JPH0336984A - Detection of primary voltage of induction motor - Google Patents

Detection of primary voltage of induction motor

Info

Publication number
JPH0336984A
JPH0336984A JP1167481A JP16748189A JPH0336984A JP H0336984 A JPH0336984 A JP H0336984A JP 1167481 A JP1167481 A JP 1167481A JP 16748189 A JP16748189 A JP 16748189A JP H0336984 A JPH0336984 A JP H0336984A
Authority
JP
Japan
Prior art keywords
voltage
converter
primary
primary voltage
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1167481A
Other languages
Japanese (ja)
Other versions
JPH07110159B2 (en
Inventor
Masao Iwasa
岩佐 正夫
Koji Yamada
幸治 山田
Masayuki Mori
雅之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Nippon Otis Elevator Co
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Nippon Otis Elevator Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd, Nippon Otis Elevator Co filed Critical Meidensha Corp
Priority to JP16748189A priority Critical patent/JPH07110159B2/en
Publication of JPH0336984A publication Critical patent/JPH0336984A/en
Publication of JPH07110159B2 publication Critical patent/JPH07110159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To improve resolution of a detected waveform by setting in advance primary and secondary side resistance values to a controller, operating a predetermined bias amount and a gain ratio based on them, and automatically correcting a primary voltage. CONSTITUTION:Control means 14 stores in advance primary and secondary side resistance values r1, r2, operates the steady component i1Xr1 of a primary voltage from the value r1, determines a bias amount based on the result, further calculates a gain ratio corresponding to the unsteady component of the voltage from the reciprocal of the value r2, and outputs to a D/A converter in a converter group 15. The bias amount from the converter 15 is reduced from a detection voltage form a differential amplifier 12, a noise, etc., is simultaneously suppressed by a filter 13 having a capacitor C, a resistor R and a comparator, a gain ratio from the converter 15 is multiplied by a multiplier 16, and a voltage V1' is output to the converter 15.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、エレベータを駆動する誘導電動機のベクトル
制御に際し、二次時定数測定のため使用される一次電圧
検出方法に関し、特に、一次電圧の定常部分と非定常部
分をそれぞれ補正する検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a primary voltage detection method used for measuring a secondary time constant during vector control of an induction motor that drives an elevator, and particularly relates to a primary voltage detection method used for measuring a secondary time constant. The present invention relates to a detection method that corrects each of the stationary portion and the unsteady portion.

B、発明の概要 本発明は、エレベータを駆動する誘導電動機のベクトル
制御に際し、二次時定数測定のため使用される一次電圧
検出方法において、 予め設定された一次側抵抗値に基づくバイアス量で一次
電圧の定常部分を補正し、予め設定された二次側抵抗値
の逆数に基づくゲイン率で該一次電圧の非定常部分を補
正することに上り、ゲイン調整が可能で、検出波形の分
解能を向上させ、多種の電動機に適用できる技術を開示
するものである。
B. Summary of the Invention The present invention provides a primary voltage detection method used for measuring a secondary time constant during vector control of an induction motor that drives an elevator. The steady part of the voltage is corrected, and the unsteady part of the primary voltage is corrected with a gain factor based on the reciprocal of the preset secondary resistance value, and the gain can be adjusted to improve the resolution of the detected waveform. This paper discloses a technology that can be applied to various types of electric motors.

C9従来の技術 一般に、エレベータの駆動は誘導電動機により行われて
いる。
C9 Prior Art Generally, elevators are driven by induction motors.

誘導電動機のベクトル制御は、その−吹型流を励磁電流
とトルク電流に分け、トルク電流のベクトルと磁束とを
常Iこ直交させることで、直流機と同等以上の可変速性
能を得ようとしている。
Vector control of an induction motor is an attempt to obtain variable speed performance equal to or better than that of a DC motor by dividing the blow-type flow into an excitation current and a torque current, and by orthogonalizing the vector of the torque current and the magnetic flux. There is.

