JPH0340954A - 超伝導セラミックスの焼成方法 - Google Patents

超伝導セラミックスの焼成方法

Info

Publication number
JPH0340954A
JPH0340954A JP1174691A JP17469189A JPH0340954A JP H0340954 A JPH0340954 A JP H0340954A JP 1174691 A JP1174691 A JP 1174691A JP 17469189 A JP17469189 A JP 17469189A JP H0340954 A JPH0340954 A JP H0340954A
Authority
JP
Japan
Prior art keywords
temperature
temp
sintering
precursor
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1174691A
Other languages
English (en)
Inventor
Kinyou Tanaka
均洋 田中
Kazutaka Haniyu
和隆 羽生
Noboru Sato
昇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1174691A priority Critical patent/JPH0340954A/ja
Publication of JPH0340954A publication Critical patent/JPH0340954A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、B1−3r−Ca−Cu−○系の超伝導セラ
ごツクスの焼成方法に関するものである。
C発明の概要〕 本発明は、S r COs、  Ca Cox及びCu
Oを仮焼してSr−Ca−Cu−0前駆物質となし、こ
れをBi、○、と混合して適切な雰囲気中、融解寸前の
温度に保持して焼結することで、反応性の向上を図り、
B tzs rzcaxcuzo+oの含有率の高い超
伝導セラミックスを得ようとするものである。
〔従来の技術〕
近年、酸化物超伝導体(超伝導セラ1ノクス)に関する
研究が各方面で盛んに行われており、演体窒素の沸点よ
り高い超伝導臨界温度を有する物質群も発見されている
0例えば、Y−Ba−Cu−O(YBCO系)超伝導セ
ラくツクス、B1Sr−Ca−Cu−0(BSCCO系
)超伝導セラミックス、Tl−Ba−Ca−Cu −0
(TBCCO系)超伝導セラミックス等である。なかで
も、B5CC0系超伝導セラミックスは、耐候性に優れ
ていること、毒性が少ないこと等の利点を有し、液体窒
素温度で実用可能な材料の一つとして注目されている。
ところで、これら超伝導セラミックスは、原料混合、仮
焼、粉砕、成形、、焼結等の工程を経て。
いわゆる固相反応によって作成されており、前述のB5
CC0系超伝導セラミックスも例外ではない。すなわち
、前記B5CC0系超伝導セラミ・ンクスは、通常はS
rCOz、CaC0t、Cu0BI□O8を原料として
所定のモル比で混合し、仮焼、プレス成形後、大気中で
焼結することにより作成されている。
〔発明が解決しようとする課題] しかしながら、前述の混合物を出発原料とした場合、B
i、0.の融点が低いために仮焼時に十分に高温にする
ことができず、そのため炭酸塩が本焼成時まで残留し、
反応性を低める可能性がある。
例えば、本焼成に移行するための加圧成形後のペレソト
にまでSrCO2,Ca COzが残存し、固相反応が
不均一に進行するばかりか反応性も低下し、結果として
セラミックスの品位が低下する虞れがあり、焼結にも長
時間を要することとなる。
炭酸塩の代わりに酸化物(SrO,Cab)を出発原料
に使用すると反応性が高まることが知られているが、ア
ルカリ土類金属の酸化物は耐候性に難があるため取り扱
