JPH0346353A - Formation of wiring - Google Patents

Formation of wiring

Info

Publication number
JPH0346353A
JPH0346353A JP18200989A JP18200989A JPH0346353A JP H0346353 A JPH0346353 A JP H0346353A JP 18200989 A JP18200989 A JP 18200989A JP 18200989 A JP18200989 A JP 18200989A JP H0346353 A JPH0346353 A JP H0346353A
Authority
JP
Japan
Prior art keywords
film
via hole
plating
forming
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18200989A
Other languages
Japanese (ja)
Inventor
Shunji Nakao
中尾 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18200989A priority Critical patent/JPH0346353A/en
Publication of JPH0346353A publication Critical patent/JPH0346353A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a defect, of an element, caused by a cavity by a method wherein a substratum metal film is formed of a plated film only inside a via hole and a plated film is then formed on the rear surface of a substrate. CONSTITUTION:An Au/Ti film 13 as a substratum metal film whose bonding property with reference to Au is good is formed on the whole rear surface of a substrate 11 including a via hole 12; and a photoresist film 14 is left only inside the via hole 12. After that, also the Au/Ti film 13 on a sidewall near an opening of the via hole 13 is removed simultaneously by, e.g. an ion milling operation and, in addition, by implanting ions obliquely. An electric current is applied to a source pad 4 and to the Au/Ti film 13; an Au film 15 is precipitated inside the via hole 12 by an electrolytic plating method. When the Au film 15 is formed in advance only inside the via hole by the electrolytic plating method in this manner, the via hole can be filled completely with the Au film 15. Thereby, a cavity is not produced inside the via hole and a defect is not produced in a heat treatment during a post process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体基板を貫通したバイアホール内へのめっ
き配線の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of forming plated wiring in a via hole penetrating a semiconductor substrate.

〔従来の技術〕[Conventional technology]

高出力GaAsFET、特に周波数がX−に、。 High power GaAsFET, especially at frequency X-.

帯で用いるFETは、寄生要素となるソースインダクタ
ンスL8.ソース抵抗R8を効果的に低減すべく、バイ
アホール/PH3構造を採用して素子の高利得、高出力
化を図っている。このうちバイアホール構造は、ソース
電極に合わせてGaAs基板の裏面から穴をあけソース
接地を行うもので、ソース電極とアースグランドとの配
線距離を最も短縮できかつ接地面積を広くとれることか
らり。
The FET used in the band has a source inductance L8. which is a parasitic element. In order to effectively reduce the source resistance R8, a via hole/PH3 structure is adopted to increase the gain and output of the element. Among these, the via hole structure is used to ground the source by drilling a hole from the back side of the GaAs substrate in line with the source electrode, because it can shorten the wiring distance between the source electrode and the earth ground, and provide a large ground area.

低減に有効である。Effective in reducing

高出力FETは、高出力を得るために大直流入力電力を
加えねばならず、素子の効率が50%にも満たない以上
、熱抵抗Rthの上昇は素子のチャネル温度を上昇させ
、電子移動度の低下によるRsの増大や伝達コンダクタ
ンスgmの低下を招く。
High-output FETs require large DC input power to be applied to obtain high output, and since the efficiency of the device is less than 50%, an increase in thermal resistance Rth increases the channel temperature of the device and reduces electron mobility. This results in an increase in Rs and a decrease in transfer conductance gm.

PH3構造はこのRth低域に有効で、GaAs基板厚
みを25〜50μm程度まで薄くし、Auを30〜50
μm厚みでプレート状に配することにより放熱性を良く
している。
The PH3 structure is effective in this low Rth range, and the GaAs substrate thickness is reduced to about 25 to 50 μm, and the Au is reduced to 30 to 50 μm.
Heat dissipation is improved by arranging it in a plate shape with a thickness of μm.

