JPH0340463A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0340463A
JPH0340463A JP1060989A JP6098989A JPH0340463A JP H0340463 A JPH0340463 A JP H0340463A JP 1060989 A JP1060989 A JP 1060989A JP 6098989 A JP6098989 A JP 6098989A JP H0340463 A JPH0340463 A JP H0340463A
Authority
JP
Japan
Prior art keywords
region
semiconductor
film
well
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1060989A
Other languages
Japanese (ja)
Inventor
Yutaka Kobayashi
裕 小林
Masatake Nametake
正剛 行武
Masaichiro Asayama
匡一郎 朝山
Hiroyuki Miyazawa
宮沢 弘幸
Kazumasa Yanagisawa
一正 柳沢
Hideyuki Miyazawa
宮沢 英之
Jun Murata
純 村田
Akihiro Tanba
昭浩 丹波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1060989A priority Critical patent/JPH0340463A/en
Publication of JPH0340463A publication Critical patent/JPH0340463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To form an isolating region where a narrow channel effect is never induced so as to enable an LSI to be highly integrated by a method wherein a region which is 5X10<15>-1X10<17>cm<-3> in impurity concentration at a depth of 1.0mum from its interface with an element insulating isolating film is provided. CONSTITUTION:A P well 2 and an N well 3 are provided onto a P-type substrate 9, and an SiO2 film 18 and an Si3N4 film 19 are laid thereon. A resist mask 20 is provided and the Si3N4 film 19 on a channel stopper forming region is removed. B ions of P-type impurity are implanted 21 through an opening via the SiO2 film 18. At this point, ions are implanted so as to make a region have a prescribed impurity concentration later at a prescribed depth from its interface with an SiO2 layer 23 by controlling the implanting energy of ion. Then, a resist makes 22 is provided, the Si3N4 film 19 is removed again, and the resist mask 22 is removed. The isolating region 23 is oxidized. In an after process, an N-type and a P-layer MOSFET are formed. At this time, as a layer 21 is provided, a narrow channel effect is not induced and consequently a memory cell can be reduced in size.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置及びその製造方法に係り、特に高
集積化する必要の有るメモリに好適な半導体装置および
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device and a method for manufacturing the same suitable for a memory that needs to be highly integrated.

〔従来の技術〕[Conventional technology]

従来のLSIに使用されているNMOSFET間又はN
MOSFETとPMO5FET間の素子間分離法として
は1日経エレクトロニクス別冊マイクロデバイセズ特集
1.5〜1μm時代のVLSILSI製造技術−72〜
P75されている様LOGO3(LocalOxida
tion of 5ilicon)法により行われてい
る。
Between NMOSFETs used in conventional LSI or N
Regarding the isolation method between MOSFET and PMO5FET, see Nikkei Electronics Special Issue Micro Devices Special Issue 1.5-1μm era VLSILSI manufacturing technology-72-
LOGO3 (LocalOxida)
tion of 5 ilicon) method.

そして、単にLOCO5法により分離した状態ではSi
ng−8i 界面に反転層が発生してしまう。
When separated simply by the LOCO5 method, Si
An inversion layer is generated at the ng-8i interface.

この反転層を防止するためにはチャネルストッパとして
LOGOS酸化する前にチャネルストッパ領域にボロン
をイオン打ち込みし、5iOz−Si界面で反転しない
ようにする。
In order to prevent this inversion layer, boron ions are implanted into the channel stopper region before LOGOS oxidation to prevent inversion at the 5iOz-Si interface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術においては、チャネルストッパとして打込
まれるP形不純物(一般にはボロンを使用する)が選択
酸化中に拡散し、NMOSFETの活性領域(即ち、ゲ
ート領域)の不純物濃度を上昇させてしまう。この結果
、メモリセルに使用するNMOSFETのようにゲート
幅の狭い素子ではしきい値電圧VTが上昇してしまう、
いわゆる、狭チャネル効果が生ずる。
In the prior art described above, the P-type impurity (generally boron is used) implanted as a channel stopper diffuses during selective oxidation, increasing the impurity concentration in the active region (ie, gate region) of the NMOSFET. As a result, the threshold voltage VT increases in devices with narrow gate widths, such as NMOSFETs used in memory cells.
A so-called narrow channel effect occurs.