いが煩雑である。
一方、B5CC0系超伝導セラ旦ツクスには、B i 
t S r z Ca 1 Cu z○、〔比界温度8
0に、以下(2221)と略称する。〕とBixSrz
CazCuxo+o CCm界温度105に、以下(2
223)と略称する。〕の2つの超伝導体が存在するこ
とが知られており、従来の固相反応に従って焼成を行う
とこれらの混合物として得られる。この場合、長超時間
の焼成によっても(2223)の含有量は50%程度が
限度である。酸化物超伝導体の研究を進めるに際しては
、単一相での検討が望まれるところであり、前述のよう
な混合物となることは好ましいものではない。また、p
bを添加した系においてほぼ純粋な(2223)を得る
ことが知られているが、Pbを添加した物質は純粋なり
5cco系超伝導セラミツクスとは異なる物性を示す可
能性がある。
そこで本発明は、かかる従来の実情に鑑みて提案された
ものであって、炭酸塩を出発原料として使用した場合に
も高い反応性を確保することができ、品質の高い超伝導
セラミックスを短い焼結時間で作成することが可能な焼
成方法を提供することを目的とする。
さらに本発明は、pb等を添加しないで(2223)の
含有量の高い超伝導セラミックスを得ることができる焼
成方法を提供することを目的とする。
〔課題を解決するための手段] 本発明の焼成方法は、上述の目的を達成するために、S
rCOs、CaC○、及びCuOを仮焼してSr−Ca
−Cu−0前駆物質を形成し粉砕した後、Bi、0.と
混合して加圧成形し、0.05〜0.15気圧の酸素分
圧下、該組成の示差熱分析における吸熱開始温度以上1
吸熱ピ一ク温度以下で焼結することを特徴とするもので
ある。
すなわち、本発明の焼成方法は、SrCOz。
(aCO,及びCuOの秤量→ン2式混合→乾燥→仮焼
からなるSr−Ca−Cu−〇前駆物質合成工程と、B
it’sと前駆物質の混合→加圧成形→焼結からなる本
焼成工程とから構成される。
前駆物質合成工程では、融点の低いBiz03は加えず
、SrC○、、、CaC○、及びCuOのみを混合して
仮焼を行う。仮焼は大気中で行えばよ(、また仮焼の際
の焼成温度はこれら炭酸塩が十分反応し得る温度とする
ことができる。したがって、当該仮焼温度はなるべくS
r−Ca−CuO化合物が生成するような温度とするこ
とが好ましく、900〜1050°Cの範囲に設定する
ことが好ましい、仮焼温度が900 ’C未満であると
、反応が十分に進まず、特に炭酸塩の分解が不十分なも
のとなる。逆に、仮焼温度が1050°Cを越えると、
これら混合物が溶融してしまい、安価なアルミナルツボ
等を使用した場合に当該ルツボと反応してしまう等の問
題が発生ずる。ただし、これはアルミナルツボでの焼成
を考慮してのことで、例えば白金ルツボ等を使用する場
合には前記仮焼温度はもっと高くてもよい。換言すれば
、前記仮tA温度が1050°Cを越えると、ルツボの
材料に制約が加わるということである。
一方、本焼成工程では、Sr−Ca−Cu−0@駆物質
を粉砕したものにBito、を加え、成形焼結してB5
CC0系超伝導セラくソクスとする。
焼結は、酸素を含んだアルゴン等の不活性ガス雰囲気中
、融解寸前の温度で行うものとする。ここで、不活性ガ
ス雰囲気中の酸素分圧は、0.05〜0.15気圧9好
ましくは0.08〜0.12気圧とし、トータルの圧力
はl気圧(常圧)とする。また、焼結温度は試料の融解
寸前の温度、すなわち融点近傍とするが、ここでは該組
成の示差熱分析における吸熱開始温度以上、吸熱ピーク
温度以下とする。第4図は示差熱分析によるDTA曲線
を示すもので、試ネ4(前駆物質とBizOzを混合し
たもの)を加熱していくと、融点近くで吸熱ピークが現
れる。このとき、吸熱開始温度Xは、熱力学的な平衡温
度であって、無限時間当該温度に保持したときに試料が
融解する温度である。いわゆる融点(部分融解開始温度