第3図はベクトル制御装置の一例を示す構成図で、図中
1は誘導電動機、2はその速度検出器である。速度検出
器2には速度演算部3が接続されていて、検出された値
から該速度演算部3が算出する速度ωnと速度指令Nと
を突き合わせてトルク演算141こ入力し、比例積分(
PI)演算によりトルク電流指令itを求め、このトル
ク電流Itと励磁電流設定値1oとから一次電流演算部
5で一次電流値11を求める。一方、位相演算部6はト
ルク電流Itと励磁電流roとの位相角φを φ−jan−’(It/Io) で演算し、ずベリ周波数演算部7は、トルク電流Itと
励磁電流Noと電動機の二次時定数r2とからずべり周
波数ωSを下記の如く求める。尚、時定数τ2は、二次
自己インダクタンスL2及び二次抵抗R2に対してτ2
=L2/R2である。
FIG. 3 is a block diagram showing an example of a vector control device, in which 1 is an induction motor and 2 is its speed detector. A speed calculation unit 3 is connected to the speed detector 2, and the speed ωn calculated by the speed calculation unit 3 from the detected value is compared with the speed command N to input the torque calculation 141, and the proportional integral (
A torque current command it is determined by the PI) calculation, and a primary current value 11 is determined by the primary current calculation section 5 from this torque current It and the excitation current setting value 1o. On the other hand, the phase calculation section 6 calculates the phase angle φ between the torque current It and the excitation current ro as φ-jan-'(It/Io), and the frequency calculation section 7 calculates the phase angle φ between the torque current It and the excitation current No. The shear frequency ωS is calculated from the second-order time constant r2 of the motor as follows. Note that the time constant τ2 is τ2 with respect to the secondary self-inductance L2 and the secondary resistance R2.
=L2/R2.

ω5=It/(Io・τ2) このすべり周波数ωSは加算器8て速度検出値ωnと加
算され、−夾角周波数ω0が得られろ。
ω5=It/(Io·τ2) This slip frequency ωS is added to the detected speed value ωn by an adder 8 to obtain the -included angular frequency ω0.

上記の一吹型流値111位相角φ及び角周波数ω0は三
相電流演算部9へ入力され、電動機1の一次電流1a、
Ib、Icか算出される。この電流をインバータlOの
電流指令として、該インバータlOが電動機lに一次電
流を供給する。前記三相電流演算部9の演算は、次式で
行われる。
The above single blow type flow value 111 phase angle φ and angular frequency ω0 are input to the three-phase current calculation section 9, and the primary current 1a of the motor 1,
Ib and Ic are calculated. Using this current as a current command for the inverter lO, the inverter lO supplies a primary current to the electric motor l. The calculation by the three-phase current calculation section 9 is performed using the following equation.

θ−S ωodt Ia=J2 l 11 l s in(θ+φ)Ib=
72 l r I l s in(θ+2/3π+φ)
Ic=J21111sin(θ−2/3π+φ)このよ
うなベクトル制御装置で、すべり周波数ωSを求めるた
めの二次時定数τ2は、電動機の定数L2.R2によっ
て決定され、電動機の温度による二次抵抗R2の変動が
二次時定数τ2及び−吹型流位相のズlノとなる。そこ
で、二次時定数τ2の温度補正か従来より行われていて
、電動機に定電流を流したときの一次電圧から演算する
方法がある。第4図は、定電流ifを流したときの一次
電圧vl(t)の変化を示づ一特性図で、−吹型圧vl
(t)は、 v I (t) =i I (r l+r2e−””2
′)で近似される。そこで、時刻t1.t2におけろ一
次電圧vl(tl)、vl(t2)を測定ケることによ
り、二次時定数τ2を次式より求めるにの二次時定数τ
2をすべり周波数演算に使用することで温度による影響
を除去するようにしている。
θ−S ωodt Ia=J2 l 11 l s in(θ+φ) Ib=
72 l r I l s in (θ+2/3π+φ)
Ic=J21111sin(θ-2/3π+φ) In such a vector control device, the secondary time constant τ2 for determining the slip frequency ωS is the motor constant L2. It is determined by R2, and the fluctuation of the secondary resistance R2 due to the temperature of the motor becomes the difference in the secondary time constant τ2 and the -blow mold flow phase. Therefore, temperature correction of the secondary time constant τ2 has been conventionally performed, and there is a method of calculating from the primary voltage when a constant current is passed through the motor. FIG. 4 is a characteristic diagram showing the change in primary voltage vl(t) when a constant current if is applied.
(t) is v I (t) = i I (r l+r2e−””2
′). Therefore, at time t1. By measuring the primary voltages vl (tl) and vl (t2) at t2, the secondary time constant τ2 can be found from the following formula.
2 is used in the slip frequency calculation to remove the influence of temperature.