従来の技術を使用するとこのような狭チャネル効果はゲ
ート幅2.0μm以下で発生しだし、ゲート幅1.5μ
m以下ではしきい値電圧Vrが2倍に上昇してしまい、
メモリセル面積の縮少化に対し、著しく障害となってい
る。
When conventional technology is used, such narrow channel effects begin to occur with gate widths of 2.0 μm or less, and with gate widths of 1.5 μm or less,
m or less, the threshold voltage Vr increases twice,
This is a significant obstacle to reducing the area of memory cells.

本発明はLSIの高集積化(メモリセルの縮少化)を実
現するため、狭チャネル効果の発生しない分離領域を有
する半導体装置を実現するものである。
The present invention is intended to realize a semiconductor device having an isolation region in which no narrow channel effect occurs, in order to achieve high integration of LSI (miniaturization of memory cells).

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、半導体基板上に
形成された複数の半導体素子と、上記半導体素子を各々
分離する分離領域とを有し、上記分離領域の表面には絶
縁膜が形成され上記分離領域内で、かつ上記絶縁膜との
界面から1.0  μmの深さにおいて、不純物濃度が
5X1012I乃至lX1017備″″3であることを
特徴とする。
In order to achieve the above object, the present invention includes a plurality of semiconductor elements formed on a semiconductor substrate, and an isolation region that separates the semiconductor elements, and an insulating film is formed on the surface of the isolation region. In the isolation region and at a depth of 1.0 .mu.m from the interface with the insulating film, the impurity concentration is 5.times.10.sup.12I to 1.times.10.sup.17.times.3.

〔作用〕[Effect]

まず、狭チャネル効果の発生するメカニズムを詳細に説
明する。説明にはNMOSFETとPMO5FETの間
の分離を例にとる。現在、第2図(a)に示すように、
Pウェル、Nウェルの形成は自己整合技術を使用するた
めPウェルの酸化膜12を薄く、Nウェルの酸化膜13
を厚くした状態でPウェルイオン打込み11を行う、そ
して、熱処理をした後SiaN4mを形成し、活性領域
(素子が形成される領域)にレジスト及び5iaNil
[が残るようにホトリソグラフィ技術及び、ドライエッ
チ技術により形成する(第2図(b)’)、この状態で
ボロンをNウェル領域には打込まれず、Pウェルのチャ
ネルストッパ領域のみに打込まれる様にする。
First, the mechanism by which the narrow channel effect occurs will be explained in detail. The explanation uses the separation between an NMOSFET and a PMO5FET as an example. Currently, as shown in Figure 2(a),
Since the formation of the P-well and N-well uses self-alignment technology, the oxide film 12 of the P-well is thinned, and the oxide film 13 of the N-well is thinned.
P-well ion implantation 11 is performed with the P-well ion implanted in a thick state, and after heat treatment, SiaN 4m is formed, and resist and 5iaNil are formed in the active region (region where elements are formed).
In this state, boron is not implanted into the N-well region, but only into the channel stopper region of the P-well. I will make it possible for you to do so.

