thereby, the influence of adjacent conductors such as the mold B1 is removed.
(3) Next, a simulated hot water surface is set, and the hot water surface is moved every 10 mm to create a reference data table.
(4) Calibration of the detection signal based on the measured molten metal level: When molten steel is put into the mold and the cast molten metal level rises, an interrupt signal from, for example, an electrode type level meter for detecting a fixed point provided separately is received. The output voltage is taken in, and at the same time, the calculation shown in the above equation (1) is performed to obtain and store the normalization coefficient (K1). Next, in order to obtain correction data of the detection signal, the detection signal sequentially obtained, that is, the output voltage (Vmx) of the DC amplifier 14 and the normalization coefficient (K1) are multiplied.
(5) The correction data that has been gain-corrected is output by performing a linear conversion by a known broken line approximation (linear approximation between two points) using the reference data.
By the correction calculation process as described above, a simple method for calibrating a molten steel level meter that can compensate for the influence of the material of the object to be detected and the influence on the characteristics of the gap between the detector and the mold has been realized.
[0015]
【The invention's effect】
As apparent from the above description, the simple calibration method of the electromagnetic molten steel level detector according to the first invention is based on the measured value (Vm) at the known molten metal level and the data value (Vd) in the data table. Obtain the normalization coefficient (K1) consisting of the data value (Vd) / actual measurement value (Vm), multiply the actual measurement value by the normalization coefficient (K1), and calculate the depth from the data table to the molten steel surface. Measuring. And in the simple calibration method of the electromagnetic molten steel level detector which concerns on 2nd invention, the measured value (Vm) in a known molten metal surface level and the data value (Vd) in a data table are calculated | required, and measured value (Vm) / Obtain the normalization coefficient (K2) consisting of the data value (Vd), multiply the data table by the normalization coefficient (K2), create a correction data table, and the depth to the actual molten steel surface, The depth to the actual molten steel surface is measured by comparing the measured value of the molten steel level detector with the correction data table. Accordingly, it is possible to provide a simple calibration method for an electromagnetic molten steel level detector that has a simple apparatus configuration and can substantially eliminate detection errors without using new information. Can do.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an apparatus configuration of a simple calibration method for an electromagnetic molten steel level detector according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the output of a DC amplifier and the surface level.
FIG. 3 is a block diagram of an electromagnetic molten steel level detector according to a conventional example.
[Explanation of symbols]
11: AC power supply, 12: AC amplifier, 13: synchronous detector, 14: DC amplifier, 15: offset adjuster, 16: linear processor, 20: device, 21: correction calculator, 22: interrupt signal generator, S: detector, B1: mold, M: molten steel, T: transmitter coil, R: receiver coil, G: electrode sensor

Claims (2)

上下に配置された送信コイル及び受信コイルからなる検出器と、前記送信コイルに電流を印加する交流電源と、前記受信コイルに誘起される交流電圧を直流信号に変換する同期検波器と、該同期検波器によって出力された信号の有効信号分のみを取り出すオフセット調整器とを有する電磁式溶鋼レベル検出器を用い、鋳造開始前に模擬湯面を単位レベル毎に移動させてデータを取得し、該データの間を折れ線近似したデータテーブルを求めておき、
実際の使用にあっては、電極レベル計により検出された既知湯面レベルにおける実測値(Vm)と前記データテーブルでの該既知湯面レベルにおけるデータ値(Vd)を求めて、データ値(Vd)/実測値(Vm)からなる正規化係数(K1)を求め、
実際の測定値に前記正規化係数(K1)を乗じて、前記データテーブルから溶鋼面までの深さを測定することを特徴とする電磁式溶鋼レベル検出器の簡易校正方法。
A detector comprising a transmitter coil and a receiver coil disposed above and below; an AC power source for applying a current to the transmitter coil; a synchronous detector for converting an AC voltage induced in the receiver coil into a DC signal; Using an electromagnetic molten steel level detector having an offset adjuster that extracts only the effective signal of the signal output by the detector , the simulated molten metal surface is moved for each unit level before starting casting , and data is acquired. Find a data table that approximates the line between the data,
In the actual use, seeking data values in該既Chiyumen level measured value in the detected known bath level level by electrode level meter and (Vm) in the data table and (Vd), the data value ( Vd) / normalized value (K1) consisting of actual measurement value (Vm) is obtained,
A simple calibration method for an electromagnetic molten steel level detector, wherein an actual measured value is multiplied by the normalization coefficient (K1) to measure a depth from the data table to the molten steel surface.
上下に配置された送信コイル及び受信コイルからなる検出器と、前記送信コイルに電流を印加する交流電源と、前記受信コイルに誘起される交流電圧を直流信号に変換する同期検波器と、該同期検波器によって出力された信号の有効信号分のみを取り出すオフセット調整器とを有する電磁式溶鋼レベル検出器を用い、鋳造開始前に模擬湯面を単位レベル毎に移動させてデータを取得し、該データの間を折れ線近似したデータテーブルを求めておき、
実際の使用にあっては、電極レベル計により検出された既知湯面レベルにおける実測値(Vm)と前記データテーブルでの該既知湯面レベルにおけるデータ値(Vd)を求め、実測値(Vm)/データ値(Vd)からなる正規化係数(K2)を求めて、前記データテーブルに前記正規化係数(K2)を乗じて、補正データテーブルを作成し、
前記電磁式溶鋼レベル検出器の測定値を前記補正データテーブルに対照して実際の溶鋼面までの深さを測定することを特徴とする電磁式溶鋼レベル検出器の簡易校正方法。
A detector comprising a transmitter coil and a receiver coil disposed above and below; an AC power source for applying a current to the transmitter coil; a synchronous detector for converting an AC voltage induced in the receiver coil into a DC signal; Using an electromagnetic molten steel level detector having an offset adjuster that extracts only the effective signal of the signal output by the detector , the simulated molten metal surface is moved for each unit level before starting casting , and data is acquired. Find a data table that approximates the line between the data,
In the actual use, seeking data values in該既Chiyumen level measured value in the detected known bath level level by electrode level meter and (Vm) in the data table and (Vd), Found ( Vm) / data value (Vd) is obtained as a normalization coefficient (K2), the data table is multiplied by the normalization coefficient (K2), and a correction data table is created.
A simple method for calibrating an electromagnetic molten steel level detector, wherein the measured value of the electromagnetic molten steel level detector is compared with the correction data table to measure the depth to the actual molten steel surface.
JP2001135052A 2001-05-02 2001-05-02 Simple calibration method for electromagnetic molten steel level detector Expired - Lifetime JP4585709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001135052A JP4585709B2 (en) 2001-05-02 2001-05-02 Simple calibration method for electromagnetic molten steel level detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001135052A JP4585709B2 (en) 2001-05-02 2001-05-02 Simple calibration method for electromagnetic molten steel level detector