従来、バイアスホール加工はウェットエツチングを用い
ているが、その等方的なエツチング特性からソース電極
幅を必要以上に大きくとらねばならず、これに伴ってチ
ップ横幅も大きくなる。したがって、高周波になるほど
人力信号に対する周期動作が悪化し、回路整合損失が増
加するという不具合が生じる。このため、最近ではバイ
アホール形成をドライエツチングを用い、垂直加工して
ソース電極幅を狭くする方法が開発され、実用化しつつ
ある。
Conventionally, wet etching has been used to process bias holes, but due to its isotropic etching characteristics, the width of the source electrode must be made larger than necessary, and the width of the chip also increases accordingly. Therefore, as the frequency becomes higher, the periodic operation with respect to the human input signal becomes worse, resulting in an increase in circuit matching loss. For this reason, a method has recently been developed to narrow the source electrode width by vertically processing the via hole using dry etching, and is now being put into practical use.

このドライエツチングが加工したバイアホール/PH3
構造の高出力GaAsFETのそれぞれ異なる構造を第
3図、第4図の一部破断斜視図に示す。第3図はGaA
s基板11上に形成したソースバッド4の直下にバイア
ホール12を形成し、このバイアホール12を含む基板
11の裏面にAu膜17Aを形成してソースパッド4に
電気接続を行ったものである。また、第4図は第3図よ
りも更にり、を低減させるために、各ソース電極5の直
下にバイアホール12を形成し、このバイアホール12
を含む基板の裏面にAu膜17Aを形成したものである
Via hole processed by this dry etching / PH3
Different structures of high-power GaAsFETs are shown in partially cutaway perspective views in FIGS. 3 and 4. Figure 3 shows GaA
A via hole 12 is formed directly under the source pad 4 formed on the s-substrate 11, and an Au film 17A is formed on the back surface of the substrate 11 including the via hole 12 to electrically connect to the source pad 4. . In addition, in order to reduce the noise in FIG. 4 even more than in FIG. 3, a via hole 12 is formed directly under each source electrode 5.
An Au film 17A is formed on the back surface of the substrate including the substrate.

この製造プロセスを第5図に示す。GaAs基板11の
表面にFET素子を形成した後、第5図(a)に示すよ
うに:ソースバッド4に合わせてGaAs基板11の裏
面から塩素系ガスRIEでバイアホール12を加工し貫
通させる。この場合GaAs基板11の厚みを30μm
、バイアホール12の開口幅を20umとする。
This manufacturing process is shown in FIG. After forming the FET element on the surface of the GaAs substrate 11, as shown in FIG. 5(a), a via hole 12 is processed and penetrated from the back surface of the GaAs substrate 11 by chlorine gas RIE in alignment with the source pad 4. In this case, the thickness of the GaAs substrate 11 is 30 μm.
, the opening width of the via hole 12 is 20 um.

次に、第5図(b)のように、A u / T i膜1
3をスパッタ法により2000人の厚さに成長する。そ
して、第5図(C)に示すように、このA u / T
i膜13をめっき電流通路として、通常の電解めっき法
で基板11の裏面及びバイアホール12内にAu膜17
Aを厚さ35μmで被覆させる。
Next, as shown in FIG. 5(b), the A u /Ti film 1
3 was grown to a thickness of 2000 by sputtering. Then, as shown in FIG. 5(C), this A u / T
Using the i-film 13 as a plating current path, the Au film 17 is formed on the back surface of the substrate 11 and inside the via hole 12 by a normal electrolytic plating method.
A is coated with a thickness of 35 μm.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のバイアホール配線形成方法は、第5図(
C)に示すように、電解めっき法で形成したAu膜17
Aはバイアホール12内に完全に充填されず空洞Xが生
じる。これは第6図にAu膜17Aの堆積過程を示すよ
うに、バイアホール12内ではめっき浴の置換効率が悪
く底部並びに側壁部近傍の金属イオン(A u )が欠
乏し、Auの電析反応が低下することと、バイアホール
12の開口部縁で電界集中を起こし、電流密度が増大し
、Auの析出速度が最も早くなり、やがてホール開口部
を塞ぐことの相互作用によるものである。
The conventional via hole wiring formation method described above is shown in FIG.
As shown in C), the Au film 17 formed by electrolytic plating
A is not completely filled into the via hole 12, and a cavity X is created. This is because, as shown in FIG. 6, which shows the deposition process of the Au film 17A, the replacement efficiency of the plating bath in the via hole 12 is poor, and metal ions (A u ) near the bottom and sidewalls are depleted, resulting in the Au electrodeposition reaction. This is due to the interaction between the decrease in the field and the concentration of the electric field at the edge of the opening of the via hole 12, which increases the current density, and the deposition rate of Au becomes the fastest, eventually closing the hole opening.