この条件を満たすためにはボロンの打込エネルギを低く
する必要がある。このためボロンはSi表面の薄い領域
に打ち込まれる。この後、レジストを除去し、5iaN
a膜をマスクとして選択酸化を行い、分離領域を形成す
る。この時、ボロンは酸化膜に取込まれやすい性質を持
っているため、ボロンは酸化膜中にとり込まれ、Si−
酸化膜界面のボロン濃度は下がってしまう、一方、チャ
ネルストッパーとして、寄生Vtを確保するためにはS
i−酸化膜界面の濃度は1×1018以上とする必要が
ある。このため、チャネルストッパ用不純物のボロンの
打込量は酸化膜に取り込まれる量を見込んで決定される
。即ち、多量のボロンを打込む必要がある。したがって
第1図(b)に示すようにSi−酸化膜界面ではボロン
濃度がIlX101BQ’−”であるのに深さ0.6μ
m附近では10t7国−8と一桁も高い濃度となってし
まう、不純物分布は深さ方向に示したが、横方向も同様
の分布をしており、活性領域での不純物濃度は1×10
170″″3以上になっていることが分かる。このよう
な機構により従来の形成方法でゲート幅の狭いNMOS
FETを作製するとしきい値電圧VTの高いNMOSF
ETとなってしまう。
In order to satisfy this condition, it is necessary to lower the boron implantation energy. For this purpose, boron is implanted into a thin region of the Si surface. After this, the resist was removed and 5iaN
Selective oxidation is performed using the a film as a mask to form isolation regions. At this time, since boron has the property of being easily incorporated into the oxide film, boron is incorporated into the oxide film and the Si-
The boron concentration at the oxide film interface decreases, and on the other hand, as a channel stopper, S
The concentration at the i-oxide film interface needs to be 1×10 18 or more. Therefore, the amount of boron implanted as an impurity for the channel stopper is determined in consideration of the amount incorporated into the oxide film. That is, it is necessary to implant a large amount of boron. Therefore, as shown in Fig. 1(b), although the boron concentration at the Si-oxide film interface is IlX101BQ'-'', the depth is 0.6μ.
The impurity distribution is shown in the depth direction, but the distribution is similar in the lateral direction, and the impurity concentration in the active region is 1×10.
It can be seen that the value is 170″″3 or more. Due to this mechanism, NMOS with narrow gate width can be fabricated using conventional formation methods.
NMOSF with high threshold voltage VT when fabricating FET
It becomes ET.

一般にサブμm以下の技術により作られるメモリ素子で
は、メモリセルに使用されるMOSFETの幅は1.0
μm前後、又は、それ以下となる。このため活性領域の
濃度がlX10”am″″3以上となる。
In general, in memory devices manufactured using sub-μm technology, the width of the MOSFET used in the memory cell is 1.0
It is around μm or less. Therefore, the concentration of the active region becomes 1×10"am""3 or more.

活性領域の不純物濃度が1×1017c!1″″3の場
合、ゲート酸化膜厚100人としてもしきい値電圧が1
.08V となり高速化は計れない。信頼性も含めてト
ンネル電流の発生しないゲート酸化膜は80人であるか
ら−、活性領域の不純物は1×10170m ” ”と
ならなければならない。また、不純物が5X 1011
sam″″3以下となるとアイソレーション領域でパン
チスルーが発生してしまう。このため、深さ1μm(横
子行にも、はぼ同様の分布となる)の位置で不純物濃度
が5 X 10 L15arm−”以上で工×1017
cs−”以下としなければならないことが分かる。
The impurity concentration in the active region is 1×1017c! In the case of 1""3, the threshold voltage is 1 even if the gate oxide film thickness is 100.
.. 08V, so speeding up cannot be measured. Including reliability, since the gate oxide film that does not generate tunnel current is 80 m, the impurity in the active region must be 1 x 10170 m. Also, impurities are 5X 1011
If sam"" is less than 3, punch-through will occur in the isolation region. Therefore, if the impurity concentration is 5 x 10 L15 arm-'' or more at a depth of 1 μm (the distribution is similar to that in the horizontal row),
It can be seen that it must be less than or equal to "cs-".