D3発明が解決しようεする課題 上記従来の二次時定数補正方法は、誘導電動機に定電流
又は定電圧を印加し、発生した過渡電流又は過渡電圧を
一定時間毎に測定し、その波形の変化率を用いて二次時
定数τ2を検出するものであるが、ここで、誘導電動機
に定電流又は定電圧を印加する際に、第5図に示すよう
な構成の電圧検出回路が一般的に使用されている。
D3 Problems to be Solved by the Invention The conventional secondary time constant correction method described above applies a constant current or constant voltage to an induction motor, measures the generated transient current or voltage at fixed time intervals, and calculates changes in its waveform. When applying a constant current or constant voltage to an induction motor, a voltage detection circuit having a configuration as shown in Fig. 5 is generally used. It is used.

即ち、第3図に示す前記インバータIOの出ノノ端子に
、アッテネータ(減衰器)11を介して、差動増幅器1
2を接続し、インバータIOの出力電圧を検出し、容量
C1抵抗R及び比較器で成るフィルタ13でノイズ等を
抑制したのち電圧vlを検出している。
That is, a differential amplifier 1 is connected to the output terminal of the inverter IO shown in FIG. 3 via an attenuator 11.
2 is connected to detect the output voltage of the inverter IO, and after suppressing noise etc. with a filter 13 consisting of a capacitor C1 resistor R and a comparator, the voltage vl is detected.

第6図は、その検出電圧を示す波形図である。FIG. 6 is a waveform diagram showing the detected voltage.

同図において、電流は定電流ifであるが、電圧は一次
側抵抗値lによるrlXilの部分と二次側抵抗r2に
よるr2Xilの部分とから成る。
In the figure, the current is a constant current if, but the voltage consists of a portion rlXil due to the primary side resistance value l and a portion r2Xil due to the secondary side resistance r2.

−次側抵抗rlによる部分はvlの定常値であるが、従
来はこの定常値のレベルを下限として検出を行っていた
ので、過渡状態に対するゲインを上げることができず、
分解能が犠牲になっていた。
- The part due to the next-side resistance rl is the steady value of vl, but conventionally, detection was performed with this steady value level as the lower limit, so it was not possible to increase the gain for transient states.
Resolution was sacrificed.

また、誘導電動機の仕様が異なる場合、rlどr2との
比にも違いを生じろため、この検出回路に調整要素を付
与しなcノれば精度よく二次時定数の検出を行うことも
できなかった。
In addition, if the specifications of the induction motor are different, the ratio between rl and r2 will also be different, so if you do not add an adjustment element to this detection circuit, it is possible to detect the secondary time constant with high accuracy. could not.

本発明は、このような課題に鑑みて創案されたしので、
ゲイン調整が可能で、検出波形の分解能を向上させ、多
種の電動機に適用可能な一次電圧検出方法を提供するこ
とを目的としている。
The present invention was created in view of these problems, and therefore,
The purpose of this invention is to provide a primary voltage detection method that allows gain adjustment, improves the resolution of detected waveforms, and is applicable to various types of electric motors.