Publications (2)

Publication Number Publication Date
JP2002331342A JP2002331342A (en) 2002-11-19
JP4585709B2 true JP4585709B2 (en) 2010-11-24

Family

ID=18982601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001135052A Expired - Lifetime JP4585709B2 (en) 2001-05-02 2001-05-02 Simple calibration method for electromagnetic molten steel level detector

Country Status (1)

Country Link
JP (1) JP4585709B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118619B2 (en) * 2008-12-24 2013-01-16 新日鉄住金エンジニアリング株式会社 Method for measuring molten steel level in mold of continuous casting equipment
JP5762333B2 (en) * 2012-02-15 2015-08-12 新日鐵住金株式会社 Method for measuring the level in a continuous casting mold
CN102688996B (en) * 2012-06-13 2013-11-06 鞍钢股份有限公司 Method for inhibiting electromagnetic braking from interfering signal of liquid level meter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029832U (en) * 1988-07-05 1990-01-22
JPH0348448B2 (en) * 1982-09-06 1991-07-24 Nippon Steel Corp
JPH0540056A (en) * 1991-03-07 1993-02-19 Sumitomo Metal Ind Ltd Automatic calibration method of eddy current type molten metal level indicator for continuous casting mold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348448B2 (en) * 1982-09-06 1991-07-24 Nippon Steel Corp
JPH029832U (en) * 1988-07-05 1990-01-22
JPH0540056A (en) * 1991-03-07 1993-02-19 Sumitomo Metal Ind Ltd Automatic calibration method of eddy current type molten metal level indicator for continuous casting mold

Also Published As

Publication number Publication date
JP2002331342A (en) 2002-11-19

Similar Documents

Publication Publication Date Title
JP3028275B2 (en) How to calibrate the sensor
JP2014219205A (en) Method or device for nondestructive inspection using alternating magnetic field
JP4585709B2 (en) Simple calibration method for electromagnetic molten steel level detector
JP3241087B2 (en) Method and apparatus for determining the end position of a metallic material body
JPH08262073A (en) Method and device for measuring power factor
JPH08233606A (en) Position detecting device
JPH08122166A (en) Method and instrument for measuring temperature
JPS62853A (en) Instrument and method for measuring hardness
JP3705019B2 (en) Measuring device
JPS60216959A (en) Detection of level of continuous casting mold
TWI794764B (en) Eddy current sensing system and method thereof
JPS60138430A (en) Temperature measuring method of metallic plate by electromagnetic induction
WO1988006268A1 (en) Apparatus for measuring or testing dimension or contour through measuring distance
JP2002340504A (en) Method and apparatus for detecting magnetic position
JPS6336250Y2 (en)
JP3277747B2 (en) Capacitive electromagnetic flowmeter
KR100415922B1 (en) Non-magnetic coating layer thickness calibration method using magnetic induction sensor
JPS5983004A (en) Method for measuring thickness of wall of refractories for fused metal container
JPH03291531A (en) Calibrating method for eddy current type molten metal level gauge
JPS58115319A (en) Correcting method of measuring device
JPS59195166A (en) Rough measuring method of frequency
JPH08122127A (en) Electromagnetic molding-level detector
JPS58103601A (en) Thickness measuring device for insulator
JPH05280921A (en) Section measuring device of steel material
KR101543411B1 (en) Apparatus for measuring coating layer thickness and the method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4585709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term