)は、この吸熱開始温度Xと吸熱ピーク温度Yとの中間
に存在し、したがって本発明では焼結温度をこの吸熱開
始温度X以上吸熱ビーク温度Y以下とする。焼結時の雰
囲気や温度は、得られるセラミックスの組成に大きく影
響し、前述の範囲とすることで(2223)の含有量の
高い超伝導セラミックスが得られる。
焼結に際しては、加圧成形することが好ましいが、成形
圧は10〜700 kg/cj程度に設定することが好
ましい、あまり成形圧が高くなりすぎると、表面近くと
内部で反応の進み方に不均一が見られる。逆に成形圧が
低すぎ例えば未成形の状態であると、反応の進み方は速
いもののアルミナルツボとの反応も著しく、融点に近い
温度に長時間保持することは難しい。
(作用〕 本発明においては、融点の低いBizOzを除いた原料
(SrCO,、CaCo、及びCub)を仮焼すること
で前駆物質としているので、炭酸塩が十分反応し得る温
度で仮焼することができ、これらが残存することによる
不都合が解消される。
また、本焼成に際しての雰囲気、IH度を最適化するこ
とで、(2223)単一相に近い超伝導セラミックスが
生成される。
〔実施例〕
以下、本発明を具体的な実験結果に基づいて説明する。
先ず、SrCO3,Ca Cox及びCaO(試薬純度
99.9%)を(2223)のモル比で秤量し、ボール
ミルにて温式混合を行った。混合に際しては10mm径
のアルごす(HD)ボールを用い、毎分120回転で2
4時間混合した。
を温式混合した出発原料を熱風乾燥し、アルくすさや鉢
に入れてマツフル炉にて大気中で焼結させた。(仮焼) この仮焼時の温度時間プログラムは、180 ’C/時
間での昇温、最高保持温度より40°C低い温度(92
0°C)での坑底(2時間)、100’C/時間での昇
温、最高保持温度(960’C〜965’C)での焼結
(8〜10時間)、炉冷である。最高保持温度は、熱重
量分析(TG)及び示差熱分析(DTA)により、原料
の分解9合成反応は起こるが融解はしない温度とした。
最高保持温度よりも40°C低い温度で2時間焼成した
のは、より低い温度で起きる焼結反応が終了した後に最
高温度に到達するようにすることで反応の均一性を保ち
、不要なアルミナさや鉢との反応を抑えるためである。
なお、この工程を経ることによって、炉の温度のオーバ
ーシュートも減少し、炉内温度の均一性も良くなった。
焼結体はSr−Ca−Cu−0前駆物質であり、これを
自動アルミナ乳鉢を用いて粉砕し、次の本焼成工程の原
#Iとした。
次いで、この前駆物質とBi、O,とをBi、、。。
Srtcazcuzoyとなるような仕込み組成でで秤
量、した、この場合、前駆物質のSr、CaCuの価数
は全て2であり、酸素の欠陥は無いものと仮定した。
これらを自動アルξす乳鉢を用いて混合し、大気中で両
押し型プレス機を用いて700 kg/cJ。
5秒間の加圧により直径12ffl+11.厚さ1.5
〜3帥の円板形に成形した。
成形試料の焼結(本焼成)は酸素と不活性ガス(A r
 )の混合気体中で行った。使用した炉は均一温度領域
が30mmφX 50 +no+程度の小型横型炉で、
焼結に際しては昇温速度3°C/分で昇温し、定温保持
した後、炉冷した。導入ガス量は大気圧で30cffl
/分である。
この方法に従うと、B izs rzcatcuyor
aを多量に含むB5CC0系超伝導セラミックスを得る
ことができる。
そこで、以下に定温保持プロセスの雰囲気、温度を変え
た場合の結果を示す。
第1図(A)〜第1図(C)は、融点温度で27時間保
持するという条件で雰囲気を変えて焼結した試料のX1
9(CuKα)回折スペクトルである。ここで、第1図
(A)は酸素を10.2%含むアルゴン雰囲気(全圧−
1気圧、したがって酸素分圧−0,102気圧)中で焼
結した場合のX線回折スペクトル、第1図(B)は酸素
を7.81%含むアルゴン雰囲気(酸素分圧=0.07