この空洞Xの中にはめっき時の反応ガスやめっき液が留
まっていることから、後工程のFETチップのマウント
組み立て時に受ける約350°Cの熱処理で体膨張し、
ソース電極を持ち上げ、膨れや破れの原因となり、素子
不良を生じるという問題がある。
Because the reaction gas and plating solution during plating remain in this cavity
There is a problem in that the source electrode is lifted up, causing swelling and tearing, resulting in device failure.

本発明はこのような問題を解消した配線の形成方法を提
供することを目的とする。
An object of the present invention is to provide a method for forming wiring that eliminates such problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の配線形成方法は、半導体基板の表面に形成した
電極に連続されるめっき電流通路を形成する工程と、前
記電極の裏面側に半導体基板を貫通するバイアホールを
開設する工程と、このバイアーホールを含む半導体基板
の裏面に薄い下地金属膜を形成する工程と、半導体基板
の裏面に樹脂膜を塗布形成し、かつこれを選択的に除去
して前記バイアホール内にのみ樹脂膜を残す工程と、こ
の樹脂膜をマスクにして前記薄い下地金属膜をエツチン
グし、前記バイアホール内にのみ下地金属膜を残す工程
と、前記めっき電流通路及び電極を通して下地金属膜に
通電を行ってバイアホール内にのみめっき膜を形成する
工程と、このめっき膜に繋がるめっき膜を半導体基板の
裏面に形成する工程とを含んでいる。
The wiring forming method of the present invention includes a step of forming a plating current path continuous to an electrode formed on the surface of a semiconductor substrate, a step of opening a via hole penetrating the semiconductor substrate on the back side of the electrode, and a step of forming a via hole that penetrates the semiconductor substrate on the back side of the electrode. A step of forming a thin base metal film on the back surface of the semiconductor substrate including the hole, and a step of coating and forming a resin film on the back surface of the semiconductor substrate and selectively removing it to leave the resin film only in the via hole. and a step of etching the thin base metal film using this resin film as a mask, leaving the base metal film only in the via hole, and supplying current to the base metal film through the plating current path and electrode to remove the base metal film inside the via hole. The method includes a step of forming a plating film only on the surface of the semiconductor substrate, and a step of forming a plating film connected to the plating film on the back surface of the semiconductor substrate.

(作用) この製造方法では、最初に下地金属膜を利用してバイア
ホール内にのみめっき膜を形成し、その上で基板の裏面
にめっき膜を形成するため、めっき膜によるバイアホー
ル開口部の閉塞状態が回避でき、バイアホール内での空
洞の発生が防止される。
(Function) In this manufacturing method, a plating film is first formed only in the via hole using a base metal film, and then a plating film is formed on the back side of the substrate, so the via hole opening is formed by the plating film. Blockage can be avoided and cavities can be prevented from forming within the via hole.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の高出力GaAs FETの
チップ1の平面図であり、2はゲート電極3に繋がるゲ
ートパッド、4はソース電極5と一体のソースパッド、
6はドレイン電極7と一体のドレインパッドである。ま
た、前記チップ1の周囲に設けられるチップ分離ライン
8の一部には配線形成に必要なめっき電流通路9を形成
している。
FIG. 1 is a plan view of a high-power GaAs FET chip 1 according to an embodiment of the present invention, in which 2 is a gate pad connected to a gate electrode 3, 4 is a source pad integrated with a source electrode 5,
6 is a drain pad integrated with the drain electrode 7. Further, in a part of the chip separation line 8 provided around the chip 1, a plating current path 9 necessary for wiring formation is formed.

このめっき電流通路9は、ゲート、ソース、ドレインの
各パッドを構成する最終メタルA u / P t/T
iを形成する際に同時に形成しており、各FETチップ
lのソースパッド4と電気的に接続している。
This plating current path 9 is connected to the final metal A u / P t / T constituting the gate, source, and drain pads.
It is formed at the same time as forming FET chip 1, and is electrically connected to the source pad 4 of each FET chip 1.