本発明ではどのような狭チャネルのメカニズム゛をもと
に狭チャネル効果の発生しない、狭チャネルNMO8F
ETを有することを特徴としている。すなわち、選択酸
化後においても、分離領域のpウェル下のボロン濃度(
−殻内にはP型不純物であればよい)を少なくとも界面
から、深さ1μmの範囲でlX 1017aa−’以下
にするようにした構造を特徴としている。形成方法とし
ては、従来のようにSi表面附近にP型不純物を打込ん
だ後、選択酸化するのではなく、選択酸化後にS i 
0z−Si界面が形成される深さにあらかじめP型不純
物を打込んだ後、選択酸化する。そうすれば第1図(b
)に示すように、酸化膜中に取り込まれるP型不純物は
少なくなり、打込むP型不純物量も少なくてすむ、この
結果、拡散により横方向に拡がる不純物濃度は少なくな
り、狭チャネル効果は発生しない、このように、本発明
を使用すると、狭チャネル効果のない狭いチャネル幅を
有したNMOSFETを形成することができ、高集積の
LSIを実現可能となる。
In the present invention, the narrow channel NMO8F, which does not cause the narrow channel effect, is based on the narrow channel mechanism.
It is characterized by having ET. In other words, even after selective oxidation, the boron concentration (
The structure is characterized in that the amount of P-type impurity in the shell is less than lX 1017aa-' within a depth of 1 μm from at least the interface. The formation method is not to implant P-type impurities near the Si surface and then perform selective oxidation as in the conventional method, but to selectively oxidize the Si
After p-type impurities are implanted in advance at a depth where the 0z-Si interface will be formed, selective oxidation is performed. Then, Figure 1 (b)
), the amount of P-type impurity incorporated into the oxide film is reduced, and the amount of P-type impurity implanted is also reduced.As a result, the impurity concentration that spreads laterally due to diffusion is reduced, and the narrow channel effect occurs. As described above, by using the present invention, it is possible to form an NMOSFET having a narrow channel width without the narrow channel effect, and it becomes possible to realize a highly integrated LSI.

〔実施例〕〔Example〕

[実施例1コ P基板9上に第2図(a)に示すように従来と同様の方
法によりPウェル、Nウェル領域を形成する。その後、
熱処理し、12,13の5ift膜を除却した後5iO
z膜18及びSi3N4膜19を形成する第3図(a)
、その後、ホトリソグラフィ技術、及び、ドライエツチ
ングを使用し、チャネルストッパーを形成する領域の5
isN4膜19を除却した後、P型不純物をイオンを打
込む21、この時、この不純物が後で形成される5iO
x−3iの界面に打込まれるように打込エネルギを調節
する第3図(a)(本実施例においてはイオン種ボロン
打込エネルギ100kaV)。次に第3図(b)に示す
ように、PMOSFETが形成される領域、及びPウェ
ル領域をホトレジストで被覆した状態で5iaNa19
をドライエツチングする。
[Example 1] As shown in FIG. 2(a), P-well and N-well regions are formed on a P-substrate 9 by a method similar to the conventional method. after that,
After heat treatment and removal of the 5ift films of 12 and 13, 5iO
FIG. 3(a) showing the formation of the Z film 18 and the Si3N4 film 19
, then use photolithography technique and dry etching to form the channel stopper.
After removing the isN4 film 19, ions of P-type impurity are implanted 21, and at this time, this impurity is used as the 5iO that will be formed later.
FIG. 3(a) adjusts the implantation energy so that it is implanted into the interface of x-3i (in this example, the implantation energy of boron ion species is 100 kaV). Next, as shown in FIG. 3(b), the area where the PMOSFET is formed and the P-well area are covered with photoresist, and the
Dry etching.

その後、レジストを除却後、5iaN4膜をマスクとし
て分離領域23を選択酸化する(第3図(C))。その
後は従来と同様のプロセスでNMOSFET及び、PM
OSFETを形成し第1図(a)の状態を形成し、素子
を形成することができる。
Thereafter, after removing the resist, the isolation region 23 is selectively oxidized using the 5iaN4 film as a mask (FIG. 3(C)). After that, the NMOSFET and PM
By forming an OSFET and forming the state shown in FIG. 1(a), an element can be formed.