81気圧)中で焼結した場合のX線回折スペクトル、第
1図(C)は大気中で焼結した場合のX線回折スペクト
ルである。
図中、2θ−4,7°のピークが(2223)の(00
2)ブラッグ散乱に対応しており、2θ=5.7°のピ
ークが<2212)の(002)プラ・ング散乱に対応
している。
これら第1図(Δ)〜第1図(C)を比較してみると、
融点の近傍の温度で焼結を行う場合には、X線散乱の積
分強度から約10%の酸素を含む不活性ガス雰囲気(全
圧1気圧)が(2223)の結晶成長に適していること
がわかる。
一方、第2図(A)〜第2図(C)は、焼結に与える保
持温度の影響を示すもので、保持温度をそれぞれ融点、
融点−3°C1融点−5’Cとした場合の焼結試料のX
線回折スペクトルを示すものである。焼結雰囲気は、1
0.2%の酸素を含むアルゴン酸素混合気体(全圧1気
圧)であり、前記保持温度の保持時間は49.5時間で
ある。
(2223)を得るためには、溶融状態になる寸前の温
度で焼結することが有効であることがわかる。
そこでさらに、仕込み組成による相違を調べた。
第3図(A)は仕込み組成をBi2.osSrzCaz
Cu=O,どした場合のX線回折スペクトルであり、第
3図(B)は仕込み組成をB i2s r、Ca3Cu
40.とした場合のX線回折スペクトルである。
焼結は10.2%酸素含有アルゴン雰囲気(全圧1気圧
)中で融点温度に49.5時間保持してjテった。
その結果、X線回折の積分強度比から前者の場合(22
23)と(2212)の混合比は約8:2、後者の場合
は約7:3と評価された。すなわち、(2223)と(
2212)の含有比は、仕込み組成にはそれほど強く依
存しておらず、むしろ焼結時の設定条件に強く依存して
いると考えられる。
以上、本発明を具体的な実験結果に基づいて説明したが
、本発明がこの実施例に限定されるものではなく、例え
ばPbを含む系やTlを含む系等にも応用が可能である
[発明の効果〕 以上の説明からも明らかなように、本発明においては、
予めSr−Ca−Cu−0@駆物質を合成した後Biz
Ozを加えて本焼成しているので、反応性を向上するこ
とができ、品質の高い超伝導セラごンクスを短時間で作
成することが可能である。
また、本発明においては、本焼成の際の雰囲気や焼結温
度を最適化しているので、(2223)を多量に含む超
伝導セラ主ツクスを得ることができる。例えば、添加、
置換元素による超伝導物性への影響を調査研究しようと
する場合、試料作成が律速となり実験効率を低めていた
現状に鑑みるで、単一相に近い超伝導セラミックスが短
時間の焼成で得られることは、能率を向上するうえで極
めて有益である。
【図面の簡単な説明】
第1図(A)ないし第1図(C)は本焼成の際の雰囲気
を変えた際のX線回折スペクトルの相違を表す特性図で
あり、第1図(A)は酸素10.2%含むアルゴン雰囲
気中で焼結した場合のX線回折スペクトル、第1図(B
)は酸素7.81%含むアルゴン雰囲気中で焼結した場
合のX線回折スペクトル、第1図(C)は大気中で焼結
した場合のX線回折スペクトルをそれぞれ示す。。 第2図(A)ないし第2図(C)は本焼成の際の焼結温
度を変えた際のX線回折スペクトルの相違を表す特性図
であり、第2図(A)は焼結温度を融点とした場合のX
線回折スペクトル、第2図(B)は焼結温度を融点−3
°Cとした場合のX線回折スペクトル、第2図(C)は
焼結温度を融点5 ’Cとした場合のX線回折スペクト
ルをそれぞれ示す。 第3図(A)及び第3図(B)は仕込み組成による×!
!回折スペクトルの相違を表す特性図であり、第3図(
A)は仕込み組成をBiz、osSrZCa ! Cu
 z Oyとした場合のX線回折スペクトル、第3図(
B)は仕込み組成をB i z S r 2 Ca )
 Cu aOlとした場合のX線回折スペクトルをそれ
ぞれ示す。 第4図は示差熱分析によるDTA曲線を説明するための
特性図である。