そして、このソースバッド4或いはソース電極5の裏面
側の基板にバイアホールを開設し、ソースパッド4に電
気接続されるめっき配線を形成している。
A via hole is opened in the substrate on the back side of the source pad 4 or the source electrode 5, and a plated wiring electrically connected to the source pad 4 is formed.

以後の工程を第2図(a)乃至(h)に示す。The subsequent steps are shown in FIGS. 2(a) to (h).

先ず、第2図(a)のように、GaAs基板11の表面
にFETを形成した後、裏面を研磨、ウェットエツチン
グにより削り、GaAs基板11の厚さを30μmに仕
上げる。そして、ここではソースパッド4に合わせて裏
面から塩素系ガスを用いたRIEによりバイアホールI
2を形成する。貫通したバイアホールではソースパッド
4のTiが露出する。なお、ソース電極5にバイアホー
ルを開設したときには、AuGe系とGaAsの合金が
露出される。
First, as shown in FIG. 2(a), an FET is formed on the front surface of a GaAs substrate 11, and then the back surface is polished and etched by wet etching to finish the thickness of the GaAs substrate 11 to 30 μm. Here, a via hole I is formed by RIE using chlorine gas from the back side in line with the source pad 4.
form 2. The Ti of the source pad 4 is exposed through the via hole. Note that when a via hole is opened in the source electrode 5, the AuGe-GaAs alloy is exposed.

次いで、第2図(b)のように、バイアホール12を含
む基板11の裏面の全面にAuとの接着性が良い下地金
属膜としてAu/Ti膜13をスパッタ法により250
0人の厚さに形成する。
Next, as shown in FIG. 2(b), an Au/Ti film 13 with a thickness of 250 mm is coated on the entire back surface of the substrate 11 including the via hole 12 by sputtering as a base metal film with good adhesion to Au.
Form to a thickness of 0 people.

次に、第2図(C)のように、基板11の裏面にフォト
レジスト膜14を2.3回に分けて重ね塗布し、バイア
ホール12内のフォトレジスト膜14の厚さが5〜10
μmになるようにする。バイアホール12の開口部では
フォトレジスト膜14が十分塗布されないがこれは支障
ない。
Next, as shown in FIG. 2(C), the photoresist film 14 is overcoated on the back surface of the substrate 11 in 2.3 times, so that the thickness of the photoresist film 14 in the via hole 12 is 5 to 10 mm.
Make it so that it is μm. Although the photoresist film 14 is not sufficiently coated at the opening of the via hole 12, this is not a problem.

次いで、第2図(d)のように、フォトレジスト膜14
に対して選択的に露光、現像を行い、バイアホール12
内にのみフォトレジスト膜14を残す。その後、第2図
(e)のように、例えばイオンミリングにより基板11
の裏面のA u / T i膜13を除去し、更にイオ
ン入射を斜めにしてバイアホール12の開口付近の側壁
のA u / T i膜13も同時に除去する。
Next, as shown in FIG. 2(d), the photoresist film 14 is
selectively expose and develop the via hole 12.
The photoresist film 14 is left only inside. Thereafter, as shown in FIG. 2(e), the substrate 11 is removed by, for example, ion milling.
The A u/Ti film 13 on the back surface of the via hole 12 is removed, and the A u/Ti film 13 on the side wall near the opening of the via hole 12 is also removed at the same time by making the ion incidence oblique.

次に、第2図(f)のように、02プラズマと有機溶剤
によりバイアホール12内のフォトレジスト14を除去
する。その後、第2図(g)のように、第1図に示した
めっき電流通路9を利用してソースパッド4及びAu/
Ti膜13に通電し、電解めっき法によりバイアホール
12内にAu膜15を析出させる。更に、バイアホール
12内がAu膜15で充填されたら、第2図(h)のよ
うに、基板11の裏面の全面にスパッタ法により、Au
/TiwA16を厚さ2500人に形成し、かつこれを
めっきパスとしてAu膜17を35μmの厚さにめっき
する。
Next, as shown in FIG. 2(f), the photoresist 14 in the via hole 12 is removed using O2 plasma and an organic solvent. Thereafter, as shown in FIG. 2(g), using the plating current path 9 shown in FIG.
Electricity is applied to the Ti film 13, and an Au film 15 is deposited in the via hole 12 by electrolytic plating. Furthermore, after the via hole 12 is filled with the Au film 15, as shown in FIG.
/TiwA 16 is formed to a thickness of 2500 mm, and using this as a plating pass, an Au film 17 is plated to a thickness of 35 μm.