89課題を解決するための手段 本発明におけろ上記課題を解決するための手段は、二次
時定数に基づいて誘導電動機をベクトル制御する際にそ
の二次時定数の測定に使用される一次電圧の検出方法に
おいて、予め設定された一次側抵抗値に基づくバイアス
量で一次電圧の定常部分を補正し、予め設定された二次
側抵抗値の逆数に基づくゲイン率で該−吹型圧の非定常
部分を補正する誘導電動機の一次電圧検出方法によるも
のとする。
89 Means for Solving the Problems In the present invention, the means for solving the above problems are based on the first-order time constant used to measure the second-order time constant when performing vector control of the induction motor based on the second-order time constant. In the voltage detection method, the steady portion of the primary voltage is corrected with a bias amount based on a preset primary resistance value, and the blow mold pressure is corrected with a gain factor based on the reciprocal of a preset secondary resistance value. The primary voltage detection method for the induction motor corrects the unsteady portion.

F9作用 本発明では、−次側抵抗値及び二次側抵抗値を予め制御
装置に設定しておき、それらに基づいて所要のバイアス
量とゲイン率を演算し、自動的に一次電圧を補正するも
のである。
F9 action In the present invention, the negative side resistance value and the secondary side resistance value are set in advance in the control device, the required bias amount and gain rate are calculated based on them, and the primary voltage is automatically corrected. It is something.

エレベータ用誘導電動機に対してベクトル制御を行う速
度制御装置には、マイクロコンピュータが使用されてい
て、そのメモリ上には該電動機の一次側抵抗及び二次側
抵抗の設計値が格納されている。本発明の制御手段は、
それらの値を用いた演算を行い、−吹型圧の定常部分に
相当するバイアス量を補正し、かつ検出fllllのA
/D変換領域を有効に利用できるようにゲインを補正し
て非定常部分の検出分解能を向−卜させろ。
A microcomputer is used in a speed control device that performs vector control on an induction motor for an elevator, and design values of a primary resistance and a secondary resistance of the motor are stored in its memory. The control means of the present invention includes:
Perform calculations using those values, - correct the bias amount corresponding to the steady part of the blow mold pressure, and
Improve the detection resolution of the unsteady portion by correcting the gain so that the /D conversion region can be used effectively.

G、実施例 以下、図面を参照して、本発明の実施例を詳細に説明す
る。
G. Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

同図において、+1はアッテネータ、12は差動増幅器
、13はフィルタ、14は制御手段、!5は変換器群、
16は乗算器で、n1ffi記インバータの出力端子に
アッテネータ(減衰5)11を介して差動増幅器12を
接続し、更に、容Wk C、抵抗R及び比較器で成るフ
ィルタ13を接続している。
In the figure, +1 is an attenuator, 12 is a differential amplifier, 13 is a filter, 14 is a control means, ! 5 is a converter group;
16 is a multiplier, and a differential amplifier 12 is connected to the output terminal of the inverter described in n1ffi via an attenuator (attenuation 5) 11, and a filter 13 consisting of a capacitor WkC, a resistor R, and a comparator is further connected. .

制御手段(CPU)14は、−次側抵抗値rlと二次側
抵抗値r2を予め格納していて、−次側抵抗値rlより
一次電圧の定常部分11Xrlを演算し、その結果に基
づいてバイアス量を決め、更に二次側抵抗値r2の逆数
より該電圧の非定常部分に相当するゲイン率を算出し、
それぞれ変換器群15中のD/A変換器へ出力する。
The control means (CPU) 14 stores the negative side resistance value rl and the secondary side resistance value r2 in advance, calculates the steady portion 11Xrl of the primary voltage from the negative side resistance value rl, and calculates the steady portion 11Xrl of the primary voltage based on the result. Determine the bias amount, further calculate the gain rate corresponding to the unsteady part of the voltage from the reciprocal of the secondary side resistance value r2,
Each is output to the D/A converter in the converter group 15.

前記差動増幅器12からの検出電圧は、D/A変換器1
5からのバイアス量を減算され、同時に容量C1抵抗R
及び比較2Xで成るフィルタI3でノイズ等を抑制した
のち、D/A変換器15からのゲイン率を乗算器16で
乗算されて電圧vl’をA/D変換器15へ出力する。
The detected voltage from the differential amplifier 12 is applied to the D/A converter 1.
The bias amount is subtracted from 5, and at the same time the capacitance C1 resistance R
After suppressing noise and the like by a filter I3 consisting of a filter I3 and a comparison 2X, a multiplier 16 multiplies the gain factor from the D/A converter 15 and outputs the voltage vl' to the A/D converter 15.