[実施例2] 従来の方法では第2図(b)でP型不純物としてボロン
を使用していた。しかし、第2図(b)でP型不純物と
して、酸化膜に取り込まれすらい、カリウム、又は、イ
ンジウムを使用する。その後の素子の作製方法は従来と
同様として、第1図(a)を作製する。そうすることに
より、選択酸化の段階で不純物が酸化膜中に取り込れず
Si巾に押し出して行くため、第1図(b、 )の本発
明の分布と同様にすることができる。
[Example 2] In the conventional method, boron was used as the P-type impurity in FIG. 2(b). However, in FIG. 2(b), potassium or indium is used as the P-type impurity since it is incorporated into the oxide film. The subsequent manufacturing method of the device is the same as the conventional method, and the device shown in FIG. 1(a) is manufactured. By doing so, impurities are not incorporated into the oxide film at the stage of selective oxidation but are pushed out to the Si width, so that the distribution can be similar to the distribution of the present invention shown in FIG. 1(b, ).

[実施例3] 実施例1、及び実施例2では選択酸化膜の下のみに高濃
度P領域を形成したが、第4図に示すように高濃度P領
域24をNMOSFETの形成されるPウェル領域に形
成してもよい。ただし、この場合NMOSFETの基板
バイアス係数は大きくなる。
[Example 3] In Examples 1 and 2, the high concentration P region was formed only under the selective oxide film, but as shown in FIG. It may be formed in a region. However, in this case, the substrate bias coefficient of the NMOSFET becomes large.

[実施例4] 実施例1では第3図(b)で示した様にチャネルストッ
パ領域になる部分のみレジスト20を除去し、同一領域
の5iaN4膜19を除去した。そして、さらにPMO
8の分離領域の5iaNa膜19を除去したが、この工
程においてホトリソグラフィの合せ余裕により先の5i
aNa膜19を除去した領域で再度除去する領域が生じ
、この再度除去工程の加わる領域で5iOz膜18が除
去されSi表面までが荒れてしまう。この欠点を防ぐた
め次のような方法で本発明を実施することができた。
[Example 4] In Example 1, as shown in FIG. 3(b), the resist 20 was removed only in the portion that would become the channel stopper region, and the 5iaN4 film 19 in the same area was removed. And further PMO
Although the 5iaNa film 19 in the separation region No. 8 was removed, due to the alignment margin of photolithography in this step, the previous 5i Na film 19 was removed.
In the region where the aNa film 19 has been removed, there is a region to be removed again, and in this region where the removal process is applied again, the 5iOz film 18 is removed and even the Si surface becomes rough. In order to avoid this drawback, the present invention could be implemented in the following manner.

第2図(a)に示すように、P基板9上にPウェル2、
Nウェル3を形成し、熱処理した後5i02膜12,1
3を除去する。その後、Si表面上にSing膜18.
5iaNalB119.5ins膜(例えばHLDli
l)25を順次形成する@  (SxOs+膜25の原
25、後でBイオン打込みをする時のマスクとするため
1500Å以上とする)この後第6図(a)に示す様に
、ホトリソグラフィの技術によりnN05FET、 p
MOsFETの活性領域を残して分離領域のSingL
膜25.5iaNa膜19を除去する6次に、第6図(
b)に示す様にレジスト15を塗布した後、チャネルス
トッパーを形成する領域のレジスト15を除去する。な
お、nMOsFETすなわち、Pウェルにレジストを除
去した領域が拡がってもよい。この状態でBイオンを所
定の領域21に打込む、その後、従来のCMO3FII
IT製造工程により作製すれば第1図(a)とすること
ができる。
As shown in FIG. 2(a), a P well 2 is placed on a P substrate 9,
After forming the N well 3 and performing heat treatment, the 5i02 film 12,1
Remove 3. Thereafter, a Sing film 18.
5iaNalB119.5ins membrane (e.g. HLDli
l) Sequentially forming layers 25@ (The original 25 of the SxOs+ film 25 should have a thickness of 1500 Å or more in order to serve as a mask for B ion implantation later) After this, as shown in FIG. 6(a), photolithography is performed. Technology nN05FET, p
SingL in the isolation region leaving the active region of MOsFET
6 Next, the film 25.5iaNa film 19 is removed (Fig.
After applying the resist 15 as shown in b), the resist 15 in the region where the channel stopper is to be formed is removed. Note that the region where the resist is removed may be expanded to the nMOSFET, that is, the P well. In this state, B ions are implanted into a predetermined region 21, and then conventional CMO3FII
If it is manufactured by an IT manufacturing process, it can be made as shown in FIG. 1(a).