この方法では、先にバイアホール内にのみ電解めっき法
によりAu膜15を形成することで、バイアホール内を
Au膜15で完全に充填することができる。したがって
、バイアホール12内に空洞が生じることはなく、後工
程での熱処理においてもソース電極の持ち上げ、膨れ、
破れ等の不具合が生じることはない。
In this method, the via hole can be completely filled with the Au film 15 by first forming the Au film 15 only in the via hole by electrolytic plating. Therefore, no cavities are formed in the via hole 12, and the source electrode is not lifted up, bulged, or bulged during heat treatment in the subsequent process.
No problems such as tearing will occur.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、バイアホール内にのみ下
地金属膜を選択的に形成し、この下地金属膜をバイアホ
ール内にのみめっき膜を形成し、その上で基板の裏面に
めっき膜を形成しているため、めっき膜によるバイアホ
ール開口部の閉塞状態を回避してバイアホール内での空
洞の発生を防止しでき、この空洞が原因とされる素子不
良を未然に防止することができる効果がある。
As explained above, the present invention selectively forms a base metal film only within the via hole, forms a plating film using this base metal film only within the via hole, and then forms a plating film on the back surface of the substrate. Because of this, it is possible to avoid the via hole opening from being blocked by the plating film and prevent the formation of cavities within the via holes, making it possible to prevent element failures caused by these cavities. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるFETの平面図、第
2図(a)乃至(h)は本発明の一実施例を工程順に示
す断面図、第3図及び第4図はそれぞれ異なるバイアホ
ール/PH3構造の一部破断斜視図、第5図(a)乃至
(C)は従来の製造方法を工程順に示す断面図、第6図
は従来方法の不具合を説明するための断面図である。 1・・・FETチップ、2・・・ゲートパッド、3・・
・ゲート電極、4・・・ソースパッド、5・・・ソース
電極、6・・・ドレインパッド、7・・・ドレイン電極
、8・・・チップ分離ライン、9・・・めっき電流通路
、11・・・GaAs基板、12・・・バイアホール、
13・・・A u / T i膜、14・・・フォトレ
ジスト膜、15−Au膜、16・・・Au/Ti膜、1
7.17A・”Au膜。 第 図 第4 図 第 2 図 \ \ (イオンミン〉)”ノ \  / / /
Fig. 1 is a plan view of an FET according to an embodiment of the present invention, Figs. 2 (a) to (h) are sectional views showing an embodiment of the present invention in the order of steps, and Figs. 3 and 4 are different from each other. A partially cutaway perspective view of a via hole/PH3 structure, Figures 5(a) to (C) are cross-sectional views showing the conventional manufacturing method in the order of steps, and Figure 6 is a cross-sectional view for explaining defects in the conventional method. be. 1...FET chip, 2...gate pad, 3...
- Gate electrode, 4... Source pad, 5... Source electrode, 6... Drain pad, 7... Drain electrode, 8... Chip separation line, 9... Plating current path, 11. ...GaAs substrate, 12... via hole,
13... Au/Ti film, 14... Photoresist film, 15-Au film, 16... Au/Ti film, 1
7.17A・"Au film. Fig. 4 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板の表面に形成した電極に連続されるめっ
き電流通路を形成する工程と、前記電極の裏面側に半導
体基板を貫通するバイアホールを開設する工程と、この
バイアーホールを含む半導体基板の裏面に薄い下地金属
膜を形成する工程と、半導体基板の裏面に樹脂膜を塗布
形成し、かつこれを選択的に除去して前記バイアホール
内にのみ樹脂膜を残す工程と、この樹脂膜をマスクにし
て前記薄い下地金属膜をエッチングし、前記バイアホー
ル内にのみ下地金属膜を残す工程と、前記めっき電流通
路及び電極を通して下地金属膜に通電を行ってバイアホ
ール内にのみめっき膜を形成する工程と、このめっき膜
に繋がるめっき膜を半導体基板の裏面に形成する工程と
を含むことを特徴とする配線形成方法。
1. A step of forming a plating current path that is continuous with the electrode formed on the surface of the semiconductor substrate, a step of opening a via hole penetrating the semiconductor substrate on the back side of the electrode, and a step of forming a plating current path that is continuous with the electrode formed on the surface of the semiconductor substrate. a step of forming a thin base metal film on the back surface; a step of coating and forming a resin film on the back surface of the semiconductor substrate; and a step of selectively removing this to leave the resin film only in the via hole; Etching the thin base metal film using a mask to leave the base metal film only in the via hole, and forming a plating film only in the via hole by applying current to the base metal film through the plating current path and electrode. 1. A wiring forming method comprising the steps of: forming a plating film connected to the plating film on the back surface of a semiconductor substrate.
JP18200989A 1989-07-14 1989-07-14 Formation of wiring Pending JPH0346353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18200989A JPH0346353A (en) 1989-07-14 1989-07-14 Formation of wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18200989A JPH0346353A (en) 1989-07-14 1989-07-14 Formation of wiring