こうして、A/D変換器の変換領域を有効に利用し、か
つ電動機毎の調整を自動化しながら精度よく二次時定数
τ2の測定を行うことが可能になる。
In this way, it becomes possible to accurately measure the secondary time constant τ2 while effectively utilizing the conversion area of the A/D converter and automating the adjustment for each motor.

第2図は本実施例の補正効果を示ケ説明図で、図中上方
には、v l (t) −i 1Xr [が示され、下
方には、Vド(t)−ifxrl−Bfasが示されて
いる。仮にCPU検出側のA/D変換分解能を1000
 (0〜999)とすると、vl(1)が図中上方に示
す如き波形であれば、vl11Xrlの下限値により、
ゲインの調整が可能としても、分解能は制限を受ける。
FIG. 2 is an explanatory diagram showing the correction effect of this embodiment. In the upper part of the figure, v l (t) - i 1Xr [ is shown, and in the lower part, V de (t) - ifxrl - Bfas is shown. It is shown. Suppose that the A/D conversion resolution on the CPU detection side is 1000.
(0 to 999), if vl(1) has a waveform as shown in the upper part of the figure, then due to the lower limit of vl11Xrl,
Even if the gain can be adjusted, the resolution is limited.

しかし、図中下方に示す如く、バイアスを±300.ゲ
インを2だけ設定してMt正すると、Vド(1)は適正
化され、分解能は向」二する。
However, as shown at the bottom of the figure, the bias was adjusted to ±300. If the gain is set by 2 and Mt is corrected, Vd(1) will be optimized and the resolution will be improved.

本発明の実施例は、下記の効果を奏している。The embodiments of the present invention have the following effects.

(1)−吹型圧vlの定常値に下限を制限されず、かつ
ゲイン調整が可能なため検出波形の分解能、即ち温度検
出の分解能が向上する。
(1) - Since the lower limit of the blow mold pressure vl is not limited to the steady value and gain adjustment is possible, the resolution of the detected waveform, that is, the resolution of temperature detection is improved.

(2)抵抗rl及びr2は誘導電動機の仕様により異な
り、またその比率(rl/r2)も異なるため、多種の
電動機に適用する場合には回路内に調整要素を必要とす
るが、本方式では自動的に補正を行うので調整の必要が
なくなる。
(2) Resistances rl and r2 differ depending on the specifications of the induction motor, and their ratio (rl/r2) also differs, so when applying to various types of motors, an adjustment element is required in the circuit, but in this method, Since the correction is performed automatically, there is no need for adjustment.

■1発明の効果 以上、述べたとおり、本発明によれば、ゲイン調整が可
能で、検出波形の分解能を向上させ、多種の電動機に適
用可能な一次電圧検出方法を提供することができる。
(1) Effects of the Invention As described above, according to the present invention, it is possible to provide a primary voltage detection method that allows gain adjustment, improves the resolution of the detected waveform, and is applicable to various types of electric motors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図は一実施例
の補正効果の説明図、第3図はベクトル制御装置の構成
図、第4図は一次電圧の特性図、第5図は電圧検出回路
の構成図、第6図は従来例の波形図である。 !・・・誘導電動機、2・・・速度検出器、3・・・速
度演算部、4・・・トルク演算部、5・・・−次IX流
演算部、6・・・位相演算部、7・・・周波数演算部、
8・・・加算器、9・・・三相電流演算部、IO・・・
インバータ、It ・・アッテネータ、12・・・差動
増幅器、13・・・フィルタ、!4・・・制御手段、1
5・・・変換4群、16・・・乗算器。 外2名 第 1 図 第3図 ベクトルIII御装置の楕成図
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram of the correction effect of the embodiment, Fig. 3 is a block diagram of a vector control device, and Fig. 4 is a characteristic diagram of the primary voltage. FIG. 5 is a configuration diagram of a voltage detection circuit, and FIG. 6 is a waveform diagram of a conventional example. ! ... Induction motor, 2 ... Speed detector, 3 ... Speed calculation section, 4 ... Torque calculation section, 5 ... -th order IX flow calculation section, 6 ... Phase calculation section, 7 ...Frequency calculation section,
8... Adder, 9... Three-phase current calculation section, IO...
Inverter, It...attenuator, 12...differential amplifier, 13...filter,! 4...control means, 1
5... 4 conversion groups, 16... Multiplier. Figure 3: Elliptical diagram of vector III control equipment