実施例1.実施例2及び実施例3共にCMOSFETを
例にしたが、本発明はBiCMO5,NMO5FET又
は、これらを使用したSRAM、DRAM、およびロッ
ジツク等に適用可能であることは明らかである。
Example 1. Although a CMOSFET is used as an example in both Examples 2 and 3, it is clear that the present invention is applicable to BiCMO5, NMO5FETs, or SRAMs, DRAMs, lodges, etc. using these.

〔発明の効果〕〔Effect of the invention〕

本発明においては、ゲート幅を狭くしても、活性領域の
不純物濃度が上昇しない、したがって、第5図に示すよ
うに、従来の場合においてはゲート幅が1.5μm附近
から狭′い領域でしきい値電圧が急に上昇しているのに
対し、本発明の場合ではゲート幅を狭くしても急なしき
い値電圧の上昇はない、このため、半導体記憶装置等に
使用するNMO8FETのゲニト幅を狭くすることがで
き、高集積の半導体記憶装置を実現することができる。
In the present invention, even if the gate width is narrowed, the impurity concentration in the active region does not increase. Therefore, as shown in FIG. In contrast to the sudden rise in threshold voltage, in the case of the present invention, there is no sudden rise in threshold voltage even if the gate width is narrowed. The width can be reduced, and a highly integrated semiconductor memory device can be realized.

この効果は半導体LSI全体に対して同様に生・するこ
とは明らかである。
It is clear that this effect is produced similarly for the entire semiconductor LSI.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は、本発明の一実施例の装置断面図、第1
図(b)は、第1図(a)中のAA’線上の不純物濃度
の分布図、第2図(a)および第2図(b)は、従来の
製造法を示す図、第3図(a)乃至第3図(b)は、本
発明の製造法を示す図、第4図は1本発明の他の実施例
の装置断面図、第5図は、ゲート幅としきい値電圧の関
係を示す図、第6図は本発明の実施例4を説明するため
の装置断面図である。 1・・・チャネルストッパ、2・・・Pウェル、3・・
・Nウェル、4・・・N十領域、5・・・P◆領領域6
・・・多結晶Siゲート、7・・・電極配線、8・・・
S i Ox膜=9゜10・・・P基板、11・・・P
型イオン打込、12・・・Pウェルの酸化膜、13・・
・Nウェルの酸化膜、14・・・S i aNa[Is
(,15・・・レジスト、16・・・チャネルストッパ
用(P型)イオン打込、17・・・チャネルストッパ打
込領域、18・・・5iOz膜、19・・・5iaN番
膜。 20・・・レジスト、 21・・・チャネルス トッパ領域、 22・・・レジスト、 23・・・分離領域、 帛 図 (d−) Δ A′ 嵩 図(b) sLot−s、、lqらのHi’!(、gm)高2図(
a、) 窮2図(b) 高3図(旧 第3日(b) 寓3区(0 第4日 高5日 は−トT晶 (P−Tn) 手 続 補 正 書(方式) %式% 半導体装置及びその製造方法 補正をする者 ’I’−1’Iトノ関1i   #乳i’rrlxlf
i人R+8+ +51o+ K 式’j +t  8製 作 所 代 理 人 ?ti 正の対象 明細書の図面の簡単な説明の欄
FIG. 1(a) is a cross-sectional view of a device according to an embodiment of the present invention.
Figure (b) is a distribution diagram of the impurity concentration on line AA' in Figure 1 (a), Figures 2 (a) and 2 (b) are diagrams showing the conventional manufacturing method, and Figure 3 3(a) to 3(b) are diagrams showing the manufacturing method of the present invention, FIG. 4 is a sectional view of a device according to another embodiment of the present invention, and FIG. 5 is a diagram showing the gate width and threshold voltage. FIG. 6, which is a diagram showing the relationship, is a sectional view of the device for explaining Embodiment 4 of the present invention. 1...Channel stopper, 2...P well, 3...
・N well, 4...N ten areas, 5...P◆territory area 6
... Polycrystalline Si gate, 7... Electrode wiring, 8...
S i Ox film = 9° 10...P substrate, 11...P
Type ion implantation, 12... P-well oxide film, 13...
・N-well oxide film, 14...S iaNa[Is
(, 15... Resist, 16... Channel stopper (P type) ion implantation, 17... Channel stopper implantation region, 18... 5 iOz film, 19... 5iaN film. 20. ...Resist, 21...Channel stopper region, 22...Resist, 23...Isolation region, Schematic diagram (d-) ΔA' Bulk diagram (b) Hi'! of sLot-s,, lq et al. (, gm) 2nd year high school figure (
a,) 2nd grade (b) 3rd grade high school (former 3rd day (b) 3rd grade (0 4th day high school 5th day - TOT crystal (P-Tn) Procedural amendment (method) % formula % Person who corrects semiconductor devices and their manufacturing methods 'I'-1'I Tono Seki 1i #Mi'rrlxlf
i person R+8+ +51o+ K formula'j +t 8 factory agent? ti Field for brief description of drawings in the correct subject specification

Claims (1)

【特許請求の範囲】 1、半導体基板上に形成された複数の半導体素子と、上
記半導体素子を各々分離する分離領域とを有し、上記分
離領域の表面には絶縁膜が形成され 上記分離領域内で、かつ上記絶縁膜との界面から1.0
μmの深さにおいて、不純物濃度が5×10^1^5乃
至1×10^1^7cm^−^3であることを特徴とす
る半導体装置。 2、上記分離領域がP型ウェルであることを特徴とする
請求項1記載の半導体装置。 3、半導体基板に形成された複数のNMOSFET間、
及び、NMOSFET−PMOSFET間のPウェルの
分離領域において、絶縁膜−半導体界面から1.0μm
深さの半導体領域でP型不純物濃度が5×10^1^5
から1×10^1^7cm^−^3の範囲であることを
特徴とした半導体装置。 4、特許請求の範囲第3項におけるPウェルの分離領域
となる半導体中にP型不純物を0.1μm〜0.6μm
の飛程となる条件でイオン打込みした後、分離領域を選
択酸化することを特徴とした半導体装置の製造方法。 5、特許請求の範囲第4項におけるP型不純物をGaあ
るいはInとしたことを特徴とする半導体装置の製造方
法。 6、特許請求の範囲第3項記載の半導体装置を集積化し
たことを特徴とする記憶装置。 7、ゲート幅が1.5μm以下でありかつしきい値電圧
が0〜1.0Vの範囲であるNMOSFETを含むこと
を特徴とした半導体装置。 8、ゲート幅が1.5μm以下でしきい値電圧が0〜1
.0V(7)NMOSFETと、ゲート幅1.5μm以
上でしきい値電圧が−1.0〜1.0VのNMOSFE
Tとを含むことを特徴とする半導体装置。 9、NMOSFETが形成される半導体基板内のPウェ
ル領域に分離領域に選択酸化膜が半導体中に形成される
深さにP型不純物を他の領域よりも高濃度としておくこ
とを特徴とした半導体装置。
[Claims] 1. A plurality of semiconductor elements formed on a semiconductor substrate, and an isolation region that separates the semiconductor elements, and an insulating film is formed on the surface of the isolation region. 1.0 within and from the interface with the insulating film
A semiconductor device characterized in that the impurity concentration is 5×10^1^5 to 1×10^1^7 cm^-^3 at a depth of μm. 2. The semiconductor device according to claim 1, wherein the isolation region is a P-type well. 3. Between multiple NMOSFETs formed on a semiconductor substrate,
and 1.0 μm from the insulating film-semiconductor interface in the P-well isolation region between NMOSFET and PMOSFET.
P-type impurity concentration in the semiconductor region at a depth of 5×10^1^5
1 x 10^1^7 cm^-^3. 4. Adding P-type impurities to a thickness of 0.1 μm to 0.6 μm in the semiconductor serving as the isolation region of the P well in Claim 3
1. A method for manufacturing a semiconductor device, which comprises selectively oxidizing an isolation region after ion implantation under conditions that achieve a range of . 5. A method for manufacturing a semiconductor device, characterized in that the P-type impurity in claim 4 is Ga or In. 6. A memory device characterized by integrating the semiconductor device according to claim 3. 7. A semiconductor device comprising an NMOSFET with a gate width of 1.5 μm or less and a threshold voltage in the range of 0 to 1.0V. 8. Gate width is 1.5 μm or less and threshold voltage is 0 to 1
.. 0V (7) NMOSFET and NMOSFE with a gate width of 1.5 μm or more and a threshold voltage of -1.0 to 1.0V
A semiconductor device comprising: T. 9. A semiconductor characterized in that a selective oxide film is formed in a P-well region in a semiconductor substrate in which an NMOSFET is formed and a selective oxide film is formed in the semiconductor at a higher concentration than in other regions. Device.
JP1060989A 1989-03-15 1989-03-15 Semiconductor device and manufacture thereof Pending JPH0340463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1060989A JPH0340463A (en) 1989-03-15 1989-03-15 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1060989A JPH0340463A (en) 1989-03-15 1989-03-15 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0340463A true JPH0340463A (en) 1991-02-21