Publications (1)

Publication Number Publication Date
JPH0346353A true JPH0346353A (en) 1991-02-27

Family

ID=16110730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18200989A Pending JPH0346353A (en) 1989-07-14 1989-07-14 Formation of wiring

Country Status (1)

Country Link
JP (1) JPH0346353A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028954A1 (en) * 1997-11-28 1999-06-10 Robert Bosch Gmbh Method for applying a protecting lacquer on a wafer
JP2007005402A (en) * 2005-06-21 2007-01-11 Matsushita Electric Works Ltd Method of forming through interconnection line in semiconductor substrate
JP2008053568A (en) * 2006-08-25 2008-03-06 Nec Electronics Corp Semiconductor device and method for manufacturing the same
JP2011249844A (en) * 2011-08-29 2011-12-08 Renesas Electronics Corp Semiconductor device and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028954A1 (en) * 1997-11-28 1999-06-10 Robert Bosch Gmbh Method for applying a protecting lacquer on a wafer
US6340644B1 (en) 1997-11-28 2002-01-22 Robert Bosch Gmbh Method for applying a protecting lacquer on a wafer
JP2007005402A (en) * 2005-06-21 2007-01-11 Matsushita Electric Works Ltd Method of forming through interconnection line in semiconductor substrate
JP4552770B2 (en) * 2005-06-21 2010-09-29 パナソニック電工株式会社 Method for forming through wiring on semiconductor substrate
JP2008053568A (en) * 2006-08-25 2008-03-06 Nec Electronics Corp Semiconductor device and method for manufacturing the same
US8102049B2 (en) 2006-08-25 2012-01-24 Renesas Electronics Corporation Semiconductor device including through electrode and method of manufacturing the same
JP2011249844A (en) * 2011-08-29 2011-12-08 Renesas Electronics Corp Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5496748A (en) Method for producing refractory metal gate electrode
JPH0346353A (en) Formation of wiring
JPS59123270A (en) Monolithic circuit
JPH05275373A (en) Manufacture of compound semiconductor device
JPH03102839A (en) Semiconductor device
JP2852679B2 (en) Semiconductor device and manufacturing method thereof
JPS63126250A (en) Semiconductor device and manufacture thereof
JP2630304B2 (en) Method for forming gate electrode of field effect transistor
JPH04335552A (en) Manufacture of semiconductor device
JPS62211962A (en) Manufacture of high-frequency semiconductor device
JPS63155673A (en) Field-effect semiconductor device
JPS6179261A (en) Manufacture of semiconductor device
JP2792421B2 (en) Method for manufacturing semiconductor device
JPH05152340A (en) Field-effect transistor
JPH05335296A (en) Fabrication of semiconductor device
JPH04276631A (en) Electric field effect transfer production method
JPH06132320A (en) Semiconductor integrated circuit
JPH0491441A (en) Manufacture of field-effect transistor
JPH03225861A (en) Manufacture of semiconductor integrated circuit
JP2863216B2 (en) Method for manufacturing semiconductor device
JPH11150113A (en) Manufacture of semiconductor device
JPH07107906B2 (en) Method for manufacturing semiconductor device
JPH0254937A (en) Manufacture of semiconductor device
JPH04307737A (en) Manufacture of semiconductor device
JPH0364023A (en) Formation of electrode on semiconductor substrate