JPH0340301B2 - - Google Patents

Info

Publication number
JPH0340301B2
JPH0340301B2 JP10070382A JP10070382A JPH0340301B2 JP H0340301 B2 JPH0340301 B2 JP H0340301B2 JP 10070382 A JP10070382 A JP 10070382A JP 10070382 A JP10070382 A JP 10070382A JP H0340301 B2 JPH0340301 B2 JP H0340301B2
Authority
JP
Japan
Prior art keywords
absorber
temperature
evaporator
temperature regenerator
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10070382A
Other languages
Japanese (ja)
Other versions
JPS58219371A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10070382A priority Critical patent/JPS58219371A/en
Publication of JPS58219371A publication Critical patent/JPS58219371A/en
Publication of JPH0340301B2 publication Critical patent/JPH0340301B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、二重効用吸収式ヒートポンプに係り
従来より高い温水温度でも高温再生器圧力が大気
圧以下で作動する二重効用吸収式ヒートポンプサ
イクルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dual-effect absorption heat pump cycle that operates at a high-temperature regenerator pressure below atmospheric pressure even at higher hot water temperatures than conventional ones.

第1図のように従来の二重効用吸収式ヒートポ
ンプでは、温水12をまず吸収器1に通水し、そ
のあとで凝縮器4に通すことにより、より高い温
度の温水を得るサイクルとなつていた。したがつ
て二重効用吸収式冷凍機サイクルにおいて冷却水
温度を上げただけのサイクルとなり冷却水温度が
高くなつた分だけ低温再生器3における中間溶液
濃度も濃くなり、温度も高くなる。それに伴つ
て、低温再生器溶液21を加熱するための高温再
生器5で発生する冷媒蒸気の温度(圧力)も高く
する必要があるため高温再生器5の圧力は従来よ
り高くなり、高温再生器圧力、大気圧以下の条件
では、温水出口温度を上げることができなかつ
た。また、温水を凝縮器4、吸収器1の順に通水
した場合、凝縮器4の圧力は下るが、吸収器1の
冷却水となる温水12の温度が高くなるため、吸
収器1の溶液濃度が高くなり、低温再生器3内の
溶液濃度21も上り、飽和温度が上るため、大巾
な改善は望めない。
As shown in Fig. 1, in a conventional dual-effect absorption heat pump, hot water 12 is first passed through the absorber 1 and then passed through the condenser 4 to obtain hot water at a higher temperature. Ta. Therefore, the dual-effect absorption refrigerator cycle is a cycle in which only the cooling water temperature is increased, and as the cooling water temperature becomes higher, the intermediate solution concentration in the low temperature regenerator 3 becomes higher and the temperature also becomes higher. Along with this, it is necessary to increase the temperature (pressure) of the refrigerant vapor generated in the high temperature regenerator 5 for heating the low temperature regenerator solution 21, so the pressure in the high temperature regenerator 5 becomes higher than before, and the high temperature regenerator Under pressure conditions below atmospheric pressure, it was not possible to raise the hot water outlet temperature. In addition, when hot water is passed through the condenser 4 and the absorber 1 in this order, the pressure in the condenser 4 decreases, but the temperature of the hot water 12, which serves as the cooling water for the absorber 1, increases, so the solution concentration in the absorber 1 increases. becomes higher, the solution concentration 21 in the low-temperature regenerator 3 also rises, and the saturation temperature rises, so no significant improvement can be expected.

したがつて、吸収式ヒートポンプを熱効率のよ
い二重効用化しても、温水出口温度が高くでき
ず、プロセスの加熱に利用可能な熱量が減るた
め、ヒートポンプに要求される取扱熱量が少なく
なり、熱源水から汲み上げる熱量も少なくなる欠
点があつた。むしろ、一重効用の方が、温水出口
温度を高くできるため、取扱熱量が増え、熱源水
から汲み上げる熱量が多く、省エネルギー効果が
高かつた。
Therefore, even if an absorption heat pump is made to have dual effect with high thermal efficiency, the hot water outlet temperature cannot be raised, and the amount of heat available for process heating is reduced. The drawback was that the amount of heat pumped up from the water was also reduced. On the contrary, single-effect systems can raise the hot water outlet temperature, which increases the amount of heat that can be handled and pumps up more heat from the heat source water, resulting in a higher energy-saving effect.

なお、この種のものとして関連するものに例え
ば特開昭54−79859号が挙げられる。
A related example of this type is JP-A-54-79859.

本発明の目的は、二重効用吸収式ヒートポンプ
サイクルにおいて、大気圧以下に高温再生器圧力
を保持し、従来より高い温度の温水を得ることが
可能な二重効用吸収式ヒートポンプを提供するこ
とにある。
An object of the present invention is to provide a dual-effect absorption heat pump that can maintain high-temperature regenerator pressure below atmospheric pressure and obtain hot water at a higher temperature than before in a dual-effect absorption heat pump cycle. be.

二重効用吸収式ヒートポンプサイクルにおいて
できるだけ低い高温再生器圧力にて、できるだけ
高温の温水を得るには、高温再生器にて発生した
冷媒蒸気と熱交換を行う低温再生器の溶液温度を
あまり上げないことであり、吸収器出口における
溶液濃度を上げないことにつながる。また、低温
再生器にて発生した温度の低い冷媒蒸気を凝縮器
にて凝縮させるには、できるだけ温度の低い温水
を凝縮器伝熱管に通す必要がある。まず後者ので
きるだけ温度の低い温水を凝縮器伝熱管に通すた
め、温水を凝縮器から吸収器の順に通水し、前者
の吸収器出口における溶液濃度を上げないため蒸
発器と吸収器と各々二分割し、吸収溶液サイクル
のみ考えると、それぞれ低温再生器または高温再
生器を有する二つの一重効用サイクルとなるよう
に、溶液を流した。そして吸収器入口部の温水で
冷却して冷媒を吸収させた、より低濃度で低温度
の溶液を低温再生器に送ることにより、低温再生
器温度を下げることが可能であり、前述の二条件
を満足することができる。またさらに、蒸発器と
吸収器を各々二分割して、独立した二つの吸収溶
液サイクルを形成することにより、流量調整によ
り高温再生器側サイクルとは無関係に、独立して
低温再生器側の濃度幅を加減することが可能とな
つた。
In order to obtain hot water as high as possible at the lowest possible high-temperature regenerator pressure in a dual-effect absorption heat pump cycle, the solution temperature in the low-temperature regenerator that exchanges heat with the refrigerant vapor generated in the high-temperature regenerator must not be raised too much. This leads to not increasing the solution concentration at the absorber outlet. Furthermore, in order to condense the low-temperature refrigerant vapor generated in the low-temperature regenerator in the condenser, it is necessary to pass hot water as low as possible through the condenser heat transfer tube. First, in order to pass the latter hot water with a temperature as low as possible through the condenser heat transfer tube, the hot water is passed in the order from the condenser to the absorber, and in order to avoid increasing the solution concentration at the outlet of the former absorber, the evaporator and absorber are The solution was run in such a way that, considering only the absorption solution cycle, there were two single-effect cycles, each with a low-temperature regenerator or a high-temperature regenerator. The temperature of the low-temperature regenerator can be lowered by sending a lower-concentration, lower-temperature solution, which has been cooled with hot water at the absorber inlet to absorb the refrigerant, to the low-temperature regenerator. can be satisfied. Furthermore, by dividing the evaporator and absorber into two to form two independent absorption solution cycles, the concentration on the low temperature regenerator side can be adjusted independently of the high temperature regenerator side cycle by adjusting the flow rate. It became possible to adjust the width.

以下本発明の一実施例を第2図により説明す
る。
An embodiment of the present invention will be described below with reference to FIG.

第2図に示す符号のうち第1図に示す符号と同
一のものは同一部分を示すものとする。
Among the symbols shown in FIG. 2, the same symbols as those shown in FIG. 1 indicate the same parts.

第2図に於て1a,1bは隔壁22により分割
された吸収器で、この各吸収器1a(第1の吸収
器),1b(第2の吸収器)はチユーブ14a,1
4b群をそれぞれ内蔵している。2a,2bは隔
壁22により分割された蒸発器で、この各蒸発器
2a(第1の蒸発器,2b(第2の蒸発器)はチユ
ーブ15a,15b群をそれぞれ内蔵している。
6aは吸収器1aの吸収液を導管7a、熱交換器
8aを介して低温再生器3に送るポンプ。6bは
吸収器1bの吸収液を導管7b、熱交換器8bを
介して高温再生器5に送るポンプ。高温再生器5
にはチユーブ群18が内蔵され、このチユーブに
は蒸気などの加熱源23が供給される。19は高
温再生器5で発生した冷媒蒸気で、低温再生器3
内のチユーブ群16に流入し、溶液21を加熱
し、自信は凝縮液化して凝縮器4に流入する。2
0は凝縮器から冷媒液を蒸発器2a,2bに導く
導管。10は蒸発器2a,2bのチユーブ群15
a,15bに冷媒をスプレーさせ蒸発を促進させ
るポンプ。8aは吸収器1aから低温再生器3に
送る吸収液と、低温再生器3から吸収器1aに戻
る吸収液の熱交換器。8bは吸収器1bから高温
再生器5に送る吸収液と、高温再生器から吸収器
1bに戻る吸収液の熱交換器。20は凝縮器4の
凝縮冷媒を蒸発器2a,2bに導く導管。12は
凝縮器4のチユーブ群17、吸収器1a,1bの
チユーブ群14a,14bへ供給される温水で、
図示のように凝縮器4から吸収器1a,1bの順
に流通する。13は蒸発器2a,2bのチユーブ
群15a,15bへ供給される低温熱源水で、図
示のように蒸発器2a,2bのチユーブ群15
a,15bの順に流通する。
In FIG. 2, 1a and 1b are absorbers divided by a partition wall 22, and these absorbers 1a (first absorber) and 1b (second absorber) are tubes 14a and 1b.
Each of them has a built-in group 4b. 2a and 2b are evaporators divided by a partition wall 22, and each of the evaporators 2a (first evaporator) and 2b (second evaporator) incorporate tube groups 15a and 15b, respectively.
6a is a pump that sends the absorbed liquid from the absorber 1a to the low-temperature regenerator 3 via a conduit 7a and a heat exchanger 8a. 6b is a pump that sends the absorbed liquid from the absorber 1b to the high-temperature regenerator 5 via the conduit 7b and the heat exchanger 8b. High temperature regenerator 5
A tube group 18 is built in, and a heat source 23 such as steam is supplied to the tubes. 19 is refrigerant vapor generated in the high temperature regenerator 5;
The liquid flows into the tube group 16 inside, heats the solution 21, condenses into liquid, and flows into the condenser 4. 2
0 is a conduit that leads the refrigerant liquid from the condenser to the evaporators 2a and 2b. 10 is a tube group 15 of the evaporators 2a and 2b
A pump that sprays refrigerant onto a and 15b to promote evaporation. 8a is a heat exchanger for the absorption liquid sent from the absorber 1a to the low-temperature regenerator 3 and the absorption liquid returned from the low-temperature regenerator 3 to the absorber 1a. 8b is a heat exchanger for the absorption liquid sent from the absorber 1b to the high-temperature regenerator 5 and the absorption liquid returned from the high-temperature regenerator to the absorber 1b. A conduit 20 guides the refrigerant condensed in the condenser 4 to the evaporators 2a and 2b. 12 is hot water supplied to the tube group 17 of the condenser 4 and the tube groups 14a and 14b of the absorbers 1a and 1b;
As shown in the figure, the water flows from the condenser 4 to the absorbers 1a and 1b in this order. 13 is low temperature heat source water supplied to the tube groups 15a and 15b of the evaporators 2a and 2b;
It is distributed in the order of a and 15b.

本実施例は上記のように隔壁22の両側に設け
られた吸収器1aと蒸発器2a、および吸収器1
bと蒸発器2bの各組はそれぞれ独自に吸収と蒸
発の各作用を行うと共に、温水12および低温熱
源水13の温度に対し、各組の吸収器と蒸発器
(1a対2aと1b対2b)はそれぞれ独自の吸
収温度および蒸発温度になる。換言すると左側で
は、低温熱源水の高い側の蒸発器2aと、温水温
度の低い側の吸収器1aが一組となつて蒸発、吸
収を行い、吸収器1bのチユーブ群14bより流
出する最終的な温水温度が高くとも、吸収器1a
の吸収液は十分薄くなる。したがつて、低温再生
器3に流入する吸収液濃度が低いため、低温再生
器内の吸収液21の濃度も下り、凝縮器4のチユ
ーブ群17に流入する温水温度が従来より高くな
つても吸収液21の飽和温度が上昇せず、チユー
ブ群16内の高温再生器5で発生した冷媒蒸気1
9の凝縮温度も上昇せず、結局、高温再生器5の
圧力上昇が防止できる。一方、右側では低温熱源
水の低い側の蒸発器2bと温水温度の高い側の吸
収器1bが一組となつて蒸発吸収を行うため、吸
収器1bの吸収液濃度は高くなるが、この吸収器
1bの吸収液は高温再生器5に送られ、高温再生
器5に内蔵されたチユーブ群18内に流入する加
熱源23の温度レベルが通常十分高いため、加熱
濃縮される。
In this embodiment, as described above, the absorber 1a and the evaporator 2a provided on both sides of the partition wall 22, and the absorber 1a are provided on both sides of the partition wall 22.
Each set of absorber and evaporator 2b independently performs absorption and evaporation functions, and each set of absorber and evaporator (1a vs. 2a and 1b vs. 2b) performs absorption and evaporation actions independently. ) have their own absorption and evaporation temperatures. In other words, on the left side, the evaporator 2a on the side where the low-temperature heat source water is higher and the absorber 1a on the side where the hot water temperature is lower work together to evaporate and absorb the final water that flows out from the tube group 14b of the absorber 1b. Even if the hot water temperature is high, the absorber 1a
The absorption liquid becomes sufficiently dilute. Therefore, since the concentration of the absorption liquid flowing into the low-temperature regenerator 3 is low, the concentration of the absorption liquid 21 in the low-temperature regenerator also decreases, even though the temperature of the hot water flowing into the tube group 17 of the condenser 4 becomes higher than before. The saturation temperature of the absorption liquid 21 does not rise, and the refrigerant vapor 1 generated in the high temperature regenerator 5 in the tube group 16
The condensation temperature of the high-temperature regenerator 5 does not increase, and as a result, the pressure of the high-temperature regenerator 5 can be prevented from increasing. On the other hand, on the right side, the evaporator 2b on the side where the low-temperature heat source water is low and the absorber 1b on the side where the hot water temperature is high work together to perform evaporation and absorption, so the concentration of the absorbed liquid in the absorber 1b increases, but this absorption The absorbed liquid in the vessel 1b is sent to the high-temperature regenerator 5, and since the temperature level of the heating source 23 flowing into the tube group 18 built in the high-temperature regenerator 5 is usually sufficiently high, it is heated and concentrated.

以上の吸収溶液サイクルを第3図のデユーリン
グ線図を使つて更に説明する。イは、蒸発器2a
の蒸発温度、ロは蒸発器2bの蒸発温度、ハは凝
縮器4の凝縮温度を表す。aは吸収器1aの吸収
液温度、bは吸収器1bの吸収液温度、cは低温
再生器3の吸収液出口温度を表す。又、吸収液濃
度は右側、図示の矢の方向に行くに従い高くな
る。第3図に示す通り、吸収器1aの吸収液は蒸
発温度イ、吸収液温度aからA点で示され、同様
にして吸収器1bの吸収液を示したB点より一見
して大巾に薄くなつていることがわかる。この薄
い吸収器1aの吸収液を低温再生器3に送るた
め、凝縮器4の温水温度が高くなつて凝縮温度が
ハになつたとしても、吸収液温度はcにとどま
り、低温再生器に内蔵したチユーブ群16内で凝
縮する、高温再生器で発生した冷媒蒸気の凝縮温
度も伝熱に必要なΔT分高いc′にとどまる。した
がつて、温水12の出入口温度が高くなつても、
温度c′の上昇割合が少なく、つまり高温再生器5
の圧力が大気圧を越えない範囲(c′の温度100℃
以下)で取扱われ温水温度が高くなる。又、第3
図からわかる通り、吸収器1aと低温再生器3で
形成する吸収液サイクルの濃度巾を少なくすると
A点とB点接近することになり、cの温度が低下
し、より一層高い温水温度まで扱えることがわか
る。なお、吸収器1bの吸収液はC点で表わさ
れ、高温再生器5内の吸収液はD点で表わせる
が、加熱源23の温度がDより高いものを選定す
れば本サイクルは成立するのである。C点および
D点とも温水温度条件によつては、通常の二重効
用吸収式より吸収液濃度は高くなるが、吸収器1
b内の温度が十分高く、結晶に対する危険はむし
ろ少ない方である。
The above absorption solution cycle will be further explained using the Düring diagram shown in FIG. A is the evaporator 2a
b represents the evaporation temperature of the evaporator 2b, and c represents the condensation temperature of the condenser 4. a represents the absorption liquid temperature of the absorber 1a, b represents the absorption liquid temperature of the absorber 1b, and c represents the absorption liquid outlet temperature of the low temperature regenerator 3. Further, the concentration of the absorbent increases as it goes to the right side in the direction of the arrow in the figure. As shown in Fig. 3, the absorbent liquid in the absorber 1a is indicated by point A from the evaporation temperature a and the absorbent liquid temperature a, and similarly, it appears to be much wider than the point B which indicates the absorbent liquid in the absorber 1b. You can see that it is getting thinner. In order to send the thin absorbent liquid in the absorber 1a to the low temperature regenerator 3, even if the hot water temperature in the condenser 4 becomes high and the condensation temperature reaches c, the absorbent liquid temperature remains at c and is built into the low temperature regenerator. The condensation temperature of the refrigerant vapor generated in the high-temperature regenerator, which condenses in the tube group 16, also remains at c', which is higher by ΔT required for heat transfer. Therefore, even if the temperature at the entrance and exit of the hot water 12 becomes high,
The rate of increase in temperature c′ is small, that is, high temperature regenerator 5
The range in which the pressure of does not exceed atmospheric pressure (temperature of c′ 100℃
(below) and the hot water temperature increases. Also, the third
As can be seen from the figure, if the concentration width of the absorption liquid cycle formed by the absorber 1a and the low-temperature regenerator 3 is reduced, points A and B will approach each other, and the temperature at c will decrease, making it possible to handle even higher hot water temperatures. I understand that. Note that the absorbed liquid in the absorber 1b can be represented by point C, and the absorbed liquid in the high-temperature regenerator 5 can be represented by point D, but if a heating source 23 whose temperature is higher than D is selected, this cycle is established. That's what I do. Depending on the hot water temperature conditions at both points C and D, the concentration of the absorption liquid will be higher than in a normal dual-effect absorption type, but absorber 1
The temperature inside b is sufficiently high, and the danger to the crystals is rather small.

第4図は、本発明の他の実施例を示し、低温熱
源水は蒸発器2bに内蔵されたチユーブ群15b
に流入した後、蒸発器2aに内蔵されたチユーブ
群15aに流入し、矢印の方向に流出する。その
他は第2図の実施例と同一であるので説明は省略
する。この実施例では、温水12の出口側に配設
された吸収器1bに対応する蒸発器2bの蒸発温
度が高く、吸収器1bの吸収液濃度が薄くなり、
高温再生器5内の吸収液温度が下るため、加熱源
23の温度が下げられる利点がある。
FIG. 4 shows another embodiment of the present invention, in which low-temperature heat source water is supplied to a tube group 15b built in the evaporator 2b.
After flowing into the tube group 15a built in the evaporator 2a, it flows out in the direction of the arrow. The rest is the same as the embodiment shown in FIG. 2, so a description thereof will be omitted. In this embodiment, the evaporation temperature of the evaporator 2b corresponding to the absorber 1b disposed on the outlet side of the hot water 12 is high, and the concentration of the absorption liquid in the absorber 1b is low.
Since the temperature of the absorption liquid in the high temperature regenerator 5 is lowered, there is an advantage that the temperature of the heating source 23 is lowered.

以上説明したように、本発明によれば吸収溶液
サイクル効率の高い二重効用吸収式で、温水温度
を高温まで昇温できるため、二重効用吸収式ヒー
トポンプを出た温水で加熱できる熱量が増加し、
低温熱源水(通常は排温水で外界にすてられる
熱)から汲み上げる熱量が、一重効用式よりサイ
クル効率のよい分(1.5倍から2倍)増加し、真
に省エネルギー化が達成できる。
As explained above, according to the present invention, the hot water temperature can be raised to a high temperature using the dual-effect absorption type with high absorption solution cycle efficiency, so the amount of heat that can be heated by the hot water leaving the dual-effect absorption type heat pump increases. death,
The amount of heat pumped from low-temperature heat source water (heat that is normally discarded to the outside world as waste hot water) is increased by 1.5 to 2 times due to its cycle efficiency compared to single-effect systems, making it possible to achieve true energy savings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の二重効用吸収式ヒートポンプの
系統図、第2図および第4図は本発明の二重効用
吸収式ヒートポンプの一実施例を示す系統図、第
3図は第2図の吸収溶液サイクルを示すデユーリ
ング線図である。 1a,1b……吸収液、2a,2b……蒸発
器、3……低温再生器、4……凝縮器、5……高
温再生器、12……温水、13……低温熱源水。
Fig. 1 is a system diagram of a conventional dual-effect absorption heat pump, Figs. 2 and 4 are system diagrams showing an embodiment of the dual-effect absorption heat pump of the present invention, and Fig. 3 is a system diagram of a conventional dual-effect absorption heat pump. It is a Duehring diagram showing an absorption solution cycle. 1a, 1b...absorption liquid, 2a, 2b...evaporator, 3...low temperature regenerator, 4...condenser, 5...high temperature regenerator, 12...hot water, 13...low temperature heat source water.

Claims (1)

【特許請求の範囲】 1 高温再生器、低温再生器、凝縮器、蒸発器、
吸収器、熱交換器およびポンプ類を作動的に連結
してなる二重効用吸収式ヒートポンプに於て、前
記蒸発器および吸収器を隔壁を介してそれぞれ第
1の蒸発器、第2の蒸発器、及び第1の吸収器、
第2の吸収器に分割し、この分割された前記第1
の蒸発器、第2の蒸発器と第1の吸収器、第2の
吸収器により独自に蒸発と吸収を行わせ、温水を
前記第1の吸収器、第2の吸収器に直列に通水
し、前記第1の吸収器と前記低温再生器とで独立
した第1の吸収溶液サイクルを形成し、前記第2
の吸収器と前記高温再生器とで独立した第2の吸
収溶液サイクルを形成すると共に、温水を前記凝
縮器、第1の吸収器、第2の吸収器の順に通水す
ることを特徴とする二重効用吸収式ヒートポン
プ。 2 熱源水を第1の蒸発器、第2の蒸発器の順に
通水することを特徴とする特許請求の範囲第1項
記載の二重効用吸収式ヒートポンプ。 3 熱源水を第2の蒸発器、第1の蒸発器の順に
通水することを特徴とする特許請求の範囲第1項
記載の二重効用吸収式ヒートポンプ。
[Claims] 1. High temperature regenerator, low temperature regenerator, condenser, evaporator,
In a dual-effect absorption heat pump in which an absorber, a heat exchanger, and a pump are operatively connected, the evaporator and absorber are connected to a first evaporator and a second evaporator, respectively, through a partition wall. , and a first absorber,
This divided first absorber is divided into a second absorber.
The evaporator, the second evaporator, the first absorber, and the second absorber perform evaporation and absorption independently, and hot water is passed in series to the first absorber and the second absorber. the first absorber and the low temperature regenerator form an independent first absorption solution cycle;
The absorber and the high-temperature regenerator form an independent second absorption solution cycle, and hot water is passed through the condenser, the first absorber, and the second absorber in this order. Dual effect absorption heat pump. 2. The dual-effect absorption heat pump according to claim 1, wherein the heat source water is passed through the first evaporator and the second evaporator in this order. 3. The dual-effect absorption heat pump according to claim 1, wherein the heat source water is passed through the second evaporator and then the first evaporator in this order.
JP10070382A 1982-06-14 1982-06-14 Double effect absorption type heat pump Granted JPS58219371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10070382A JPS58219371A (en) 1982-06-14 1982-06-14 Double effect absorption type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10070382A JPS58219371A (en) 1982-06-14 1982-06-14 Double effect absorption type heat pump

Publications (2)

Publication Number Publication Date
JPS58219371A JPS58219371A (en) 1983-12-20
JPH0340301B2 true JPH0340301B2 (en) 1991-06-18

Family

ID=14281054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10070382A Granted JPS58219371A (en) 1982-06-14 1982-06-14 Double effect absorption type heat pump

Country Status (1)

Country Link
JP (1) JPS58219371A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208669A (en) * 1988-02-12 1989-08-22 Hitachi Ltd Double effective absorptive type refrigerating cycle
JPH02290474A (en) * 1989-04-28 1990-11-30 Hitachi Ltd Absorption refrigerator
JP2000266422A (en) * 1999-01-12 2000-09-29 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine
JP4885467B2 (en) * 2005-03-25 2012-02-29 川重冷熱工業株式会社 Absorption heat pump

Also Published As

Publication number Publication date
JPS58219371A (en) 1983-12-20

Similar Documents

Publication Publication Date Title
JPS5913670B2 (en) Dual effect absorption refrigeration equipment
US4553409A (en) Multiple regeneration multiple absorption type heat pump
JPS5849781B2 (en) Absorption heat pump
US4470269A (en) Absorption refrigeration system utilizing low temperature heat source
JPH0340301B2 (en)
WO2002018850A1 (en) Absorption refrigerating machine
JPS5812507B2 (en) Hybrid type absorption heat pump
SE460870B (en) ABSORPTION TYPE COOLING SYSTEM
JPS6122225B2 (en)
JPH0429339Y2 (en)
JPH0783530A (en) Water and lithium bromide absorption refrigerator
JPH06347117A (en) Absorption type cold water or hot water heater
JPH0350373Y2 (en)
KR0173495B1 (en) Absorptive type air conditioner
JP2785154B2 (en) Single effect absorption refrigerator
JPH0354378Y2 (en)
JPS6024903B2 (en) Multiple effect absorption refrigerator
JPS63116066A (en) Double effect absorption water chiller and heater
JPH0820141B2 (en) Absorption refrigerator
JPS60117065A (en) Heat recovery device for absorption cold and hot water machine
JPS6250741B2 (en)
JPS6125987B2 (en)
JPH038465B2 (en)
JPH0663672B2 (en) Double-effect absorption chiller / heater
JPS6113148B2 (en)