Family

ID=13158355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1060989A Pending JPH0340463A (en) 1989-03-15 1989-03-15 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0340463A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766970A (en) * 1992-02-25 1998-06-16 Samsung Electronics Co., Ltd. Method of manufacturing a twin well semiconductor device with improved planarity
US5856215A (en) * 1995-08-25 1999-01-05 Hyundai Electronics Industries Co., Ltd. Method of fabricating a CMOS transistor
JP2007131308A (en) * 2005-11-08 2007-05-31 Hokkaido Seikan Kogyo Kk Container apparatus for delivering fertilizer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766970A (en) * 1992-02-25 1998-06-16 Samsung Electronics Co., Ltd. Method of manufacturing a twin well semiconductor device with improved planarity
US5856215A (en) * 1995-08-25 1999-01-05 Hyundai Electronics Industries Co., Ltd. Method of fabricating a CMOS transistor
JP2007131308A (en) * 2005-11-08 2007-05-31 Hokkaido Seikan Kogyo Kk Container apparatus for delivering fertilizer

Similar Documents

Publication Publication Date Title
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JPS6016456A (en) Semiconductor device
JPH0324735A (en) Manufacture of semiconductor device
JP3101515B2 (en) Method for manufacturing CMOS semiconductor device
US6548369B1 (en) Multi-thickness silicon films on a single semiconductor-on-insulator (SOI) chip using simox
JPH0340463A (en) Semiconductor device and manufacture thereof
JPH06268057A (en) Manufacture of semiconductor device
JP3128482B2 (en) Method for manufacturing CMOS semiconductor device
JPH0423329A (en) Manufacture of semiconductor device
JP3128481B2 (en) Method for manufacturing CMOS semiconductor device
US6660593B2 (en) Method for fabricating oxide layers with different thicknesses
JPH0221648A (en) Semiconductor device and manufacture thereof
JPS63302562A (en) Manufacture of mos type semiconductor device
US6750123B2 (en) Method of manufacturing CMOS device with implantation shielding layer
JP2633525B2 (en) Method for manufacturing semiconductor device
JPH0316150A (en) Manufacture of semiconductor element
JP3253574B2 (en) Semiconductor device and manufacturing method thereof
JPH0472770A (en) Manufacture of semiconductor device
JPH06196642A (en) Semiconductor device and manufacture thereof
JPH03227055A (en) Manufacture of semiconductor device
JP2000114393A (en) Manufacture of semiconductor device
JPH0992789A (en) Semiconductor device and manufacture thereof
JPH11274491A (en) Semiconductor device and its manufacturing method
JPS6266678A (en) Manufacture of semiconductor device
JPH06163842A (en) Semiconductor integrated circuit device and its manufacture