Claims (1)

    【特許請求の範囲】
  1. SrCO_3,CaCO_3及びCuOを仮焼してSr
    −Ca−Cu−O前駆物質を形成し粉砕した後、Bi_
    2O_3と混合して加圧成形し、0.05〜0.15気
    圧の酸素分圧下,該組成の示差熱分析における吸熱開始
    温度以上,吸熱ピーク温度以下で焼結することを特徴と
    する超伝導セラミックスの焼成方法。
JP1174691A 1989-07-06 1989-07-06 超伝導セラミックスの焼成方法 Pending JPH0340954A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1174691A JPH0340954A (ja) 1989-07-06 1989-07-06 超伝導セラミックスの焼成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1174691A JPH0340954A (ja) 1989-07-06 1989-07-06 超伝導セラミックスの焼成方法

Publications (1)

Publication Number Publication Date
JPH0340954A true JPH0340954A (ja) 1991-02-21

Family

ID=15982995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1174691A Pending JPH0340954A (ja) 1989-07-06 1989-07-06 超伝導セラミックスの焼成方法

Country Status (1)

Country Link
JP (1) JPH0340954A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589261A1 (en) * 1992-09-04 1994-03-30 Hitachi, Ltd. Oxide-based superconductor, a process for preparing the same and a wire material of comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589261A1 (en) * 1992-09-04 1994-03-30 Hitachi, Ltd. Oxide-based superconductor, a process for preparing the same and a wire material of comprising the same
US5545610A (en) * 1992-09-04 1996-08-13 Hitachi, Ltd. Oxide-based superconductor, a process for preparing the same and a wire material of comprising the same

Similar Documents

Publication Publication Date Title
NO180765B (no) Fremgangsmåte for fremstilling av et supraledende materiale
US6043198A (en) High-Tc superconductor or precursor material for the oxide-powder-in-tube method (OPIT)
Park et al. Phase equilibria in the Pr Ba Cu O system under varied oxygen partial pressures
US5086034A (en) Calcination and solid state reaction of ceramic-forming components to provide single-phase superconducting materials having fine particle size
HUT52645A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
JPH0340954A (ja) 超伝導セラミックスの焼成方法
JPH03164427A (ja) Rbco124超伝導材料及びその製造方法
US5869432A (en) Method for producing ceramic superconductor single crystals
US5057487A (en) Crystal growth method for Y-Ba-Cu-O compounds
CN100515988C (zh) Bscco系的改进的高温超导体材料及其起始组合物
US5079220A (en) Process for single crystal growth of high Tc superconductors
US4977109A (en) Process for the preparation of the precursor used in the fabrication of Y--B--CU--O superconductors using a solgel technique
JPH0518776B2 (ja)
RU2104939C1 (ru) СПОСОБ ПОЛУЧЕНИЯ СВЕРХПРОВОДЯЩЕГО МАТЕРИАЛА MBa2Cu3Q7-X
JPH01242419A (ja) Bi−Pb−Ca−Sr−Cu−O系超電導物質
JPH0196055A (ja) 超伝導磁器組成物
JP2545443B2 (ja) 酸化物超電導体の製造方法
JPH05246713A (ja) 酸化物超電導体バルクの製造方法
JPH0234516A (ja) Tl−Ba−Ca−Cu−O系超電導セラミックスの製造法
JPH01275493A (ja) 酸化物超電導体単結晶の育成方法
HIRANO et al. Thermal behavior of melt-quenched products of YBa2Cu3O7-δ compound
RU2073937C1 (ru) Способ получения сверхпроводящего материала иттрий-бариевого купрата с цирконийсодержащей оксидной добавкой
Balachandran et al. Calcination and solid state reaction of ceramic-forming components to provide single-phase ceramic product having fine particle size
JPH0692799A (ja) ビスマス系酸化物超電導ウイスカーの製造方法
JPH0360457A (ja) Y―Ba―Cu系酸化物超伝導体の製造方法