Claims (1)

【特許請求の範囲】[Claims] (1)二次時定数に基づき誘導電動機をベクトル制御す
る際にその二次時定数の測定に使用される一次電圧の検
出方法において、予め設定された一次側抵抗値に基づく
バイアス量で一次電圧の定常部分を補正し、予め設定さ
れた二次側抵抗値の逆数に基づくゲイン率で該一次電圧
の非定常部分を補正することを特徴とする誘導電動機の
一次電圧検出方法。
(1) In the primary voltage detection method used to measure the secondary time constant when vector controlling an induction motor based on the secondary time constant, the primary voltage is A method for detecting a primary voltage of an induction motor, comprising: correcting a steady portion of the primary voltage; and correcting an unsteady portion of the primary voltage with a gain factor based on a preset reciprocal of a secondary resistance value.
JP16748189A 1989-06-29 1989-06-29 Induction motor primary voltage detection method Expired - Fee Related JPH07110159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16748189A JPH07110159B2 (en) 1989-06-29 1989-06-29 Induction motor primary voltage detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16748189A JPH07110159B2 (en) 1989-06-29 1989-06-29 Induction motor primary voltage detection method

Publications (2)

Publication Number Publication Date
JPH0336984A true JPH0336984A (en) 1991-02-18
JPH07110159B2 JPH07110159B2 (en) 1995-11-22

Family

ID=15850483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16748189A Expired - Fee Related JPH07110159B2 (en) 1989-06-29 1989-06-29 Induction motor primary voltage detection method

Country Status (1)

Country Link
JP (1) JPH07110159B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628123U (en) * 1992-09-21 1994-04-15 実 近藤 Parking equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628123U (en) * 1992-09-21 1994-04-15 実 近藤 Parking equipment

Also Published As

Publication number Publication date
JPH07110159B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
JP2000270600A (en) Drive of induction motor, and estimating method of its parameters
KR940019052A (en) Vector control system for induction motor
WO2016125559A1 (en) Motor control device
JP2585376B2 (en) Control method of induction motor
US20110068722A1 (en) Open-Loop or Closed-Loop Control Method for a Converter
US6242882B1 (en) Motor control apparatus
JP2929344B2 (en) Method and apparatus for measuring motor constants
JP2579119B2 (en) Vector controller for induction motor
JP2943377B2 (en) Vector controller for induction motor
JPH0336984A (en) Detection of primary voltage of induction motor
JP3337039B2 (en) Tuning method of vector control inverter for induction motor
JPH0638574A (en) Motor controller for induction motor
JP4172563B2 (en) Control method of synchronous motor
JP4483524B2 (en) Motor drive device
JP2006149045A (en) Motor driver
JP2634959B2 (en) Speed sensorless speed control method
JP3124019B2 (en) Induction motor control device
JP2003259698A (en) Method for correcting gain in three-phase current detector
JP3536114B2 (en) Power converter control method and power converter
JP3160778B2 (en) Inverter-driven motor speed estimation method and device, and motor vector control device using the speed estimation method
WO2023243087A1 (en) Electric motor control device
JP2527161B2 (en) Vector control arithmetic unit for electric motor
JP3118940B2 (en) Induction motor vector control device
JP3236607B2 (en) Digital servo controller
JPH11136999A (en) Variable speed driver for induction machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees