WO2023243087A1 - Electric motor control device - Google Patents

Electric motor control device Download PDF

Info

Publication number
WO2023243087A1
WO2023243087A1 PCT/JP2022/024355 JP2022024355W WO2023243087A1 WO 2023243087 A1 WO2023243087 A1 WO 2023243087A1 JP 2022024355 W JP2022024355 W JP 2022024355W WO 2023243087 A1 WO2023243087 A1 WO 2023243087A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain error
axis current
current
value
axis
Prior art date
Application number
PCT/JP2022/024355
Other languages
French (fr)
Japanese (ja)
Inventor
健 岡本
浩行 榎嶋
盛臣 見延
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/024355 priority Critical patent/WO2023243087A1/en
Publication of WO2023243087A1 publication Critical patent/WO2023243087A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present disclosure relates to a control device for an electric motor.
  • a pulsating component is extracted from at least one of the d-axis current value and the q-axis current value, and the sensor conversion coefficient setting value is used to calculate the current sensor's current sensor from the change in the amplitude value of the extracted pulsating component.
  • a device is known that has a configuration that determines whether or not the correction made to the output error is incorrect, and determines the sensor conversion coefficient setting value according to the determination result (see, for example, Patent Document 1).
  • the gain error includes an offset error and an error due to variations in detection sensitivity.
  • current pulsations due to errors occur due to control based on detected values that include errors.
  • parameter errors caused by imbalances in the electrical parameters of the three-phase motor, such as resistance and inductance among the three phases. If there is a parameter error in the three-phase motor, current pulsation will occur due to this parameter error.
  • a gain error of a current detector is corrected based on pulsating components of the d-axis and q-axis current values.
  • the frequency of current pulsation due to gain error and the frequency of current pulsation due to parameter error are both twice the electrical angular frequency of the three-phase motor, and are the same. Therefore, in a system where both the gain error of the current detector and the parameter error of the three-phase motor exist at the same time, the frequency of the pulsation generated by both is the same, so it is difficult to estimate the gain error and the parameter error at the same time.
  • the present disclosure has been made to solve such problems.
  • the purpose is to provide a motor control device that can simultaneously estimate the gain error of a current detector and the parameter error of a three-phase motor, and that can improve the accuracy of estimating these errors.
  • An electric motor control device includes a speed detector that detects the rotational speed of the electric motor, and a speed controller that outputs a q-axis current command so that the speed detection value of the speed detector follows a speed command value.
  • a current detector that detects current values of at least two phases among the u-phase, v-phase, and w-phase input to the motor; a d-axis current command generator that generates a d-axis current command; and a d-axis current command output from the d-axis current command generator, which A d-axis current controller that outputs a voltage command value and a q-axis current command value output from the speed controller are output from the first coordinate converter so that the output d-axis current detection value follows.
  • a q-axis current controller outputs a voltage command value and the d-axis and q-axis current detection values outputted from the first coordinate converter so that the q-axis current detection value follows a gain error estimator that estimates a gain error of a current detector; a parameter error estimator that estimates a parameter error due to three-phase imbalance of electrical parameters of the motor based on a gain error estimate by the gain error estimator;
  • the gain error estimator includes, as the gain error, a first gain error estimate estimated to minimize pulsations in the d-axis current, and a first gain error estimate estimated to minimize pulsations in the q-axis current.
  • the parameter error estimator estimates a parameter error using the first gain error estimate and the second gain error estimate, and outputs the second gain error estimate.
  • the gain error correction of the current detector is performed based on.
  • the electric motor control device includes a speed detector that detects the rotational speed of the electric motor, and a speed control that outputs a q-axis current command so that the speed detection value of the speed detector follows a speed command value.
  • a current detector that detects current values of at least two phases among the u-phase, v-phase, and w-phase that are input to the motor; a first coordinate converter that performs coordinate conversion to a detected value; a d-axis current command generator that generates a d-axis current command; and a first coordinate conversion to the d-axis current command output from the d-axis current command generator.
  • a d-axis current controller that outputs a voltage command value, and a q-axis current command value output from the speed controller, so that the d-axis current detected value output from the speed controller follows the first coordinate converter.
  • a q-axis current controller that outputs a voltage command value so that the q-axis current detected value outputted from the first coordinate converter follows the d-axis current detected value outputted from the first coordinate converter and the speed detected value; a gain error estimator that estimates a gain error of the current detector based on the gain error estimator; and a parameter that estimates a parameter error due to three-phase imbalance of electrical parameters of the motor based on the gain error estimate by the gain error estimator.
  • the gain error estimator includes a first gain error estimate estimated to minimize pulsations in the d-axis current as the gain error, and a first gain error estimate estimated to minimize pulsations in the detected speed value.
  • the parameter error estimator estimates a parameter error using the first gain error estimate and the third gain error estimate, and outputs a third gain error estimate estimated to make the parameter error. Gain error correction of the current detector is performed based on the third gain error estimate.
  • the electric motor control device it is possible to simultaneously estimate the gain error of the current detector and the parameter error of the three-phase motor, and it is possible to improve the accuracy of estimating these errors.
  • FIG. 1 is a diagram showing the overall configuration of a control device for an electric motor according to a first embodiment
  • FIG. 3 is a diagram illustrating a configuration example of a gain error estimator included in the control device according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration equivalent to the control system of the electric motor control device according to Embodiment 1, converted to dq axes.
  • FIG. 3 is a diagram showing frequency characteristics of a q-axis current command value related to a d-axis current detection value in the electric motor control device according to the first embodiment.
  • FIG. 3 is a diagram showing frequency characteristics of a parameter error component of a d-axis current related to a detected d-axis current value in the motor control device according to the first embodiment.
  • FIG. 3 is a diagram showing frequency characteristics of a parameter error component of a q-axis current related to a detected d-axis current value in the motor control device according to the first embodiment.
  • 3 is a diagram showing frequency characteristics of a q-axis current command value related to a q-axis current detected value in the electric motor control device according to the first embodiment.
  • FIG. FIG. 3 is a diagram showing frequency characteristics of a parameter error component of a d-axis current related to a detected q-axis current value in the motor control device according to the first embodiment.
  • FIG. 3 is a diagram showing frequency characteristics of a parameter error component of a q-axis current related to a detected q-axis current value in the motor control device according to the first embodiment.
  • FIG. 2 is a block diagram showing an example of a configuration for realizing the functions of the electric motor control device according to the first embodiment.
  • FIG. 3 is a diagram showing the overall configuration of a control device for an electric motor according to a second embodiment.
  • 7 is a diagram illustrating a configuration example of a gain error estimator included in a control device according to a second embodiment.
  • FIG. 1 is a diagram showing the overall configuration of a control device for an electric motor.
  • FIG. 2 is a diagram showing a configuration example of a gain error estimator included in the control device.
  • FIG. 3 is a block diagram showing a configuration equivalent to a control system of a motor control device converted into dq axes.
  • FIG. 4 is a diagram showing the frequency characteristics of the q-axis current command value related to the d-axis current detection value in the motor control device.
  • FIG. 5 is a diagram showing the frequency characteristics of the parameter error component of the d-axis current related to the d-axis current detection value in the motor control device.
  • FIG. 1 is a diagram showing the overall configuration of a control device for an electric motor.
  • FIG. 2 is a diagram showing a configuration example of a gain error estimator included in the control device.
  • FIG. 3 is a block diagram showing a configuration equivalent to a control system of a motor control device converted into dq axes.
  • FIG. 6 is a diagram showing the frequency characteristics of the parameter error component of the q-axis current related to the d-axis current detection value in the motor control device.
  • FIG. 7 is a diagram showing the frequency characteristics of the q-axis current command value related to the q-axis current detected value in the motor control device.
  • FIG. 8 is a diagram showing the frequency characteristics of the parameter error component of the d-axis current related to the q-axis current detection value in the motor control device.
  • FIG. 9 is a diagram showing the frequency characteristics of the parameter error component of the q-axis current related to the q-axis current detection value in the motor control device.
  • FIG. 10 is a block diagram showing an example of a configuration for realizing the functions of a motor control device.
  • a motor control device 100 controls a three-phase motor 10. As shown in FIG. 1, a speed detector 20 is attached to the three-phase electric motor 10. Speed detector 20 detects the rotation speed of three-phase electric motor 10. The speed detector 20 outputs the detected rotation speed value as a speed detection value. The speed detection value output from the speed detector 20 is input to the control device 100. A speed command value given from outside of the control device 100 is input to the control device 100 . The speed command value is a command value of the rotational speed of the three-phase electric motor 10. The control device 100 controls the power supply to the three-phase motor 10 so that the speed detected by the speed detector 20 follows the speed command value.
  • the control system of the electric motor is provided with a current detector 200, as shown in FIG.
  • Current detector 200 detects the u-phase, v-phase, and w-phase current values supplied from control device 100 to three-phase motor 10 .
  • Current detector 200 outputs the detected current value as a current detection value. Note that the current detector 200 only needs to detect current values of at least two of the three phases, the u phase, the v phase, and the w phase, which are input to the three-phase motor 10.
  • the current detector 200 estimates the current value of the remaining one phase from the three-phase equilibrium relationship, and estimates the current value of the one phase.
  • the detected current value is output as the detected current value.
  • it is not distinguished whether the estimated current value is included or not, and in either case, it is referred to as a current detected value.
  • a motor control device 100 includes a speed controller 101, a d-axis current command generator 102, a d-axis current controller 103, a q-axis current controller 104, and a first coordinate system.
  • a converter 111 and a second coordinate converter 112 are provided.
  • the difference between the speed command value input to the control device 100 and the speed detected value by the speed detector 20 is input to the speed controller 101.
  • the speed controller 101 outputs a q-axis current command value based on the difference between the speed command value and the detected speed value so that the detected speed value follows the detected speed value.
  • the q-axis current command value is a torque current command value.
  • the d-axis current command generator 102 generates and outputs a d-axis current command value.
  • the d-axis current command value generated by the d-axis current command generator 102 is an arbitrary value set in advance.
  • the d-axis current command value may be zero.
  • the d-axis current command value may be any negative value for field weakening control.
  • the d-axis current command value may be any positive value for field strengthening control.
  • the first coordinate converter 111 coordinately transforms the current detection value of the current detector 200 into d-axis and q-axis current detection values.
  • the first coordinate converter 111 receives three phase current detection values output from the current detector 200, that is, the u-phase, the v-phase, and the w-phase. Then, the first coordinate converter 111 converts the input three-phase current detection values into current values in the d-axis and q-axis coordinate systems, and outputs them as d-axis current detection values and q-axis current detection values. .
  • the coordinate transformation in the first coordinate converter 111 requires magnetic pole position information of the three-phase electric motor 10.
  • the speed detector 20 may output magnetic pole position information in addition to the rotational speed of the three-phase motor 10.
  • the speed detector 20 includes, for example, an encoder or a resolver that detects the magnetic pole position of the three-phase electric motor 10. Then, the speed detector 20 differentiates the detected magnetic pole position with respect to time, converts it into a rotational speed, and outputs the rotational speed.
  • the speed detector 20 may detect the rotation speed using the principle of a generator in which the output voltage changes depending on the rotation number (rotation speed). In this case, the speed detector 20 integrates the detected rotational speed over time and outputs magnetic pole position information.
  • the first coordinate converter 111 may perform coordinate conversion using the magnetic pole position information outputted by the speed detector 20 in this manner.
  • the difference between the d-axis current command value output from the d-axis current command generator 102 and the d-axis current detection value output from the first coordinate converter 111 is input to the d-axis current controller 103.
  • the d-axis current controller 103 outputs a d-axis voltage command value based on the difference between the d-axis current command value and the d-axis current detection value so that the d-axis current detection value follows the d-axis current detection value. .
  • the difference between the q-axis current command value output from the speed controller 101 and the q-axis current detection value output from the first coordinate converter 111 is input to the q-axis current controller 104.
  • the q-axis current controller 104 outputs a q-axis voltage command value based on the difference between the q-axis current command value and the q-axis current detection value so that the q-axis current detection value follows the q-axis current detection value. .
  • the second coordinate converter 112 converts the voltage command values of the d-axis and q-axis into voltage command values of three phases: u-phase, v-phase, and w-phase.
  • the d-axis voltage command value output from the d-axis current controller 103 and the q-axis voltage command value output from the q-axis current controller 104 are input to the second coordinate converter 112 .
  • the second coordinate converter 112 converts the input d-axis and q-axis voltage command values into three-phase voltage command values, and converts them into three-phase voltage command values of the u-phase, v-phase, and w-phase. Output.
  • the coordinate transformation in the second coordinate converter 112 requires the magnetic pole position information of the three-phase electric motor 10.
  • input of magnetic pole position information to the control device 100 is omitted.
  • the speed detector 20 may output magnetic pole position information in addition to the rotational speed of the three-phase electric motor 10.
  • the second coordinate converter 112 may perform coordinate conversion using the magnetic pole position information output from the speed detector 20.
  • the control device 100 supplies three-phase power to the three-phase electric motor 10 based on the three-phase voltage command values output from the second coordinate converter 112.
  • the three-phase electric motor 10 is driven by three-phase power supplied from the control device 100, and generates rotational torque and rotational speed.
  • the electric motor control device 100 further includes a gain error estimator 120 and a parameter error estimator 130, as shown in FIG.
  • Gain error estimator 120 estimates the gain error of current detector 200.
  • the u-phase current detection gain is Gu
  • the v-phase current detection gain is Gv
  • the w-phase current detection gain is Gw.
  • gain errors and errors due to variations in detection sensitivity may occur in the gains of these three phases. These offset errors and errors due to variations in detection sensitivity are collectively referred to as gain errors.
  • the current detection gains of the three phases will not match.
  • current pulsations occur due to this gain error.
  • the frequency of current pulsation caused by the gain error is twice the electrical angular frequency (energization frequency) of the three-phase motor 10. Note that if the gains of the three phases match each other with numerical values other than 1, this corresponds to a situation where no unbalanced three-phase current occurs and the efficiency of the three-phase motor 10 changes equivalently.
  • the gain error estimator 120 estimates the gain error of the current detector 200 based on the d-axis and q-axis current detection values output from the first coordinate converter 111. The gain error estimator 120 then outputs the gain error estimate to the current detector 200 and the parameter error estimator 130. The current detector 200 uses the gain error estimate output from the gain error estimator 120 to correct the u-phase current detection gain Gu, the v-phase current detection gain Gv, and the w-phase current detection gain Gw. A method for estimating the gain error by the gain error estimator 120 will be described later.
  • the parameter error estimator 130 estimates the parameter error based on the gain error estimate output from the gain error estimator.
  • the parameter error is an error caused by the electrical parameters of the three-phase motor 10, that is, the resistance, inductance, etc., being unbalanced among the three phases. If there is a parameter error in the three-phase motor 10, current pulsations occur due to this parameter error.
  • the frequency of current pulsations caused by parameter errors is twice the electrical angular frequency (energization frequency) of the three-phase motor 10, similar to the frequency of current pulsations caused by gain errors.
  • the parameter error estimator 130 converts the estimated parameter error value into a three-phase voltage and outputs it.
  • a parameter error estimate value converted into a three-phase voltage is also referred to as an electrical parameter error voltage.
  • a method for estimating parameter errors by the parameter error estimator 130 will be described later.
  • the control device 100 corrects the three-phase voltage command values output from the second coordinate converter 112 using the electric parameter error voltage output from the parameter error estimator 130. More specifically, the control device 100 calculates the difference between the voltage command value and the electrical parameter error voltage so as to remove the electrical parameter error voltage from the three-phase voltage command value. Then, the control device 100 corrects the difference between the voltage command value and the electrical parameter error voltage so that it becomes the input voltage of the three-phase motor 10.
  • the parameter error of the three-phase electric motor 10 is assumed to be an error that occurs when the phase impedances are unbalanced. Therefore, it is assumed that an imbalance occurs in the three-phase current and three-phase voltage in the three-phase motor 10 due to this parameter error.
  • the gain error estimator 120 estimates the gain error so as to minimize current ripples on each of the d-axis and the q-axis.
  • the gain error estimator 120 may estimate the gain error offline or online.
  • Off-line estimation is estimation of a gain error based on prior drive data of the three-phase electric motor 10.
  • Online estimation is estimation that specifies a gain error that reduces current pulsation while changing the estimated value of the gain error while the three-phase electric motor 10 is being driven.
  • the gain error estimator 120 may include a frequency analyzer 121 and a gain error estimation calculator 122.
  • the frequency analyzer 121 inputs the d-axis and q-axis currents and either time or the rotation angle of the three-phase motor 10, and calculates the amplitude information A of the cosine (cos) component and the sine of a desired frequency. (sin) component amplitude information B is output.
  • the “desired frequency” is the frequency of the current pulsation component caused by the gain error and parameter error. Therefore, the “desired frequency” is twice the electrical angular frequency (energization frequency) of the three-phase motor 10, as described above.
  • the frequency analyzer 121 outputs amplitude information A and amplitude information B of the pulsating components of the d-axis and q-axis currents.
  • Amplitude information A and amplitude information B output from the frequency analyzer 121 are input to a gain error estimation calculator 122.
  • the gain error estimation calculator 122 uses the input amplitude information A and amplitude information B of the pulsating component of the current to calculate and output a gain error estimated value.
  • the frequency analyzer 121 When inputting time to the frequency analyzer 121, the frequency analyzer 121 outputs amplitude information A and amplitude information B at the time frequency of current pulsation due to gain error. When inputting the rotation angle of the three-phase electric motor 10 to the frequency analyzer 121, the frequency analyzer 121 outputs amplitude information A and amplitude information B at the spatial frequency of current pulsation caused by a gain error.
  • the time frequency here is the number of waves per second expressed as the reciprocal of the period.
  • the spatial frequency is the number of waves per period of mechanical rotation of the three-phase motor 10 or per electrical angle rotation of the three-phase motor 10 in a determined interval, for example.
  • the frequency of the electrical angle is 50 Hz
  • the frequency of current pulsation due to gain error is 100 Hz in the temporal frequency
  • Step 1 The three-phase motor 10 is driven with an arbitrarily set gain error setting value, and the frequency component of the current pulsation value at that time is obtained. This is repeated with at least three patterns of gain error setting values, and frequency component information of the gain error setting value and current pulsation value is obtained for each pattern.
  • Step 2. Using the obtained at least three patterns of gain error setting values and the frequency component information of the current pulsation value, the initial value of the gain error when no gain error is set is set as the gain error estimated value.
  • step 1 driving the three-phase motor 10 with an arbitrarily set gain error setting value means that the control device 100 multiplies the current detection value including the unknown gain error by the gain error setting value.
  • the gain error setting value is an arbitrarily set constant magnification.
  • the actual gain including the error is , can be expressed by the following equations (1) and (2).
  • equation ( 6) holds true.
  • ⁇ d0 with a hat ( ⁇ ) is the V-phase gain error estimate based on the d-axis current
  • ⁇ q0 with a hat is the V-phase gain error estimate based on the q-axis current, with a hat.
  • ⁇ d0 represents the W-phase gain error estimate based on the d-axis current
  • ⁇ q0 with a hat represents the W-phase gain error estimate based on the q-axis current.
  • a dn , B dn , A qn , and B qn are frequencies twice the electrical angle of the d-axis current and q-axis current, as shown in equations (7) and (8), respectively, when ⁇ is the energization phase. represents the amplitude component of
  • Equations (3) to (8) are generalized for pattern n.
  • the pulsation amplitude components A dn , B dn , A qn , and B qn represent the amplitude components at the gain error setting value of pattern n.
  • Equation (3) three variables with hats, ⁇ d0 , K dA ⁇ , and K dB ⁇ , are unknown. Since ⁇ n in equation (3) is a set value, it is known. Further, A dn and B dn in Equation (3) are known because they are obtained as a result of frequency analysis. Furthermore, in Equation (4), three variables with hats, ⁇ d0 , K dA ⁇ , and K dB ⁇ , are unknown quantities. Since ⁇ n in equation (4) is a set value, it is known. Further, A dn and B dn in Equation (4) are known because they are obtained as a result of frequency analysis. Similarly, equations (5) and (6) each include three unknowns.
  • each of these equations (3) to (6) is a combination of three equations, and by solving these simultaneous equations, the unknown quantity can be obtained. That is, in order to obtain the unknown quantity, at least three patterns of gain error setting values are required. In this way, each of equations (3) to (6) is calculated using at least three patterns of gain error setting values set in advance and the current pulsation components A dn , B dn , A qn , and B qn at that time.
  • ⁇ d0 with a hat, ⁇ q0 with a hat, ⁇ d0 with a hat, and ⁇ q0 with a hat can be obtained.
  • the estimation can be performed using the following procedure. That is, the gain correction value of the current detector 200 is changed while the three-phase motor 10 is being driven. Then, if the current pulsation value becomes large, the gain correction value is changed in the opposite direction. On the other hand, if the current ripple value becomes smaller, the gain correction value is changed in the same direction as now. In this way, the gain correction value when the current pulsation value becomes the minimum is set as the gain error estimated value.
  • each of the offline estimation and the online estimation may be performed independently, or the offline estimation and the online estimation may be performed in combination.
  • FIG. 3 is a control block equivalently expressed on the dq axes when the current detector 200 has a gain error.
  • the internal model of the three-phase electric motor 10 is represented by dq axes.
  • the current converted to the dq axis is detected by an equivalent block of the current detector 200 and the first coordinate converter 111 in FIG. 1.
  • the d-axis current controller 103 gives a voltage command to the three-phase motor 10 so that the d-axis current command id ref created by the d-axis current command generator 102 and the d-axis current detected value ids match.
  • the voltage applied to the three-phase motor 10 is converted into a current by the d-axis magnetic circuit P md (s) inside the three-phase motor 10 .
  • the actual d-axis current ida is influenced by the influence id pe on the d-axis current due to the parameter error.
  • this actual d-axis current ida detected by the current detector 200 becomes the d-axis current detection value ids.
  • the speed controller 101 gives a q-axis current command so that the speed detection value of the three-phase motor 10 detected by the speed detector 20 (not shown in FIG. 3) matches the speed command.
  • the d-axis current controller 103 gives a voltage command to the three-phase motor 10 so that the axis current command iq ref output from the speed controller 101 and the detected value iqs of the q-axis current match.
  • the voltage applied to the three-phase motor 10 is converted into a current by the q-axis magnetic circuit P mq (s) inside the three-phase motor 10 .
  • the actual q-axis current iqa is influenced by the influence of the parameter error on the q-axis current iq_pe.
  • this actual q-axis current iqa detected by the current detector 200 becomes the q-axis current detection value iqs.
  • the d-axis current that actually flows in the three-phase motor is ida
  • the q-axis current that actually flows is iqa
  • the d-axis detected current converted to dq-axis is ids
  • the q-axis detected current is iqs.
  • the relationship between the detected current values ids and iqs and the actually flowing dq-axis current values ida and iqa is expressed by the following equation (9).
  • G dd (s), G dq (s), G qd (s), and G qq (s) are as follows.
  • G qd (s) ) Coefficient that simulates the effect that the actual q-axis current has on the detected d-axis current
  • G qq (s) Coefficient that simulates the effect that the actual q-axis current has on the detected q-axis current
  • G dd (s), G dq (s), G qd (s), and G qq (s) are expressed by the following equations (10) to (13).
  • Gain error of v phase with respect to u phase
  • Gain error of w phase with respect to u phase
  • Phase during coordinate transformation
  • the u-phase current detection gain Gu, the v-phase current detection gain Gv, and the w-phase current detection gain Gw are expressed by the following equation (14).
  • the current detection value by the current detector 200 can be expressed by the following equations (15) and (16) with reference to FIG.
  • each variable is as follows.
  • ids d-axis current detection value
  • iqs q-axis current detection value
  • id ref d-axis current command value
  • iq ref q-axis current command value
  • id pe d-axis current pulsation value due to parameter error
  • iq pe q-axis current due to parameter error
  • Pulsation value ida Actual d-axis current iqa: Actual q-axis current
  • the three-phase electric motor 10 is assumed to be an SPM motor (Surface Permanent Magnet Motor).
  • the d-axis and q-axis magnetic circuits are equal.
  • ⁇ c is the response angular frequency of current control.
  • the current command value is often a fixed value.
  • the d-axis current command value does not have a pulsating component.
  • Equations (18) and (19) include actual current values ida and iqa that cannot be detected, so these are deleted and the current command values of the d- and q-axes and the influence of parameter errors idpe, When iqpe is input, equations (18) and (19) can be rewritten into equations (20) and (21), respectively.
  • H d (s), J d (s), K d (s), H q (s), J q (s), and K q (s) are calculated from the following equations (22) to (27), respectively. ) as shown.
  • 4 to 9 show the frequency characteristics of the detected currents on the d and q axes of 2.
  • 4 shows the frequency characteristics of H d (s)
  • FIG. 5 shows the frequency characteristics of J d (s)
  • FIG. 6 shows the frequency characteristics of K d (s)
  • FIG. 7 shows the frequency characteristics of H q (s)
  • FIG. 8 shows the frequency characteristics of J q (s)
  • FIG. 9 shows the frequency characteristics of K q (s), respectively.
  • the frequency characteristics of H d (s) are similar to those of a BPF (Band Pass Filter).
  • the frequency characteristics of J d (s) are those of a first-order HPF (High Pass Filter) whose cutoff frequency is the current control response frequency ⁇ c.
  • the frequency characteristics of K d (s) are those of a first-order HPF whose cutoff frequency is the current control response frequency ⁇ c.
  • the frequency characteristics of H q (s) are those of an LPF (Low Pass Filter) whose cutoff frequency is the current control response frequency ⁇ c.
  • the frequency characteristics of J q (s) are those of a second-order HPF whose cutoff frequency is the current control response frequency ⁇ c.
  • the frequency characteristics of K q (s) are those of a first-order HPF whose cutoff frequency is the current control response frequency ⁇ c.
  • H q (s) in Fig. 7 is an LPF characteristic, and the pulsating value of the q-axis current is strongly influenced by the pulsating component of the q-axis current command and the gain error, and the pulsating component due to the parameter error is affected by the q-axis current detected value. It can be seen that the influence exerted is relatively small.
  • H d , J d , and K d all exhibit HPF characteristics, and the current pulsation value itself becomes small .
  • H d becomes relatively small, and J d and K d become relatively large. Therefore, it can be seen that the pulsating component of the d-axis current remains influenced by the pulsating component due to the parameter error, and the pulsating component of the d-axis current is affected by both the parameter error and the gain error.
  • the detected value of current pulsation on the q-axis has a small influence of the parameter error and the influence of the gain error is large, and the detected value of the d-axis current pulsation has the influence of both gain error and parameter error. I know it's coming out. Therefore, if the gain error is estimated based on the q-axis current pulsation value, it can be estimated without including the influence of the parameter error. On the other hand, when the gain error is estimated based on the d-axis current pulsation value, the estimated value also includes the influence of the parameter error.
  • the gain error estimator 120 uses, as the gain error of the current detector 200, a first gain error estimate estimated to minimize the pulsation of the d-axis current; A second gain error estimate estimated to minimize pulsation of the q-axis current is output. Then, as shown in FIG. 1, the control device 100 corrects the gain error of the current detector 200 based only on the second gain error estimate without using the first gain error estimate to correct the gain error of the current detector 200. Make corrections.
  • the parameter error estimator 130 estimates the parameter error using both the first gain error estimate and the second gain error estimate output from the gain error estimator 120. Specifically, the parameter error estimator 130 calculates the estimated value of the parameter error by taking the difference between the first gain error estimate and the second gain error estimate.
  • the d-axis current pulsations include the effects of both the gain error and the parameter error
  • the q-axis current pulsations include the effects of the parameter errors relatively.
  • the parameter error estimator 130 can estimate the parameter error from the difference between the d-axis and q-axis gain errors.
  • the v-phase gain error due to the q-axis is +5% and the v-phase gain error due to the d-axis is +3%.
  • the v-phase gain error of +5% means that the detected current value of the v-phase is 105% when the same current as that of the u-phase is detected with the u-phase as a reference phase.
  • the gain error correction of the current detector 200 is performed using the q-axis gain error +5%.
  • the parameter error estimator 130 estimates that the parameter error is -2% from the difference between the d-axis gain error +3% and the q-axis gain error +5%. Note that a parameter error of -2% means that the impedance of the v phase is 2% larger than the reference phase.
  • the electric motor control device 100 configured as described above, it is possible to simultaneously estimate the gain error and the parameter error with high accuracy. Therefore, it is possible to shorten the time required for adjustment work that was performed separately for gain errors and parameter errors, and it is also possible to reduce the influence of estimation errors due to the use of detection data that includes errors. .
  • the frequency characteristics of the dq-axis current ripple values output using the current detector 200 and first coordinate converter 111 shown in FIGS. 4 to 9 are based on the d-axis current controller 103 and the q-axis current controller 104. to be influenced. Then, depending on the HPF characteristics of the dq-axis current pulsation value, the magnitude of the current pulsation due to the influence of both parameter error and gain error appearing in the current detection value changes.
  • the magnitude of current pulsation can be changed by changing the current control gain. This characteristic may be utilized to improve the estimation error.
  • the d-axis current tends to have a smaller current pulsation value due to the HPF characteristics. From this, if the detection resolution of the current detector 200 is low and it is difficult to detect the current ripple value, lowering the d-axis current control gain will increase the gain on the low frequency side compared to before the change, and the current ripple value will increase. The value increases. Therefore, the d-axis current pulsation value can be increased, and detection can be made even when the resolution is low.
  • the main component of the q-axis current pulsation value is the q-axis current command value, and it has LPF characteristics. From this, by increasing the q-axis current control gain as much as possible, it is possible to reduce the pulsation component due to parameter error, and it is possible to reduce the estimation error in gain error estimation. In this way, the gain error estimator 120 may estimate the gain error of the current detector 200 in a current control response different from that during normal operation of the three-phase motor 10.
  • the gain error estimation is preferably performed while keeping the rotational speed of the three-phase motor 10 constant. That is, the gain error estimator 120 preferably estimates the gain error of the current detector 200 while the three-phase motor 10 is rotating at a constant speed.
  • the rotational speed of the three-phase electric motor 10 changes, the frequency of current pulsations due to gain error changes. For this reason, the frequency characteristics shown in FIGS. 4 to 9 change, and the amplitude of the pulsating component changes. Therefore, when performing online estimation, when the rotational speed of the three-phase motor 10 changes, it is not possible to distinguish whether the detected change in current pulsation is due to a change in the gain error correction value or a change in frequency characteristics. This may lead to a deterioration in the accuracy of gain error estimation.
  • the gain error estimation can be performed by correcting the amplitude of the current pulsation value according to the rotational speed. Can be done.
  • FIG. 10 is a diagram showing an example of a configuration for realizing the functions of the control device 100 in this embodiment.
  • the functions of the control device 100 are realized by, for example, a processing circuit.
  • the processing circuit may include a processor 301 and a memory 302.
  • the processing circuitry may be dedicated hardware 303. Part of the processing circuitry may be formed as dedicated hardware 303 and may further include a processor 301 and a memory 302 . In the example shown in the figure, part of the processing circuit is formed as dedicated hardware 303.
  • the processing circuit further includes a processor 301 and a memory 302.
  • the processing circuitry may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • the processing circuit includes at least one processor 301 and at least one memory 302, the functions of the control device 100 are realized by software, firmware, or a combination of software and firmware.
  • the processor 301 implements the functions of each section by reading and executing programs stored in the memory 302.
  • the processor 301 is also referred to as a CPU (Central Processing Unit), central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP.
  • Examples of the memory 302 include nonvolatile or volatile semiconductor memories such as RAM, ROM, flash memory, EPROM, and EEPROM, or magnetic disks, flexible disks, optical disks, compact disks, minidisks, and DVDs.
  • the processing circuit of the control device 100 can realize each function of the control device 100 using hardware, software, firmware, or a combination thereof.
  • the processing circuit of the control device 100 includes at least a processor 301 and a memory 302, the processor 301 executes a program stored in the memory 302 in the control device 100, and the hardware and software of the control device 100 cooperate. By doing so, the functions of each part included in the control device 100 are realized.
  • FIG. 11 is a diagram showing the overall configuration of the electric motor control device.
  • FIG. 12 is a diagram showing a configuration example of a gain error estimator included in the control device.
  • the electric motor control device according to the second embodiment will be explained, focusing on the differences from the first embodiment.
  • the configuration whose description is omitted is basically the same as that of the first embodiment.
  • structures similar to or corresponding to those of the first embodiment will be described with the same reference numerals used in the description of the first embodiment.
  • the electric motor control device includes a speed controller 101, a d-axis current command generator 102, a d-axis current controller 103, a q-axis current controller 104, and a first coordinate transformation. 111, a second coordinate transformer 112, a gain error estimator 120, and a parameter error estimator 130.
  • the speed controller 101, d-axis current command generator 102, d-axis current controller 103, q-axis current controller 104, first coordinate converter 111, and second coordinate converter 112 are basically the same as in the first embodiment. The same is true for
  • the gain error estimator 120 detects current based on the d-axis current detection value output from the first coordinate converter 111 and the speed detection value output from the speed detector 20.
  • the gain error of the device 200 is estimated. More specifically, the gain error estimator 120 uses a first gain error estimate estimated to minimize pulsations in the d-axis current and a first gain error estimate estimated to minimize pulsations in the detected speed value as gain errors. and a third gain error estimated value.
  • the control device then performs gain error correction of the current detector 200 based on the third gain error estimate.
  • the parameter error estimator 130 estimates a parameter error using the first gain error estimate and the third gain error estimate.
  • Equations (20) and (21) described in Embodiment 1 are equations written using the q-axis current command value iq ref and the current pulsation components idpe and iqpe that parameter errors exert on the d-axis and q-axis. there were.
  • the speed controller 101 uses the difference between the speed detection value of the three-phase motor 10 detected by the speed detector 20 and the speed command value. Based on this, the q-axis current command value is calculated.
  • the q-axis current command value iq ref can be expressed by the following equation (28) using the speed control gain C ⁇ (s), the detected speed value ⁇ , and the speed command value ⁇ ref .
  • the speed command value ⁇ ref includes only a DC component, so the pulsating component of the q-axis current command value iq ref is equal to the detected speed value ⁇ It can be seen that this is caused by Therefore, when the speed command value ⁇ ref is constant, the gain error can be estimated using the pulsating component of the detected speed value ⁇ instead of estimating the gain error using the pulsating component of the detected current on the q-axis. .
  • the gain error estimator 120 uses the d-axis current detection value output from the first coordinate converter 111 and the speed detection value output from the speed detector 20. Based on this, the gain error of the current detector 200 is estimated. Even with such an electric motor control device, it is possible to achieve the same effects as in the first embodiment.
  • the gain error estimator 120 may include a frequency analyzer 121 and a gain error estimation calculator 122, as shown in FIG.
  • the frequency analyzer 121 inputs the d-axis current detection value, speed detection value, and either time or the rotation angle of the three-phase motor 10, and calculates the frequency of the current pulsation component caused by the gain error and parameter error.
  • Amplitude information A and amplitude information B, and amplitude information A and amplitude information B of the frequency of the speed pulsation component caused by the gain error and parameter error are output.
  • amplitude information A is amplitude information of a cosine (cos) component
  • amplitude information B is amplitude information of a sine (sin) component.
  • Amplitude information A and amplitude information B output from the frequency analyzer 121 are input to the gain error estimation calculator 122.
  • the gain error estimation calculator 122 uses the input amplitude information A and amplitude information B of the pulsation components of the current and speed to calculate a first gain error estimate estimated to minimize the pulsation of the d-axis current. , and a third gain error estimate estimated to minimize the pulsation of the detected speed value. Therefore, the gain error estimator 120 of this embodiment can estimate the gain error in response to inputs of both the pulsating component of the current and the pulsating component of the detected speed value.
  • the control device according to the present disclosure can be applied to control a three-phase electric motor.

Abstract

Provided is an electric motor control device capable of simultaneously estimating the gain error of a current detector and the parameter error of a three-phase electric motor and improving the estimation accuracies of these errors. The electric motor control device comprises: a gain error estimator that estimates the gain error of a current detector on the basis of the current detection values of a d-axis and a q-axis; and a parameter error estimator that estimates, on the basis of the estimated value of the gain error, a parameter error due to the three-phase unbalance of the electric parameters of an electric motor. The gain error estimator outputs, as gain errors, a first gain error estimated value that is estimated so as to minimize d-axis current ripple and a second gain error estimated value that is estimated so as to minimize q-axis current ripple. The parameter error estimator estimates a parameter error using the first gain error estimated value and the second gain error estimated value. The control device corrects the gain error of the current detector on the basis of the second gain error estimated value.

Description

電動機の制御装置Electric motor control device
 本開示は、電動機の制御装置に関するものである。 The present disclosure relates to a control device for an electric motor.
 電動機の制御装置においては、d軸電流値およびq軸電流値のうちの少なくとも一方から脈動成分を抽出し、抽出した脈動成分の振幅値の変化から、センサ換算係数設定値を用いて電流センサの出力誤差に対して行った補正が誤っているか否かを判定し、判定結果に従って、センサ換算係数設定値を決定する構成を有するものが知られている(例えば、特許文献1参照)。 In a motor control device, a pulsating component is extracted from at least one of the d-axis current value and the q-axis current value, and the sensor conversion coefficient setting value is used to calculate the current sensor's current sensor from the change in the amplitude value of the extracted pulsating component. A device is known that has a configuration that determines whether or not the correction made to the output error is incorrect, and determines the sensor conversion coefficient setting value according to the determination result (see, for example, Patent Document 1).
日本特開2016-158414号公報Japanese Patent Application Publication No. 2016-158414
 電動機の制御時に使用される電流検出器にはゲイン誤差があることが知られている。ゲイン誤差には、オフセット誤差と検出感度のばらつきによる誤差とが含まれる。このような制御系では、誤差が含まれる検出値に基づく制御によって、誤差に起因する電流脈動が発生してしまう。また、電動機の制御系においては、三相電動機の電気パラメータ、すなわち、抵抗、インダンクタンス等が三相で不均衡であることに起因して生じるパラメータ誤差もある。三相電動機のパラメータ誤差がある場合は、このパラメータ誤差に起因して電流脈動が発生してしまう。 It is known that current detectors used when controlling electric motors have gain errors. The gain error includes an offset error and an error due to variations in detection sensitivity. In such a control system, current pulsations due to errors occur due to control based on detected values that include errors. In addition, in a motor control system, there are parameter errors caused by imbalances in the electrical parameters of the three-phase motor, such as resistance and inductance among the three phases. If there is a parameter error in the three-phase motor, current pulsation will occur due to this parameter error.
 特許文献1に示されるような電動機の制御装置においては、d軸及びq軸の電流値の脈動成分に基づいて電流検出器のゲイン誤差について補正する。しかしながら、ゲイン誤差に起因する電流脈動の周波数は、パラメータ誤差に起因する電流脈動の周波数は、いずれも三相電動機の電気角周波数の2倍であり、同じである。このため、電流検出器のゲイン誤差と三相電動機のパラメータ誤差の両者が同時に存在する系では、両者によって発生する脈動の周波数が同じであるために、ゲイン誤差とパラメータ誤差とを同時に推定しようとした場合に、ゲイン誤差とパラメータ誤差の推定値の切り分けができず、ゲイン誤差とパラメータ誤差の推定精度の低下を招いてしまう。また、ゲイン誤差とパラメータ誤差とを別々に推定すると、それぞれの誤差の推定処理、及び、三相電動機、制御装置等の調整作業に時間がかかり、作業効率の低下等を招いてしまう。 In a motor control device as shown in Patent Document 1, a gain error of a current detector is corrected based on pulsating components of the d-axis and q-axis current values. However, the frequency of current pulsation due to gain error and the frequency of current pulsation due to parameter error are both twice the electrical angular frequency of the three-phase motor, and are the same. Therefore, in a system where both the gain error of the current detector and the parameter error of the three-phase motor exist at the same time, the frequency of the pulsation generated by both is the same, so it is difficult to estimate the gain error and the parameter error at the same time. In this case, it is not possible to separate the estimated values of the gain error and parameter error, resulting in a decrease in the estimation accuracy of the gain error and parameter error. Furthermore, if the gain error and parameter error are estimated separately, it takes time to estimate each error and to adjust the three-phase motor, control device, etc., resulting in a decrease in work efficiency.
 本開示は、このような課題を解決するためになされたものである。その目的は、電流検出器のゲイン誤差と三相電動機のパラメータ誤差を同時に推定できるとともに、これらの誤差の推定精度向上を図ることが可能である電動機の制御装置を提供することにある。 The present disclosure has been made to solve such problems. The purpose is to provide a motor control device that can simultaneously estimate the gain error of a current detector and the parameter error of a three-phase motor, and that can improve the accuracy of estimating these errors.
 本開示に係る電動機の制御装置は、電動機の回転速度を検出する速度検出器と、前記速度検出器の速度検出値が速度指令値に追従するようにq軸電流指令を出力する速度制御器と、前記電動機に入力されるu相、v相及びw相のうち少なくとも2相の電流値を検出する電流検出器と、前記電流検出器の電流検出値を、d軸及びq軸の電流検出値に座標変換する第1座標変換器と、d軸電流指令を生成するd軸電流指令生成器と、前記d軸電流指令生成器から出力されたd軸電流指令に、前記第1座標変換器から出力されたd軸電流検出値が追従するように、電圧指令値を出力するd軸電流制御器と、前記速度制御器から出力されたq軸電流指令値に、前記第1座標変換器から出力されたq軸電流検出値が追従するように、電圧指令値を出力するq軸電流制御器と、前記第1座標変換器から出力されたd軸及びq軸の電流検出値に基づいて、前記電流検出器のゲイン誤差を推定するゲイン誤差推定器と、前記ゲイン誤差推定器によるゲイン誤差推定値に基づいて前記電動機の電気パラメータの三相不均衡によるパラメータ誤差を推定するパラメータ誤差推定器と、を備え、前記ゲイン誤差推定器は、前記ゲイン誤差として、d軸電流の脈動を最小にするように推定された第1ゲイン誤差推定値と、q軸電流の脈動を最小にするように推定された第2ゲイン誤差推定値とを出力し、前記パラメータ誤差推定器は、前記第1ゲイン誤差推定値及び第2ゲイン誤差推定値を用いて、パラメータ誤差を推定し、前記第2ゲイン誤差推定値に基づいて前記電流検出器のゲイン誤差補正を行う。 An electric motor control device according to the present disclosure includes a speed detector that detects the rotational speed of the electric motor, and a speed controller that outputs a q-axis current command so that the speed detection value of the speed detector follows a speed command value. , a current detector that detects current values of at least two phases among the u-phase, v-phase, and w-phase input to the motor; a d-axis current command generator that generates a d-axis current command; and a d-axis current command output from the d-axis current command generator, which A d-axis current controller that outputs a voltage command value and a q-axis current command value output from the speed controller are output from the first coordinate converter so that the output d-axis current detection value follows. A q-axis current controller outputs a voltage command value and the d-axis and q-axis current detection values outputted from the first coordinate converter so that the q-axis current detection value follows a gain error estimator that estimates a gain error of a current detector; a parameter error estimator that estimates a parameter error due to three-phase imbalance of electrical parameters of the motor based on a gain error estimate by the gain error estimator; The gain error estimator includes, as the gain error, a first gain error estimate estimated to minimize pulsations in the d-axis current, and a first gain error estimate estimated to minimize pulsations in the q-axis current. The parameter error estimator estimates a parameter error using the first gain error estimate and the second gain error estimate, and outputs the second gain error estimate. The gain error correction of the current detector is performed based on.
 あるいは、本開示に係る電動機の制御装置は、電動機の回転速度を検出する速度検出器と、前記速度検出器の速度検出値が速度指令値に追従するようにq軸電流指令を出力する速度制御器と、前記電動機に入力されるu相、v相及びw相のうち少なくとも2相の電流値を検出する電流検出器と、前記電流検出器の電流検出値を、d軸及びq軸の電流検出値に座標変換する第1座標変換器と、d軸電流指令を生成するd軸電流指令生成器と、前記d軸電流指令生成器から出力されたd軸電流指令に、前記第1座標変換器から出力されたd軸電流検出値が追従するように、電圧指令値を出力するd軸電流制御器と、前記速度制御器から出力されたq軸電流指令値に、前記第1座標変換器から出力されたq軸電流検出値が追従するように、電圧指令値を出力するq軸電流制御器と、前記第1座標変換器から出力されたd軸の電流検出値と前記速度検出値とに基づいて、前記電流検出器のゲイン誤差を推定するゲイン誤差推定器と、前記ゲイン誤差推定器によるゲイン誤差推定値に基づいて前記電動機の電気パラメータの三相不均衡によるパラメータ誤差を推定するパラメータ誤差推定器と、を備え、前記ゲイン誤差推定器は、前記ゲイン誤差として、d軸電流の脈動を最小にするように推定された第1ゲイン誤差推定値と、前記速度検出値の脈動を最小にするように推定された第3ゲイン誤差推定値とを出力し、前記パラメータ誤差推定器は、前記第1ゲイン誤差推定値及び第3ゲイン誤差推定値を用いて、パラメータ誤差を推定し、前記第3ゲイン誤差推定値に基づいて前記電流検出器のゲイン誤差補正を行う。 Alternatively, the electric motor control device according to the present disclosure includes a speed detector that detects the rotational speed of the electric motor, and a speed control that outputs a q-axis current command so that the speed detection value of the speed detector follows a speed command value. a current detector that detects current values of at least two phases among the u-phase, v-phase, and w-phase that are input to the motor; a first coordinate converter that performs coordinate conversion to a detected value; a d-axis current command generator that generates a d-axis current command; and a first coordinate conversion to the d-axis current command output from the d-axis current command generator. a d-axis current controller that outputs a voltage command value, and a q-axis current command value output from the speed controller, so that the d-axis current detected value output from the speed controller follows the first coordinate converter. a q-axis current controller that outputs a voltage command value so that the q-axis current detected value outputted from the first coordinate converter follows the d-axis current detected value outputted from the first coordinate converter and the speed detected value; a gain error estimator that estimates a gain error of the current detector based on the gain error estimator; and a parameter that estimates a parameter error due to three-phase imbalance of electrical parameters of the motor based on the gain error estimate by the gain error estimator. an error estimator, the gain error estimator includes a first gain error estimate estimated to minimize pulsations in the d-axis current as the gain error, and a first gain error estimate estimated to minimize pulsations in the detected speed value. The parameter error estimator estimates a parameter error using the first gain error estimate and the third gain error estimate, and outputs a third gain error estimate estimated to make the parameter error. Gain error correction of the current detector is performed based on the third gain error estimate.
 本開示に係る電動機の制御装置によれば、電流検出器のゲイン誤差と三相電動機のパラメータ誤差を同時に推定できるとともに、これらの誤差の推定精度向上を図ることが可能であるという効果を奏する。 According to the electric motor control device according to the present disclosure, it is possible to simultaneously estimate the gain error of the current detector and the parameter error of the three-phase motor, and it is possible to improve the accuracy of estimating these errors.
実施の形態1に係る電動機の制御装置の全体構成を示す図である。1 is a diagram showing the overall configuration of a control device for an electric motor according to a first embodiment; FIG. 実施の形態1に係る制御装置が備えるゲイン誤差推定器の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a gain error estimator included in the control device according to the first embodiment. 実施の形態1に係る電動機の制御装置の制御系と等価な構成をdq軸に変換して示すブロック図である。FIG. 2 is a block diagram showing a configuration equivalent to the control system of the electric motor control device according to Embodiment 1, converted to dq axes. 実施の形態1に係る電動機の制御装置におけるd軸電流検出値に係るq軸電流指令値の周波数特性を示す図である。FIG. 3 is a diagram showing frequency characteristics of a q-axis current command value related to a d-axis current detection value in the electric motor control device according to the first embodiment. 実施の形態1に係る電動機の制御装置におけるd軸電流検出値に係るd軸電流のパラメータ誤差成分の周波数特性を示す図である。FIG. 3 is a diagram showing frequency characteristics of a parameter error component of a d-axis current related to a detected d-axis current value in the motor control device according to the first embodiment. 実施の形態1に係る電動機の制御装置におけるd軸電流検出値に係るq軸電流のパラメータ誤差成分の周波数特性を示す図である。FIG. 3 is a diagram showing frequency characteristics of a parameter error component of a q-axis current related to a detected d-axis current value in the motor control device according to the first embodiment. 実施の形態1に係る電動機の制御装置におけるq軸電流検出値に係るq軸電流指令値の周波数特性を示す図である。3 is a diagram showing frequency characteristics of a q-axis current command value related to a q-axis current detected value in the electric motor control device according to the first embodiment. FIG. 実施の形態1に係る電動機の制御装置におけるq軸電流検出値に係るd軸電流のパラメータ誤差成分の周波数特性を示す図である。FIG. 3 is a diagram showing frequency characteristics of a parameter error component of a d-axis current related to a detected q-axis current value in the motor control device according to the first embodiment. 実施の形態1に係る電動機の制御装置におけるq軸電流検出値に係るq軸電流のパラメータ誤差成分の周波数特性を示す図である。FIG. 3 is a diagram showing frequency characteristics of a parameter error component of a q-axis current related to a detected q-axis current value in the motor control device according to the first embodiment. 実施の形態1に係る電動機の制御装置の機能を実現する構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a configuration for realizing the functions of the electric motor control device according to the first embodiment. 実施の形態2に係る電動機の制御装置の全体構成を示す図である。FIG. 3 is a diagram showing the overall configuration of a control device for an electric motor according to a second embodiment. 実施の形態2に係る制御装置が備えるゲイン誤差推定器の構成例を示す図である。7 is a diagram illustrating a configuration example of a gain error estimator included in a control device according to a second embodiment. FIG.
 本開示に係る電動機の制御装置を実施するための形態について添付の図面を参照しながら説明する。各図において、同一又は相当する部分には同一の符号を付して、重複する説明は適宜に簡略化又は省略する。以下の説明においては便宜上、図示の状態を基準に各構造の位置関係を表現することがある。なお、本開示は以下の実施の形態に限定されることなく、本開示の趣旨を逸脱しない範囲において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、又は各実施の形態の任意の構成要素の省略が可能である。 Embodiments for implementing the electric motor control device according to the present disclosure will be described with reference to the accompanying drawings. In each figure, the same or corresponding parts are given the same reference numerals, and overlapping explanations will be simplified or omitted as appropriate. In the following description, for convenience, the positional relationship of each structure may be expressed based on the illustrated state. Note that the present disclosure is not limited to the following embodiments, and any combination of embodiments, modification of any component of each embodiment, or modification of each embodiment may be made without departing from the spirit of the present disclosure. Any component of the embodiment can be omitted.
実施の形態1.
 図1から図10を参照しながら、本開示の実施の形態1について説明する。図1は電動機の制御装置の全体構成を示す図である。図2は制御装置が備えるゲイン誤差推定器の構成例を示す図である。図3は電動機の制御装置の制御系と等価な構成をdq軸に変換して示すブロック図である。図4は電動機の制御装置におけるd軸電流検出値に係るq軸電流指令値の周波数特性を示す図である。図5は電動機の制御装置におけるd軸電流検出値に係るd軸電流のパラメータ誤差成分の周波数特性を示す図である。図6は電動機の制御装置におけるd軸電流検出値に係るq軸電流のパラメータ誤差成分の周波数特性を示す図である。図7は電動機の制御装置におけるq軸電流検出値に係るq軸電流指令値の周波数特性を示す図である。図8は電動機の制御装置におけるq軸電流検出値に係るd軸電流のパラメータ誤差成分の周波数特性を示す図である。図9は電動機の制御装置におけるq軸電流検出値に係るq軸電流のパラメータ誤差成分の周波数特性を示す図である。図10は電動機の制御装置の機能を実現する構成の一例を示すブロック図である。
Embodiment 1.
Embodiment 1 of the present disclosure will be described with reference to FIGS. 1 to 10. FIG. 1 is a diagram showing the overall configuration of a control device for an electric motor. FIG. 2 is a diagram showing a configuration example of a gain error estimator included in the control device. FIG. 3 is a block diagram showing a configuration equivalent to a control system of a motor control device converted into dq axes. FIG. 4 is a diagram showing the frequency characteristics of the q-axis current command value related to the d-axis current detection value in the motor control device. FIG. 5 is a diagram showing the frequency characteristics of the parameter error component of the d-axis current related to the d-axis current detection value in the motor control device. FIG. 6 is a diagram showing the frequency characteristics of the parameter error component of the q-axis current related to the d-axis current detection value in the motor control device. FIG. 7 is a diagram showing the frequency characteristics of the q-axis current command value related to the q-axis current detected value in the motor control device. FIG. 8 is a diagram showing the frequency characteristics of the parameter error component of the d-axis current related to the q-axis current detection value in the motor control device. FIG. 9 is a diagram showing the frequency characteristics of the parameter error component of the q-axis current related to the q-axis current detection value in the motor control device. FIG. 10 is a block diagram showing an example of a configuration for realizing the functions of a motor control device.
 この実施の形態に係る電動機の制御装置100は、三相電動機10を制御するものである。図1に示すように、三相電動機10には、速度検出器20が取り付けられている。速度検出器20は、三相電動機10の回転速度を検出する。速度検出器20は、検出した回転速度の値を速度検出値として出力する。速度検出器20から出力された速度検出値は、制御装置100に入力される。制御装置100には、当該制御装置100の外部から与えられた速度指令値が入力される。速度指令値は、三相電動機10の回転速度の指令値である。制御装置100は、速度検出器20による速度検出値が速度指令値に追従するように三相電動機10への電力供給を制御する。 A motor control device 100 according to this embodiment controls a three-phase motor 10. As shown in FIG. 1, a speed detector 20 is attached to the three-phase electric motor 10. Speed detector 20 detects the rotation speed of three-phase electric motor 10. The speed detector 20 outputs the detected rotation speed value as a speed detection value. The speed detection value output from the speed detector 20 is input to the control device 100. A speed command value given from outside of the control device 100 is input to the control device 100 . The speed command value is a command value of the rotational speed of the three-phase electric motor 10. The control device 100 controls the power supply to the three-phase motor 10 so that the speed detected by the speed detector 20 follows the speed command value.
 この実施の形態に係る電動機の制御系統には、図1に示すように、電流検出器200が設けられている。電流検出器200は、制御装置100から三相電動機10に供給されるu相、v相及びw相の電流値を検出する。電流検出器200は、検出した電流値を電流検出値として出力する。なお、電流検出器200は、三相電動機10に入力されるu相、v相及びw相の3相のうちの少なくとも2相の電流値を検出すればよい。電流検出器200が3相のうちの2相の電流値を検出する場合、電流検出器200は、3相平衡の関係性から残りの1相の電流値を推定し、当該1相については推定した電流値を電流検出値として出力する。本開示においては、説明を簡潔にするため、推定した電流値を含むか含まないかを区別せず、いずれの場合も電流検出値と呼ぶ。 The control system of the electric motor according to this embodiment is provided with a current detector 200, as shown in FIG. Current detector 200 detects the u-phase, v-phase, and w-phase current values supplied from control device 100 to three-phase motor 10 . Current detector 200 outputs the detected current value as a current detection value. Note that the current detector 200 only needs to detect current values of at least two of the three phases, the u phase, the v phase, and the w phase, which are input to the three-phase motor 10. When the current detector 200 detects the current value of two of the three phases, the current detector 200 estimates the current value of the remaining one phase from the three-phase equilibrium relationship, and estimates the current value of the one phase. The detected current value is output as the detected current value. In this disclosure, in order to simplify the explanation, it is not distinguished whether the estimated current value is included or not, and in either case, it is referred to as a current detected value.
 この実施の形態に係る電動機の制御装置100は、図1に示すように、速度制御器101、d軸電流指令生成器102、d軸電流制御器103、q軸電流制御器104、第1座標変換器111及び第2座標変換器112を備えている。 As shown in FIG. 1, a motor control device 100 according to this embodiment includes a speed controller 101, a d-axis current command generator 102, a d-axis current controller 103, a q-axis current controller 104, and a first coordinate system. A converter 111 and a second coordinate converter 112 are provided.
 速度制御器101には、制御装置100に入力された速度指令値と、速度検出器20による速度検出値との差分が入力される。速度制御器101は、速度指令値と速度検出値との差分に基づいて、速度検出値に速度検出値が追従するようにq軸電流指令値を出力する。q軸電流指令値は、トルク電流の指令値である。 The difference between the speed command value input to the control device 100 and the speed detected value by the speed detector 20 is input to the speed controller 101. The speed controller 101 outputs a q-axis current command value based on the difference between the speed command value and the detected speed value so that the detected speed value follows the detected speed value. The q-axis current command value is a torque current command value.
 d軸電流指令生成器102は、d軸電流指令値を生成して出力する。d軸電流指令生成器102が生成するd軸電流指令値は、事前に設定された任意の値である。d軸電流指令値はゼロであってもよい。また、d軸電流指令値は、弱め界磁制御のために負の任意の値であってもよい。d軸電流指令値は、強め界磁制御のために正の任意の値であってもよい。 The d-axis current command generator 102 generates and outputs a d-axis current command value. The d-axis current command value generated by the d-axis current command generator 102 is an arbitrary value set in advance. The d-axis current command value may be zero. Further, the d-axis current command value may be any negative value for field weakening control. The d-axis current command value may be any positive value for field strengthening control.
 第1座標変換器111は、電流検出器200の電流検出値を、d軸及びq軸の電流検出値に座標変換する。第1座標変換器111には、電流検出器200から出力されたu相、v相及びw相の3相の電流検出値が入力される。そして、第1座標変換器111は、入力された3相の電流検出値を、d軸及びq軸の座標系における電流値に変換し、d軸電流検出値及びq軸電流検出値として出力する。 The first coordinate converter 111 coordinately transforms the current detection value of the current detector 200 into d-axis and q-axis current detection values. The first coordinate converter 111 receives three phase current detection values output from the current detector 200, that is, the u-phase, the v-phase, and the w-phase. Then, the first coordinate converter 111 converts the input three-phase current detection values into current values in the d-axis and q-axis coordinate systems, and outputs them as d-axis current detection values and q-axis current detection values. .
 ここで、第1座標変換器111における座標変換には、三相電動機10の磁極位置情報が必要である。図1では制御装置100への磁極位置情報の入力を省略している。例えば、速度検出器20が、三相電動機10の回転速度に加えて磁極位置情報を出力してもよい。この場合、より具体的には、速度検出器20は、三相電動機10の磁極位置を検出する例えばエンコーダ又はレゾルバ等を含んでいる。そして、速度検出器20は、検出した磁極位置を時間微分して、回転速度に変換して出力する。あるいは、速度検出器20は、回転数(回転速度)によって出力電圧が変化する発電機の原理を用いて回転速度を検出してもよい。この場合、速度検出器20は、検出した回転速度を時間積分して磁極位置情報を出力する。第1座標変換器111は、このようにして速度検出器20によって出力される磁極位置情報を用いて座標変換を行ってもよい。 Here, the coordinate transformation in the first coordinate converter 111 requires magnetic pole position information of the three-phase electric motor 10. In FIG. 1, input of magnetic pole position information to the control device 100 is omitted. For example, the speed detector 20 may output magnetic pole position information in addition to the rotational speed of the three-phase motor 10. In this case, more specifically, the speed detector 20 includes, for example, an encoder or a resolver that detects the magnetic pole position of the three-phase electric motor 10. Then, the speed detector 20 differentiates the detected magnetic pole position with respect to time, converts it into a rotational speed, and outputs the rotational speed. Alternatively, the speed detector 20 may detect the rotation speed using the principle of a generator in which the output voltage changes depending on the rotation number (rotation speed). In this case, the speed detector 20 integrates the detected rotational speed over time and outputs magnetic pole position information. The first coordinate converter 111 may perform coordinate conversion using the magnetic pole position information outputted by the speed detector 20 in this manner.
 d軸電流制御器103には、d軸電流指令生成器102から出力されたd軸電流指令値と第1座標変換器111から出力されたd軸電流検出値との差分が入力される。d軸電流制御器103は、d軸電流指令値とd軸電流検出値との差分に基づいて、d軸電流検出値にd軸電流検出値が追従するようにd軸電圧指令値を出力する。 The difference between the d-axis current command value output from the d-axis current command generator 102 and the d-axis current detection value output from the first coordinate converter 111 is input to the d-axis current controller 103. The d-axis current controller 103 outputs a d-axis voltage command value based on the difference between the d-axis current command value and the d-axis current detection value so that the d-axis current detection value follows the d-axis current detection value. .
 q軸電流制御器104には、速度制御器101から出力されたq軸電流指令値と第1座標変換器111から出力されたq軸電流検出値との差分が入力される。q軸電流制御器104は、q軸電流指令値とq軸電流検出値との差分に基づいて、q軸電流検出値にq軸電流検出値が追従するようにq軸電圧指令値を出力する。 The difference between the q-axis current command value output from the speed controller 101 and the q-axis current detection value output from the first coordinate converter 111 is input to the q-axis current controller 104. The q-axis current controller 104 outputs a q-axis voltage command value based on the difference between the q-axis current command value and the q-axis current detection value so that the q-axis current detection value follows the q-axis current detection value. .
 第2座標変換器112は、d軸及びq軸の電圧指令値を、u相、v相及びw相の3相の電圧指令値に座標変換する。第2座標変換器112には、d軸電流制御器103から出力されたd軸電圧指令値及びq軸電流制御器104から出力されたq軸電圧指令値が入力される。そして、第2座標変換器112は、入力されたd軸及びq軸の電圧指令値を、3相の電圧指令値に変換し、u相、v相及びw相の3相の電圧指令値として出力する。 The second coordinate converter 112 converts the voltage command values of the d-axis and q-axis into voltage command values of three phases: u-phase, v-phase, and w-phase. The d-axis voltage command value output from the d-axis current controller 103 and the q-axis voltage command value output from the q-axis current controller 104 are input to the second coordinate converter 112 . Then, the second coordinate converter 112 converts the input d-axis and q-axis voltage command values into three-phase voltage command values, and converts them into three-phase voltage command values of the u-phase, v-phase, and w-phase. Output.
 ここで、第1座標変換器111における座標変換と同様に、第2座標変換器112における座標変換には、三相電動機10の磁極位置情報が必要である。図1では制御装置100への磁極位置情報の入力を省略している。前述したように、速度検出器20が、三相電動機10の回転速度に加えて磁極位置情報を出力してもよい。この場合、第2座標変換器112は、速度検出器20から出力された磁極位置情報を用いて座標変換を行ってもよい。 Here, similarly to the coordinate transformation in the first coordinate converter 111, the coordinate transformation in the second coordinate converter 112 requires the magnetic pole position information of the three-phase electric motor 10. In FIG. 1, input of magnetic pole position information to the control device 100 is omitted. As described above, the speed detector 20 may output magnetic pole position information in addition to the rotational speed of the three-phase electric motor 10. In this case, the second coordinate converter 112 may perform coordinate conversion using the magnetic pole position information output from the speed detector 20.
 制御装置100は、第2座標変換器112から出力された3相の電圧指令値に基づいて、三相電動機10に3相電力を供給する。三相電動機10は、制御装置100から供給された3相電力により駆動され、回転トルク及び回転速度を発生させる。 The control device 100 supplies three-phase power to the three-phase electric motor 10 based on the three-phase voltage command values output from the second coordinate converter 112. The three-phase electric motor 10 is driven by three-phase power supplied from the control device 100, and generates rotational torque and rotational speed.
 この実施の形態に係る電動機の制御装置100は、図1に示すように、ゲイン誤差推定器120及びパラメータ誤差推定器130をさらに備えている。ゲイン誤差推定器120は、電流検出器200のゲイン誤差を推定する。 The electric motor control device 100 according to this embodiment further includes a gain error estimator 120 and a parameter error estimator 130, as shown in FIG. Gain error estimator 120 estimates the gain error of current detector 200.
 ここで、電流検出器200における、u相の電流検出ゲインをGu、v相の電流検出ゲインをGv、w相の電流検出ゲインをGwとする。これらの3相のゲインには、オフセット誤差と検出感度にばらつきによる誤差とが生じ得る。これらのオフセット誤差と検出感度にばらつきによる誤差とを合わせてゲイン誤差という。 Here, in the current detector 200, the u-phase current detection gain is Gu, the v-phase current detection gain is Gv, and the w-phase current detection gain is Gw. Offset errors and errors due to variations in detection sensitivity may occur in the gains of these three phases. These offset errors and errors due to variations in detection sensitivity are collectively referred to as gain errors.
 電流検出器200のゲイン誤差がない場合は、3相の電流検出ゲインは等しくなる(Gu=Gv=Gw)。一方、電流検出器200のゲイン誤差がある場合は、3相の電流検出ゲインは一致しなくなる。そして、電流検出器200のゲイン誤差がある場合は、このゲイン誤差に起因して電流脈動が発生する。ゲイン誤差により生じる電流脈動の周波数は、三相電動機10の電気角周波数(通電周波数)の2倍の値となる。なお、3相それぞれのゲインが1以外の数値で一致している場合は、3相電流の非平衡が発生せず、三相電動機10の効率が等価的に変化した状況と一致する。 If there is no gain error in the current detector 200, the current detection gains of the three phases are equal (Gu=Gv=Gw). On the other hand, if there is a gain error in the current detector 200, the current detection gains of the three phases will not match. If there is a gain error in the current detector 200, current pulsations occur due to this gain error. The frequency of current pulsation caused by the gain error is twice the electrical angular frequency (energization frequency) of the three-phase motor 10. Note that if the gains of the three phases match each other with numerical values other than 1, this corresponds to a situation where no unbalanced three-phase current occurs and the efficiency of the three-phase motor 10 changes equivalently.
 ゲイン誤差推定器120は、第1座標変換器111から出力されたd軸及びq軸の電流検出値に基づいて、電流検出器200のゲイン誤差を推定する。そして、ゲイン誤差推定器120は、ゲイン誤差推定値を電流検出器200及びパラメータ誤差推定器130に出力する。電流検出器200は、ゲイン誤差推定器120から出力されたゲイン誤差推定値を用いて、u相の電流検出ゲインGu、v相の電流検出ゲインGv及びw相の電流検出ゲインGwを補正する。ゲイン誤差推定器120によるゲイン誤差の推定方法については後述する。 The gain error estimator 120 estimates the gain error of the current detector 200 based on the d-axis and q-axis current detection values output from the first coordinate converter 111. The gain error estimator 120 then outputs the gain error estimate to the current detector 200 and the parameter error estimator 130. The current detector 200 uses the gain error estimate output from the gain error estimator 120 to correct the u-phase current detection gain Gu, the v-phase current detection gain Gv, and the w-phase current detection gain Gw. A method for estimating the gain error by the gain error estimator 120 will be described later.
 パラメータ誤差推定器130は、ゲイン誤差推定器から出力されたゲイン誤差推定値に基づいて、パラメータ誤差を推定する。パラメータ誤差とは、三相電動機10の電気パラメータ、すなわち、抵抗、インダンクタンス等が三相で不均衡であることに起因して生じる誤差である。三相電動機10のパラメータ誤差がある場合は、このパラメータ誤差に起因して電流脈動が発生する。パラメータ誤差により生じる電流脈動の周波数は、ゲイン誤差に起因する電流脈動の周波数と同様に、三相電動機10の電気角周波数(通電周波数)の2倍の値となる。 The parameter error estimator 130 estimates the parameter error based on the gain error estimate output from the gain error estimator. The parameter error is an error caused by the electrical parameters of the three-phase motor 10, that is, the resistance, inductance, etc., being unbalanced among the three phases. If there is a parameter error in the three-phase motor 10, current pulsations occur due to this parameter error. The frequency of current pulsations caused by parameter errors is twice the electrical angular frequency (energization frequency) of the three-phase motor 10, similar to the frequency of current pulsations caused by gain errors.
 パラメータ誤差推定器130は、パラメータ誤差推定値を三相電圧に換算して出力する。本開示においては、パラメータ誤差推定値を三相電圧に換算したものを電気パラメータ誤差電圧とも呼ぶ。パラメータ誤差推定器130によるパラメータ誤差の推定方法については後述する。 The parameter error estimator 130 converts the estimated parameter error value into a three-phase voltage and outputs it. In this disclosure, a parameter error estimate value converted into a three-phase voltage is also referred to as an electrical parameter error voltage. A method for estimating parameter errors by the parameter error estimator 130 will be described later.
 制御装置100は、第2座標変換器112から出力された3相の電圧指令値を、パラメータ誤差推定器130から出力された電気パラメータ誤差電圧を用いて補正する。より具体的には、制御装置100は、3相の電圧指令値から電気パラメータ誤差電圧を除去するように、電圧指令値と電気パラメータ誤差電圧との差分を取る。そして、制御装置100は、電圧指令値と電気パラメータ誤差電圧との差分が三相電動機10の入力電圧となるように補正する。 The control device 100 corrects the three-phase voltage command values output from the second coordinate converter 112 using the electric parameter error voltage output from the parameter error estimator 130. More specifically, the control device 100 calculates the difference between the voltage command value and the electrical parameter error voltage so as to remove the electrical parameter error voltage from the three-phase voltage command value. Then, the control device 100 corrects the difference between the voltage command value and the electrical parameter error voltage so that it becomes the input voltage of the three-phase motor 10.
 なお、この実施の形態では、三相電動機10のパラメータ誤差として、相インピーダンスが不平衡な場合に発生する誤差を想定している。したがって、このパラメータ誤差により、三相電動機10における三相電流及び三相電圧にアンバランスが発生することが想定されている。 Note that in this embodiment, the parameter error of the three-phase electric motor 10 is assumed to be an error that occurs when the phase impedances are unbalanced. Therefore, it is assumed that an imbalance occurs in the three-phase current and three-phase voltage in the three-phase motor 10 due to this parameter error.
 次に、ゲイン誤差推定器120によるゲイン誤差の推定方法について説明する。ゲイン誤差推定器120は、d軸及びq軸のそれぞれの電流脈動を最小化するようにゲイン誤差を推定する。ゲイン誤差推定器120は、ゲイン誤差をオフライン推定してもよいし、オンライン推定してもよい。オフライン推定とは、事前の三相電動機10の駆動データに基づくゲイン誤差の推定である。オンライン推定とは、三相電動機10の駆動中にゲイン誤差の推定値を変化させながら、電流脈動が小さくなるようなゲイン誤差を特定する推定である。 Next, a method for estimating the gain error using the gain error estimator 120 will be described. The gain error estimator 120 estimates the gain error so as to minimize current ripples on each of the d-axis and the q-axis. The gain error estimator 120 may estimate the gain error offline or online. Off-line estimation is estimation of a gain error based on prior drive data of the three-phase electric motor 10. Online estimation is estimation that specifies a gain error that reduces current pulsation while changing the estimated value of the gain error while the three-phase electric motor 10 is being driven.
 図2に示すように、ゲイン誤差推定器120は、周波数解析器121及びゲイン誤差推定演算器122を備えていてもよい。周波数解析器121は、d軸及びq軸の電流と、時間又は三相電動機10の回転角のいずれか一方とを入力として、所望の周波数の、余弦(cos)成分の振幅情報Aと、正弦(sin)成分の振幅情報Bとを出力する。ここで、「所望の周波数」は、ゲイン誤差及びパラメータ誤差に起因する電流脈動成分の周波数である。したがって、「所望の周波数」は、前述したように、三相電動機10の電気角周波数(通電周波数)の2倍の値である。これにより、周波数解析器121は、d軸及びq軸の電流の脈動成分の振幅情報A及び振幅情報Bを出力する。周波数解析器121から出力された振幅情報A及び振幅情報Bは、ゲイン誤差推定演算器122に入力される。ゲイン誤差推定演算器122は、入力された電流の脈動成分の振幅情報A及び振幅情報Bを用いて、ゲイン誤差推定値を算出して出力する。 As shown in FIG. 2, the gain error estimator 120 may include a frequency analyzer 121 and a gain error estimation calculator 122. The frequency analyzer 121 inputs the d-axis and q-axis currents and either time or the rotation angle of the three-phase motor 10, and calculates the amplitude information A of the cosine (cos) component and the sine of a desired frequency. (sin) component amplitude information B is output. Here, the "desired frequency" is the frequency of the current pulsation component caused by the gain error and parameter error. Therefore, the "desired frequency" is twice the electrical angular frequency (energization frequency) of the three-phase motor 10, as described above. Thereby, the frequency analyzer 121 outputs amplitude information A and amplitude information B of the pulsating components of the d-axis and q-axis currents. Amplitude information A and amplitude information B output from the frequency analyzer 121 are input to a gain error estimation calculator 122. The gain error estimation calculator 122 uses the input amplitude information A and amplitude information B of the pulsating component of the current to calculate and output a gain error estimated value.
 周波数解析器121に時間を入力する場合、周波数解析器121は、ゲイン誤差に起因する電流脈動の時間周波数での振幅情報A及び振幅情報Bを出力する。周波数解析器121に三相電動機10の回転角を入力する場合、周波数解析器121は、ゲイン誤差に起因する電流脈動の空間周波数での振幅情報A及び振幅情報Bを出力する。 When inputting time to the frequency analyzer 121, the frequency analyzer 121 outputs amplitude information A and amplitude information B at the time frequency of current pulsation due to gain error. When inputting the rotation angle of the three-phase electric motor 10 to the frequency analyzer 121, the frequency analyzer 121 outputs amplitude information A and amplitude information B at the spatial frequency of current pulsation caused by a gain error.
 ここでいう時間周波数とは、周期の逆数として表される1秒当たりの波数である。また、空間周波数とは、決められた区間、例えば三相電動機10の機械回転の1周期当たり、あるいは三相電動機10の電気角1回転当たりの波数である。例えば、電気角の周波数が50Hzのとき、ゲイン誤差に起因する電流脈動の周波数は、時間周波数では100Hzであり、空間周波数では電気角の2次高調波ということになる。 The time frequency here is the number of waves per second expressed as the reciprocal of the period. Furthermore, the spatial frequency is the number of waves per period of mechanical rotation of the three-phase motor 10 or per electrical angle rotation of the three-phase motor 10 in a determined interval, for example. For example, when the frequency of the electrical angle is 50 Hz, the frequency of current pulsation due to gain error is 100 Hz in the temporal frequency, and is the second harmonic of the electrical angle in the spatial frequency.
 事前の駆動データでゲイン誤差をオフライン推定する場合、以下の手順で推定を行う。
手順1.任意に設定したゲイン誤差設定値で三相電動機10を駆動させ、その時の電流脈動値の周波数成分を取得する。これを少なくとも3パターン以上のゲイン誤差設定値で繰り返し、それぞれのパターンについてゲイン誤差設定値と電流脈動値の周波数成分情報とを得る。
手順2.得られた少なくとも3パターン以上のゲイン誤差設定値と電流脈動値の周波数成分情報とを用いて、ゲイン誤差を設定しない場合のゲイン誤差の初期値をゲイン誤差推定値とする。
When offline estimating the gain error using prior drive data, the estimation is performed using the following steps.
Step 1. The three-phase motor 10 is driven with an arbitrarily set gain error setting value, and the frequency component of the current pulsation value at that time is obtained. This is repeated with at least three patterns of gain error setting values, and frequency component information of the gain error setting value and current pulsation value is obtained for each pattern.
Step 2. Using the obtained at least three patterns of gain error setting values and the frequency component information of the current pulsation value, the initial value of the gain error when no gain error is set is set as the gain error estimated value.
 なお、手順1における、任意に設定したゲイン誤差設定値で三相電動機10を駆動させる、とは、制御装置100により、未知のゲイン誤差を含む電流検出値にゲイン誤差設定値を掛け合わせて、三相電動機10を駆動させることを意味する。ゲイン誤差設定値は、任意に設定した一定倍率である。 Note that in step 1, driving the three-phase motor 10 with an arbitrarily set gain error setting value means that the control device 100 multiplies the current detection value including the unknown gain error by the gain error setting value. This means driving the three-phase electric motor 10. The gain error setting value is an arbitrarily set constant magnification.
 V相のゲイン誤差設定値をα、W相のゲイン誤差設定値をβ、V相のゲイン誤差をα、W相のゲイン誤差をβとしたとき、誤差を含む実際のゲインは、次の式(1)及び式(2)で表すことができる。 When the V-phase gain error setting value is α n , the W-phase gain error setting value is β n , the V-phase gain error is α 0 , and the W-phase gain error is β 0 , the actual gain including the error is , can be expressed by the following equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(1)、式(2)の誤差成分が、V相及びW相のそれぞれで相関することなく独立して電流の脈動成分の振幅に比例するとしたとき、次の式(3)から式(6)が成り立つ。なお、これらの式において、ハット(^)付きのαd0はd軸電流に基づくV相のゲイン誤差推定値、ハット付きのαq0はq軸電流に基づくV相のゲイン誤差推定値、ハット付きのβd0はd軸電流に基づくW相のゲイン誤差推定値、ハット付きのβq0はq軸電流に基づくW相のゲイン誤差推定値をそれぞれ表している。 If it is assumed that the error components in equations (1) and (2) are independently proportional to the amplitude of the pulsating component of the current in each of the V and W phases without correlation, then from the following equation (3), equation ( 6) holds true. In these equations, α d0 with a hat (^) is the V-phase gain error estimate based on the d-axis current, and α q0 with a hat is the V-phase gain error estimate based on the q-axis current, with a hat. β d0 represents the W-phase gain error estimate based on the d-axis current, and β q0 with a hat represents the W-phase gain error estimate based on the q-axis current.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ただし、Adn、Bdn、Aqn、Bqnはθを通電位相としたとき、それぞれ式(7)、式(8)に示すようにd軸電流とq軸電流の電気角2倍の周波数の振幅成分を表すものである。 However, A dn , B dn , A qn , and B qn are frequencies twice the electrical angle of the d-axis current and q-axis current, as shown in equations (7) and (8), respectively, when θ is the energization phase. represents the amplitude component of
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、添字のnはゲイン誤差の設定値(α、β)のパターンを表している。式(3)から式(8)はパターンnについて一般化されている。脈動振幅成分のAdn、Bdn、Aqn、Bqnは、パターンnのゲイン誤差設定値における振幅成分を表す。例えば、ゲイン誤差設定値(α、β)を3パターン設定した場合、nは1~3となり、式(3)から式(8)はそれぞれn=1、2及び3の3つの式を含むことになる。 Here, the subscript n represents the pattern of the gain error setting values (α n , β n ). Equations (3) to (8) are generalized for pattern n. The pulsation amplitude components A dn , B dn , A qn , and B qn represent the amplitude components at the gain error setting value of pattern n. For example, when three patterns of gain error setting values (α n , β n ) are set, n becomes 1 to 3, and Equations (3) to (8) represent the three equations where n = 1, 2, and 3, respectively. It will be included.
 式(3)においては、ハット付きのαd0、KdAα、KdBαの3変数が未知数である。式(3)のαは設定値であるから既知である。また、式(3)のAdn、Bdnは周波数解析結果として得られるため既知である。また、式(4)においては、ハット付きのβd0、KdAβ、KdBβの3変数が未知数である。式(4)のβは設定値であるから既知である。そして、式(4)のAdn、Bdnは周波数解析結果として得られるため既知である。同様に、式(5)、式(6)もそれぞれ3つの未知数を含んでいる。したがって、これらの式(3)から式(6)は、それぞれ3つの式を連立し、この連立方程式を解くことにより、未知数を求めることができる。すなわち、未知数を求めるには、ゲイン誤差の設定値が少なくとも3パターン必要である。このようにして、事前に設定した、少なくとも3パターンのゲイン誤差設定値とその時の電流脈動成分Adn、Bdn、Aqn、Bqnを用いて、式(3)から式(6)のそれぞれについての連立方程式を解くことで、電流検出器200のゲイン誤差推定値であるハット付きのαd0、ハット付きのαq0、ハット付きのβd0、ハット付きのβq0を求めることができる。 In equation (3), three variables with hats, α d0 , K dAα , and K dBα , are unknown. Since α n in equation (3) is a set value, it is known. Further, A dn and B dn in Equation (3) are known because they are obtained as a result of frequency analysis. Furthermore, in Equation (4), three variables with hats, β d0 , K dAβ , and K dBβ , are unknown quantities. Since β n in equation (4) is a set value, it is known. Further, A dn and B dn in Equation (4) are known because they are obtained as a result of frequency analysis. Similarly, equations (5) and (6) each include three unknowns. Therefore, each of these equations (3) to (6) is a combination of three equations, and by solving these simultaneous equations, the unknown quantity can be obtained. That is, in order to obtain the unknown quantity, at least three patterns of gain error setting values are required. In this way, each of equations (3) to (6) is calculated using at least three patterns of gain error setting values set in advance and the current pulsation components A dn , B dn , A qn , and B qn at that time. By solving simultaneous equations for the current detector 200, α d0 with a hat, α q0 with a hat, β d0 with a hat, and β q0 with a hat can be obtained.
 三相電動機10を駆動させながらゲイン誤差をオンライン推定する場合、以下の手順で推定を行うことができる。すなわち、三相電動機10の駆動中に電流検出器200のゲイン補正値を変化させる。そして、電流脈動値が大きくなるようであれば、ゲイン補正値を今とは反対方向に変化させる。一方、電流脈動値が小さくなるようであれば、ゲイン補正値を今と同じ方向に変化させる。このようにして、電流脈動値が最小となった際のゲイン補正値をゲイン誤差推定値とする。なお、オフライン推定及びオンライン推定のそれぞれを単独で行ってもよいし、オフライン推定及びオンライン推定を組み合わせて行ってもよい。 When estimating the gain error online while driving the three-phase electric motor 10, the estimation can be performed using the following procedure. That is, the gain correction value of the current detector 200 is changed while the three-phase motor 10 is being driven. Then, if the current pulsation value becomes large, the gain correction value is changed in the opposite direction. On the other hand, if the current ripple value becomes smaller, the gain correction value is changed in the same direction as now. In this way, the gain correction value when the current pulsation value becomes the minimum is set as the gain error estimated value. Note that each of the offline estimation and the online estimation may be performed independently, or the offline estimation and the online estimation may be performed in combination.
 次に、図3から図9を参照しながら、dq軸の電流検出値に現れる電流脈動について説明する。そして、電流脈動値の主要因とその周波数特性を明らかにして、この実施の形態に係る制御装置100により、ゲイン誤差とパラメータ誤差を同時に推定できるという効果について説明する。図3に示すのは、電流検出器200にゲイン誤差がある場合の制御ブロックをdq軸で等価に表したものである。同図では、三相電動機10の内部モデルをdq軸で表している。また、同図では、図1中の電流検出器200と第1座標変換器111の等価ブロックによって、dq軸に変換された電流を検出している。 Next, current pulsations appearing in the dq-axis current detection values will be explained with reference to FIGS. 3 to 9. Next, the main factors of the current pulsation value and their frequency characteristics will be clarified, and the effect that the control device 100 according to this embodiment can simultaneously estimate the gain error and the parameter error will be explained. What is shown in FIG. 3 is a control block equivalently expressed on the dq axes when the current detector 200 has a gain error. In the figure, the internal model of the three-phase electric motor 10 is represented by dq axes. Further, in the same figure, the current converted to the dq axis is detected by an equivalent block of the current detector 200 and the first coordinate converter 111 in FIG. 1.
 d軸電流制御器103は、d軸電流指令生成器102によって作成されたd軸電流指令idrefと、d軸電流検出値idsとが一致するように三相電動機10に電圧指令を与える。三相電動機10に与えられた電圧は、三相電動機10内部のd軸の磁気回路Pmd(s)によって、電流に換算される。この時、パラメータ誤差によるd軸電流への影響idpeの影響を受けたものが、実際のd軸電流idaとなる。そして、この実際のd軸電流idaを電流検出器200で検出したものが、d軸電流検出値idsとなる。 The d-axis current controller 103 gives a voltage command to the three-phase motor 10 so that the d-axis current command id ref created by the d-axis current command generator 102 and the d-axis current detected value ids match. The voltage applied to the three-phase motor 10 is converted into a current by the d-axis magnetic circuit P md (s) inside the three-phase motor 10 . At this time, the actual d-axis current ida is influenced by the influence id pe on the d-axis current due to the parameter error. Then, this actual d-axis current ida detected by the current detector 200 becomes the d-axis current detection value ids.
 また、速度制御器101は、図3では図示を省略している速度検出器20によって検出された三相電動機10の速度検出値が速度指令に一致するようにq軸電流指令を与える。d軸電流制御器103は、速度制御器101から出力された軸電流指令iqrefと、q軸電流の検出値iqsとが一致するように三相電動機10に電圧指令を与える。三相電動機10に与えられた電圧は、三相電動機10内部のq軸の磁気回路Pmq(s)によって、電流に換算される。この時、パラメータ誤差によるq軸電流への影響iqpeの影響を受けたものが、実際のq軸電流iqaとなる。そして、この実際のq軸電流iqaを電流検出器200で検出したものが、q軸電流検出値iqsとなる。 Further, the speed controller 101 gives a q-axis current command so that the speed detection value of the three-phase motor 10 detected by the speed detector 20 (not shown in FIG. 3) matches the speed command. The d-axis current controller 103 gives a voltage command to the three-phase motor 10 so that the axis current command iq ref output from the speed controller 101 and the detected value iqs of the q-axis current match. The voltage applied to the three-phase motor 10 is converted into a current by the q-axis magnetic circuit P mq (s) inside the three-phase motor 10 . At this time, the actual q-axis current iqa is influenced by the influence of the parameter error on the q-axis current iq_pe. Then, this actual q-axis current iqa detected by the current detector 200 becomes the q-axis current detection value iqs.
 図3に示すように、三相電動機の実際に流れるd軸電流をida、実際に流れるq軸電流をiqaとし、dq軸に換算したd軸の検出電流をids、q軸の検出電流をiqsとする。同図に示すように、電流検出器200のゲイン誤差により三相電動機10に実際に流れる電流値と、電流検出器200による検出電流値とに差が生じている場合、dq軸の電流は相互に影響を及ぼす。この時、検出電流値ids、iqsと実際に流れるdq軸の電流値ida、iqaとは次の式(9)の関係となる。 As shown in Fig. 3, the d-axis current that actually flows in the three-phase motor is ida, the q-axis current that actually flows is iqa, the d-axis detected current converted to dq-axis is ids, and the q-axis detected current is iqs. shall be. As shown in the figure, when there is a difference between the current value actually flowing through the three-phase motor 10 and the current value detected by the current detector 200 due to the gain error of the current detector 200, the currents on the d and q axes are mutually different. affect. At this time, the relationship between the detected current values ids and iqs and the actually flowing dq-axis current values ida and iqa is expressed by the following equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、Gdd(s)、Gdq(s)、Gqd(s)及びGqq(s)は以下の通りである。
dd(s):実際のd軸電流が検出d軸電流に及ぼす影響を模擬した係数
dq(s):実際のd軸電流が検出q軸電流に及ぼす影響を模擬した係数
qd(s):実際のq軸電流が検出d軸電流に及ぼす影響を模擬した係数
qq(s):実際のq軸電流が検出q軸電流に及ぼす影響を模擬した係数
Here, G dd (s), G dq (s), G qd (s), and G qq (s) are as follows.
G dd (s): Coefficient that simulates the influence of the actual d-axis current on the detected d-axis current G dq (s): Coefficient that simulates the influence that the actual d-axis current has on the detected q-axis current G qd (s) ): Coefficient that simulates the effect that the actual q-axis current has on the detected d-axis current G qq (s): Coefficient that simulates the effect that the actual q-axis current has on the detected q-axis current
 そして、Gdd(s)、Gdq(s)、Gqd(s)及びGqq(s)は、以下の式(10)から式(13)で表される。 Then, G dd (s), G dq (s), G qd (s), and G qq (s) are expressed by the following equations (10) to (13).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 なお、α、β及びθは以下の通りである。
α:u相を基準としたv相のゲイン誤差
β:u相を基準としたw相のゲイン誤差
θ:座標変換時の位相
Note that α, β, and θ are as follows.
α: Gain error of v phase with respect to u phase β: Gain error of w phase with respect to u phase θ: Phase during coordinate transformation
 また、u相の電流検出ゲインGu、v相の電流検出ゲインGv、w相の電流検出ゲインGwは、次の式(14)で表される。 Further, the u-phase current detection gain Gu, the v-phase current detection gain Gv, and the w-phase current detection gain Gw are expressed by the following equation (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 この時、電流検出器200による電流検出値は、図3を参照して次の式(15)、式(16)により表すことができる。 At this time, the current detection value by the current detector 200 can be expressed by the following equations (15) and (16) with reference to FIG.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 なお、各変数は以下の通りである。
ids:d軸電流検出値
iqs:q軸電流検出値
idref:d軸電流指令値
iqref:q軸電流指令値
idpe:パラメータ誤差によるd軸電流脈動値
iqpe:パラメータ誤差によるq軸電流脈動値
ida:実際のd軸電流
iqa:実際のq軸電流
In addition, each variable is as follows.
ids: d-axis current detection value iqs: q-axis current detection value id ref : d-axis current command value iq ref : q-axis current command value id pe : d-axis current pulsation value due to parameter error iq pe : q-axis current due to parameter error Pulsation value ida: Actual d-axis current iqa: Actual q-axis current
 ここで、簡略化のため、三相電動機10はSPMモータ(Surface Permanent Magnet Motor)とする。この場合、d軸とq軸の磁気回路は等しくなる。また、d軸とq軸の電流制御のゲインを同一とし、すなわち、Cid(s)=Ciq(s)とし、次の式(17)のような制御を行うものとする。ただし、ωcは電流制御の応答角周波数である。 Here, for the sake of simplicity, the three-phase electric motor 10 is assumed to be an SPM motor (Surface Permanent Magnet Motor). In this case, the d-axis and q-axis magnetic circuits are equal. Further, it is assumed that the gains of the current control of the d-axis and the q-axis are the same, that is, C id (s)=C iq (s), and control as shown in the following equation (17) is performed. However, ωc is the response angular frequency of current control.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 通常、d軸制御では、電流指令値が固定値となることが多い。特に弱め界磁制御を行わない場合のSPMモータでは通常id=0に制御される。このように、固定値に制御される場合、d軸電流指令値は脈動成分を持たない。d軸電流指令idrefを0とする制御をしたとすると、式(15)、式(16)はそれぞれ次の式(18)、式(19)に書き換えることができる。 Normally, in d-axis control, the current command value is often a fixed value. In particular, in an SPM motor when field weakening control is not performed, id=0 is normally controlled. In this way, when controlled to a fixed value, the d-axis current command value does not have a pulsating component. Assuming that the d-axis current command id ref is controlled to be 0, equations (15) and (16) can be rewritten into the following equations (18) and (19), respectively.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 式(18)、式(19)には、検出できない実際の電流値ida、iqaが含まれているため、これらを消去し、d軸及びq軸の電流指令値と、パラメータ誤差の影響idpe、iqpeを入力とすると、式(18)、式(19)はそれぞれ式(20)、式(21)に書き直すことができる。 Equations (18) and (19) include actual current values ida and iqa that cannot be detected, so these are deleted and the current command values of the d- and q-axes and the influence of parameter errors idpe, When iqpe is input, equations (18) and (19) can be rewritten into equations (20) and (21), respectively.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 なお、H(s)、J(s)、K(s)、H(s)、J(s)、K(s)は、それぞれ次の式(22)から式(27)に示す通りである。 Note that H d (s), J d (s), K d (s), H q (s), J q (s), and K q (s) are calculated from the following equations (22) to (27), respectively. ) as shown.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 ここで、式が複雑になったため、Gdd=Gqq≒1、Gdq≒Gqd≒0.05、Gdq*Gqd≒0となる近似を用いて、式(20)、式(21)のdq軸の検出電流の周波数特性を調べたものが図4から図9である。なお、図4は、H(s)、図5はJ(s)、図6はK(s)の周波数特性をそれぞれ示し、図7は、H(s)、図8はJ(s)、図9はK(s)の周波数特性をそれぞれ示している。 Here, since the equation is complicated, we use approximations such as G dd = G qq ≒1, G dq ≒G qd ≒0.05, and G dq *G qd ≒0 to calculate Equation (20) and Equation (21). 4 to 9 show the frequency characteristics of the detected currents on the d and q axes of 2. 4 shows the frequency characteristics of H d (s), FIG. 5 shows the frequency characteristics of J d (s), and FIG. 6 shows the frequency characteristics of K d (s), FIG. 7 shows the frequency characteristics of H q (s), and FIG. 8 shows the frequency characteristics of J q (s), and FIG. 9 shows the frequency characteristics of K q (s), respectively.
 図4に示すように、H(s)の周波数特性はBPF(Band Pass Filter)の特性に類似している。図5に示すように、J(s)の周波数特性は、カットオフ周波数が電流制御応答周波数ωcの1次HPF(High Pass Filter)の特性である。図6に示すように、K(s)の周波数特性は、カットオフ周波数が電流制御応答周波数ωcの1次HPFの特性である。図7に示すように、H(s)の周波数特性は、カットオフ周波数が電流制御応答周波数ωcのLPF(Low Pass Filter)の特性である。図8に示すように、J(s)の周波数特性は、カットオフ周波数が電流制御応答周波数ωcの2次HPFの特性である。図9に示すように、K(s)の周波数特性は、カットオフ周波数が電流制御応答周波数ωcの1次HPFの特性である。これらの周波数特性は、ゲイン誤差と電流制御系に起因する特性であり、ゲイン誤差の影響と考えることができる。 As shown in FIG. 4, the frequency characteristics of H d (s) are similar to those of a BPF (Band Pass Filter). As shown in FIG. 5, the frequency characteristics of J d (s) are those of a first-order HPF (High Pass Filter) whose cutoff frequency is the current control response frequency ωc. As shown in FIG. 6, the frequency characteristics of K d (s) are those of a first-order HPF whose cutoff frequency is the current control response frequency ωc. As shown in FIG. 7, the frequency characteristics of H q (s) are those of an LPF (Low Pass Filter) whose cutoff frequency is the current control response frequency ωc. As shown in FIG. 8, the frequency characteristics of J q (s) are those of a second-order HPF whose cutoff frequency is the current control response frequency ωc. As shown in FIG. 9, the frequency characteristics of K q (s) are those of a first-order HPF whose cutoff frequency is the current control response frequency ωc. These frequency characteristics are characteristics caused by the gain error and the current control system, and can be considered to be the effects of the gain error.
 HPFの特性を持つ場合、電流制御の応答に比べ電流脈動成分の周波数が十分低い場合は、ゲインが小さくなり検出電流の脈動成分は小さくなる。図7のH(s)はLPF特性であり、q軸電流の脈動値にq軸電流指令の脈動成分とゲイン誤差の影響が強く出て、パラメータ誤差による脈動成分がq軸電流検出値に及ぼす影響は相対的に小さくなることが分かる。 In the case of having the HPF characteristics, if the frequency of the current ripple component is sufficiently lower than the response of current control, the gain becomes small and the ripple component of the detected current becomes small. H q (s) in Fig. 7 is an LPF characteristic, and the pulsating value of the q-axis current is strongly influenced by the pulsating component of the q-axis current command and the gain error, and the pulsating component due to the parameter error is affected by the q-axis current detected value. It can be seen that the influence exerted is relatively small.
 一方、d軸電流検出値では、H、J、KのいずれもHPFの特性を示し、電流脈動値自体が小さくなるが、電流脈動の成分をH、J、Kで相対的に比較すると、Hは相対的に小さくなり、J、Kは相対的に大きくなる。このため、d軸電流の脈動成分にはパラメータ誤差による脈動成分の影響が残り、d軸電流の脈動成分は、パラメータ誤差とゲイン誤差の両方の影響を受けることが分かる。 On the other hand, in the d-axis current detection value, H d , J d , and K d all exhibit HPF characteristics, and the current pulsation value itself becomes small . When compared visually, H d becomes relatively small, and J d and K d become relatively large. Therefore, it can be seen that the pulsating component of the d-axis current remains influenced by the pulsating component due to the parameter error, and the pulsating component of the d-axis current is affected by both the parameter error and the gain error.
 よって、q軸の電流脈動の検出値には、パラメータ誤差の影響が小さく、ゲイン誤差の影響が大きく出て、d軸の電流脈動の検出値には、ゲイン誤差とパラメータ誤差の両方の影響が出ることが分かる。そのため、q軸電流脈動値を基にゲイン誤差を推定するとパラメータ誤差の影響を含まずに推定することができる。一方、d軸電流脈動値を基にゲイン誤差を推定すると、推定値にパラメータ誤差の影響も含んでしまう。 Therefore, the detected value of current pulsation on the q-axis has a small influence of the parameter error and the influence of the gain error is large, and the detected value of the d-axis current pulsation has the influence of both gain error and parameter error. I know it's coming out. Therefore, if the gain error is estimated based on the q-axis current pulsation value, it can be estimated without including the influence of the parameter error. On the other hand, when the gain error is estimated based on the d-axis current pulsation value, the estimated value also includes the influence of the parameter error.
 そこで、本開示に係る制御装置100においては、ゲイン誤差推定器120は、電流検出器200のゲイン誤差として、d軸電流の脈動を最小にするように推定された第1ゲイン誤差推定値と、q軸電流の脈動を最小にするように推定された第2ゲイン誤差推定値とを出力する。そして、図1に示すように、制御装置100は、電流検出器200のゲイン誤差補正に第1ゲイン誤差推定値を用いず、第2ゲイン誤差推定値のみに基づいて電流検出器200のゲイン誤差補正を行う。 Therefore, in the control device 100 according to the present disclosure, the gain error estimator 120 uses, as the gain error of the current detector 200, a first gain error estimate estimated to minimize the pulsation of the d-axis current; A second gain error estimate estimated to minimize pulsation of the q-axis current is output. Then, as shown in FIG. 1, the control device 100 corrects the gain error of the current detector 200 based only on the second gain error estimate without using the first gain error estimate to correct the gain error of the current detector 200. Make corrections.
 また、パラメータ誤差推定器130は、ゲイン誤差推定器120から出力された第1ゲイン誤差推定値及び第2ゲイン誤差推定値の両方を用いて、パラメータ誤差を推定する。具体的には、パラメータ誤差推定器130は、第1ゲイン誤差推定値と第2ゲイン誤差推定値との差分を取ることで、パラメータ誤差の推定値を算出する。 Furthermore, the parameter error estimator 130 estimates the parameter error using both the first gain error estimate and the second gain error estimate output from the gain error estimator 120. Specifically, the parameter error estimator 130 calculates the estimated value of the parameter error by taking the difference between the first gain error estimate and the second gain error estimate.
 このようにして、この実施の形態に係る制御装置100においては、d軸電流脈動にはゲイン誤差とパラメータ誤差の両方の影響が含まれ、q軸電流脈動にはパラメータ誤差の影響が相対的に小さく、ゲイン誤差の影響が相対的に大きい特性を利用して、パラメータ誤差推定器130は、d軸とq軸のゲイン誤差の差分からパラメータ誤差を推定できる。 In this way, in the control device 100 according to this embodiment, the d-axis current pulsations include the effects of both the gain error and the parameter error, and the q-axis current pulsations include the effects of the parameter errors relatively. Utilizing the characteristic that the gain error is small and the influence of the gain error is relatively large, the parameter error estimator 130 can estimate the parameter error from the difference between the d-axis and q-axis gain errors.
 例えば、q軸によるv相ゲイン誤差が+5%、d軸によるv相ゲイン誤差が+3%であった場合を考える。なお、v相ゲイン誤差が+5%とは、u相を基準相として、u相と同じ電流を検出した時のv相の電流検出値が105%であるという意味である。この場合、電流検出器200のゲイン誤差補正は、q軸のゲイン誤差+5%を用いて行う。また、パラメータ誤差推定器130は、d軸のゲイン誤差が+3%とq軸のゲイン誤差+5%との差分から、パラメータ誤差が-2%であると推定する。なお、パラメータ誤差が-2%であるとは、v相のインピーダンスが基準相に対し2%大きいことを意味している。 For example, consider a case where the v-phase gain error due to the q-axis is +5% and the v-phase gain error due to the d-axis is +3%. Note that the v-phase gain error of +5% means that the detected current value of the v-phase is 105% when the same current as that of the u-phase is detected with the u-phase as a reference phase. In this case, the gain error correction of the current detector 200 is performed using the q-axis gain error +5%. Further, the parameter error estimator 130 estimates that the parameter error is -2% from the difference between the d-axis gain error +3% and the q-axis gain error +5%. Note that a parameter error of -2% means that the impedance of the v phase is 2% larger than the reference phase.
 以上のように構成された電動機の制御装置100によれば、ゲイン誤差とパラメータ誤差を同時に精度よく推定することができる。このため、ゲイン誤差とパラメータ誤差について、それぞれ個別に行っていた調整作業の時間を短縮することができるとともに、誤差を含む検出データを利用することによる推定誤差の影響を小さくすることが可能である。 According to the electric motor control device 100 configured as described above, it is possible to simultaneously estimate the gain error and the parameter error with high accuracy. Therefore, it is possible to shorten the time required for adjustment work that was performed separately for gain errors and parameter errors, and it is also possible to reduce the influence of estimation errors due to the use of detection data that includes errors. .
 図4から図9に示した電流検出器200及び第1座標変換器111を用いて出力されるdq軸の電流脈動値の周波数特性は、d軸電流制御器103とq軸電流制御器104の影響を受ける。そして、dq軸の電流脈動値のHPF特性によって、電流検出値に現れるパラメータ誤差及びゲイン誤差の両方の誤差の影響による電流脈動の大きさが変化することになる。 The frequency characteristics of the dq-axis current ripple values output using the current detector 200 and first coordinate converter 111 shown in FIGS. 4 to 9 are based on the d-axis current controller 103 and the q-axis current controller 104. to be influenced. Then, depending on the HPF characteristics of the dq-axis current pulsation value, the magnitude of the current pulsation due to the influence of both parameter error and gain error appearing in the current detection value changes.
 ゲイン誤差推定器120によって、ゲイン誤差を推定する場合に、電流制御ゲインを変更することで、電流脈動の大きさを変更することができる。この特性を利用して、推定誤差を向上させてもよい。前述したように、d軸電流はHPF特性により、電流脈動値が小さくなる傾向を示す。このことから、電流検出器200の検出分解能が低く、電流脈動値を検出しにくい場合は、d軸の電流制御ゲインを下げることで、低域側のゲインが変更前に比べて上がり、電流脈動値が大きくなる。そのため、d軸電流脈動値を大きくすることができ、分解能が低い場合においても検出可能にすることができる。 When estimating a gain error using the gain error estimator 120, the magnitude of current pulsation can be changed by changing the current control gain. This characteristic may be utilized to improve the estimation error. As described above, the d-axis current tends to have a smaller current pulsation value due to the HPF characteristics. From this, if the detection resolution of the current detector 200 is low and it is difficult to detect the current ripple value, lowering the d-axis current control gain will increase the gain on the low frequency side compared to before the change, and the current ripple value will increase. The value increases. Therefore, the d-axis current pulsation value can be increased, and detection can be made even when the resolution is low.
 一方、q軸電流脈動値はその主成分がq軸電流指令値であり、LPF特性を有している。このことから、可能な限りq軸電流制御ゲインを上げることで、パラメータ誤差による脈動成分を小さくすることができ、ゲイン誤差推定の推定誤差を小さくすることができる。このように、ゲイン誤差推定器120は、三相電動機10の通常動作時とは異なる電流制御応答において電流検出器200のゲイン誤差を推定してもよい。 On the other hand, the main component of the q-axis current pulsation value is the q-axis current command value, and it has LPF characteristics. From this, by increasing the q-axis current control gain as much as possible, it is possible to reduce the pulsation component due to parameter error, and it is possible to reduce the estimation error in gain error estimation. In this way, the gain error estimator 120 may estimate the gain error of the current detector 200 in a current control response different from that during normal operation of the three-phase motor 10.
 なお、ゲイン誤差推定は、三相電動機10の回転速度を一定にして行うことが望ましい。すなわち、ゲイン誤差推定器120は、三相電動機10が一定速回転中に電流検出器200のゲイン誤差を推定するとよい。三相電動機10の回転速度が変化すると、ゲイン誤差に起因する電流脈動の周波数が変化する。このため、図4から図9に示した周波数特性が変動し、脈動成分の振幅が変動することになる。したがって、オンライン推定を行う場合に三相電動機10の回転速度が変化すると、検出した電流脈動の変化が、ゲイン誤差補正値の変化によるものか、周波数特性の変化によるものかの区別ができず、ゲイン誤差の推定制度の低下を招くおそれがある。 Note that the gain error estimation is preferably performed while keeping the rotational speed of the three-phase motor 10 constant. That is, the gain error estimator 120 preferably estimates the gain error of the current detector 200 while the three-phase motor 10 is rotating at a constant speed. When the rotational speed of the three-phase electric motor 10 changes, the frequency of current pulsations due to gain error changes. For this reason, the frequency characteristics shown in FIGS. 4 to 9 change, and the amplitude of the pulsating component changes. Therefore, when performing online estimation, when the rotational speed of the three-phase motor 10 changes, it is not possible to distinguish whether the detected change in current pulsation is due to a change in the gain error correction value or a change in frequency characteristics. This may lead to a deterioration in the accuracy of gain error estimation.
 また、オフライン推定を行う場合に三相電動機10の回転速度が変化すると、同一のゲイン誤差でも電流脈動の振幅が回転速度に応じて変化するため、ゲイン誤差と電流脈動が比例するとした前提が崩れ、ゲイン誤差の推定精度の低下を招くおそれがある。ただし、三相電動機10の回転速度変動に伴う電流脈動値の振幅成分変動が事前にわかっている場合は、電流脈動値の振幅を回転速度に合わせて補正することで、ゲイン誤差推定を行うことができる。 In addition, when performing offline estimation, if the rotational speed of the three-phase motor 10 changes, the amplitude of current pulsation changes depending on the rotational speed even with the same gain error, so the assumption that the gain error and current pulsation are proportional breaks down. , there is a risk that the estimation accuracy of the gain error will decrease. However, if the fluctuation in the amplitude component of the current pulsation value due to the rotational speed fluctuation of the three-phase motor 10 is known in advance, the gain error estimation can be performed by correcting the amplitude of the current pulsation value according to the rotational speed. Can be done.
 なお、図10は、この実施の形態における制御装置100の機能を実現する構成の一例を示す図である。制御装置100の機能は、例えば、処理回路により実現される。処理回路は、プロセッサ301及びメモリ302を備えていてもよい。処理回路は、専用ハードウェア303であってもよい。処理回路の一部が専用ハードウェア303として形成され、かつ、当該処理回路はさらにプロセッサ301及びメモリ302を備えていてもよい。同図に示す例においては、処理回路の一部は専用ハードウェア303として形成されている。また、同図に示す例において、処理回路は、プロセッサ301及びメモリ302をさらに備えている。 Note that FIG. 10 is a diagram showing an example of a configuration for realizing the functions of the control device 100 in this embodiment. The functions of the control device 100 are realized by, for example, a processing circuit. The processing circuit may include a processor 301 and a memory 302. The processing circuitry may be dedicated hardware 303. Part of the processing circuitry may be formed as dedicated hardware 303 and may further include a processor 301 and a memory 302 . In the example shown in the figure, part of the processing circuit is formed as dedicated hardware 303. Furthermore, in the example shown in the figure, the processing circuit further includes a processor 301 and a memory 302.
 一部が少なくとも1つの専用ハードウェア303である処理回路には、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらを組み合わせたものが該当する。処理回路が少なくとも1つのプロセッサ301及び少なくとも1つのメモリ302を備える場合、制御装置100の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。 The processing circuitry, a part of which is at least one dedicated hardware 303, may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. . When the processing circuit includes at least one processor 301 and at least one memory 302, the functions of the control device 100 are realized by software, firmware, or a combination of software and firmware.
 ソフトウェア及びファームウェアはプログラムとして記述され、メモリ302に格納される。プロセッサ301は、メモリ302に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。プロセッサ301は、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータあるいはDSPともいう。メモリ302には、例えば、RAM、ROM、フラッシュメモリー、EPROM及びEEPROM等の不揮発性又は揮発性の半導体メモリ、又は磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク及びDVD等が該当する。 Software and firmware are written as programs and stored in the memory 302. The processor 301 implements the functions of each section by reading and executing programs stored in the memory 302. The processor 301 is also referred to as a CPU (Central Processing Unit), central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP. Examples of the memory 302 include nonvolatile or volatile semiconductor memories such as RAM, ROM, flash memory, EPROM, and EEPROM, or magnetic disks, flexible disks, optical disks, compact disks, minidisks, and DVDs.
 このようにして、制御装置100の処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、制御装置100の各機能を実現することができる。なお、制御装置100の処理回路が少なくともプロセッサ301及びメモリ302を備える場合、制御装置100においてメモリ302に記憶されたプログラムをプロセッサ301が実行し、制御装置100のハードウェアとソフトウェアとが協働することによって、制御装置100が備える各部の機能が実現される。 In this way, the processing circuit of the control device 100 can realize each function of the control device 100 using hardware, software, firmware, or a combination thereof. Note that when the processing circuit of the control device 100 includes at least a processor 301 and a memory 302, the processor 301 executes a program stored in the memory 302 in the control device 100, and the hardware and software of the control device 100 cooperate. By doing so, the functions of each part included in the control device 100 are realized.
実施の形態2.
 図11及び図12参照しながら、本開示の実施の形態2について説明する。図11は電動機の制御装置の全体構成を示す図である。図12は制御装置が備えるゲイン誤差推定器の構成例を示す図である。
Embodiment 2.
Embodiment 2 of the present disclosure will be described with reference to FIGS. 11 and 12. FIG. 11 is a diagram showing the overall configuration of the electric motor control device. FIG. 12 is a diagram showing a configuration example of a gain error estimator included in the control device.
 以下、この実施の形態2に係る電動機の制御装置について、実施の形態1との相違点を中心に説明する。説明を省略した構成については実施の形態1と基本的に同様である。以降の説明においては、実施の形態1と同様の又は対応する構成について、原則として実施の形態1の説明で用いたものと同じ符号を付して記載する。 Hereinafter, the electric motor control device according to the second embodiment will be explained, focusing on the differences from the first embodiment. The configuration whose description is omitted is basically the same as that of the first embodiment. In the following description, structures similar to or corresponding to those of the first embodiment will be described with the same reference numerals used in the description of the first embodiment.
 この実施の形態に係る電動機の制御装置は、図11に示すように、速度制御器101、d軸電流指令生成器102、d軸電流制御器103、q軸電流制御器104、第1座標変換器111、第2座標変換器112、ゲイン誤差推定器120及びパラメータ誤差推定器130を備えている。速度制御器101、d軸電流指令生成器102、d軸電流制御器103、q軸電流制御器104、第1座標変換器111及び第2座標変換器112については、実施の形態1と基本的に同様である。 As shown in FIG. 11, the electric motor control device according to this embodiment includes a speed controller 101, a d-axis current command generator 102, a d-axis current controller 103, a q-axis current controller 104, and a first coordinate transformation. 111, a second coordinate transformer 112, a gain error estimator 120, and a parameter error estimator 130. The speed controller 101, d-axis current command generator 102, d-axis current controller 103, q-axis current controller 104, first coordinate converter 111, and second coordinate converter 112 are basically the same as in the first embodiment. The same is true for
 この実施の形態においては、ゲイン誤差推定器120は、第1座標変換器111から出力されたd軸の電流検出値と、速度検出器20から出力された速度検出値とに基づいて、電流検出器200のゲイン誤差を推定する。より詳しくは、ゲイン誤差推定器120は、ゲイン誤差として、d軸電流の脈動を最小にするように推定された第1ゲイン誤差推定値と、速度検出値の脈動を最小にするように推定された第3ゲイン誤差推定値とを出力する。そして、制御装置は、第3ゲイン誤差推定値に基づいて電流検出器200のゲイン誤差補正を行う。また、パラメータ誤差推定器130は、第1ゲイン誤差推定値及び第3ゲイン誤差推定値を用いて、パラメータ誤差を推定する。 In this embodiment, the gain error estimator 120 detects current based on the d-axis current detection value output from the first coordinate converter 111 and the speed detection value output from the speed detector 20. The gain error of the device 200 is estimated. More specifically, the gain error estimator 120 uses a first gain error estimate estimated to minimize pulsations in the d-axis current and a first gain error estimate estimated to minimize pulsations in the detected speed value as gain errors. and a third gain error estimated value. The control device then performs gain error correction of the current detector 200 based on the third gain error estimate. Furthermore, the parameter error estimator 130 estimates a parameter error using the first gain error estimate and the third gain error estimate.
 実施の形態1で説明した式(20)、式(21)は、q軸電流指令値iqrefと、パラメータ誤差がd軸及びq軸に及ぼす電流脈動成分idpe、iqpeとで記載された式であった。ここで、制御装置100が三相電動機10の速度制御を行っている場合、速度制御器101は、速度検出器20によって検出された三相電動機10の速度検出値と速度指令値との差分に基づいて、q軸電流指令値を算出する。q軸電流指令値iqrefは、速度制御ゲインCω(s)、速度検出値ω、速度指令値ωrefを用いて、次の式(28)で表すことができる。 Equations (20) and (21) described in Embodiment 1 are equations written using the q-axis current command value iq ref and the current pulsation components idpe and iqpe that parameter errors exert on the d-axis and q-axis. there were. Here, when the control device 100 is controlling the speed of the three-phase motor 10, the speed controller 101 uses the difference between the speed detection value of the three-phase motor 10 detected by the speed detector 20 and the speed command value. Based on this, the q-axis current command value is calculated. The q-axis current command value iq ref can be expressed by the following equation (28) using the speed control gain Cω(s), the detected speed value ω, and the speed command value ω ref .
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 式(28)によれば、特に速度指令値ωrefが一定速度である場合、速度指令値ωrefは直流成分のみを含むため、q軸電流指令値iqrefの脈動成分は、速度検出値ωに起因することが分かる。このため、速度指令値ωrefが一定の場合、q軸の検出電流の脈動成分を用いてゲイン誤差を推定する代わりに、速度検出値ωの脈動成分を用いてゲイン誤差を推定することができる。 According to equation (28), especially when the speed command value ω ref is a constant speed, the speed command value ω ref includes only a DC component, so the pulsating component of the q-axis current command value iq ref is equal to the detected speed value ω It can be seen that this is caused by Therefore, when the speed command value ω ref is constant, the gain error can be estimated using the pulsating component of the detected speed value ω instead of estimating the gain error using the pulsating component of the detected current on the q-axis. .
 そこで、この実施の形態においては、前述したように、ゲイン誤差推定器120は、第1座標変換器111から出力されたd軸の電流検出値と、速度検出器20から出力された速度検出値とに基づいて、電流検出器200のゲイン誤差を推定する。このような電動機の制御装置によっても、実施の形態1と同様の効果を奏することが可能である。 Therefore, in this embodiment, as described above, the gain error estimator 120 uses the d-axis current detection value output from the first coordinate converter 111 and the speed detection value output from the speed detector 20. Based on this, the gain error of the current detector 200 is estimated. Even with such an electric motor control device, it is possible to achieve the same effects as in the first embodiment.
 なお、この実施の形態に係るゲイン誤差推定器120は、図12に示すように、周波数解析器121及びゲイン誤差推定演算器122を備えていてもよい。周波数解析器121は、d軸の電流検出値及び速度検出値と、時間又は三相電動機10の回転角のいずれか一方とを入力として、ゲイン誤差及びパラメータ誤差に起因する電流脈動成分の周波数の振幅情報A及び振幅情報B、並びに、ゲイン誤差及びパラメータ誤差に起因する速度脈動成分の周波数の振幅情報A及び振幅情報Bを出力する。ここで、振幅情報Aは余弦(cos)成分の振幅情報で、振幅情報Bは正弦(sin)成分の振幅情報である。 Note that the gain error estimator 120 according to this embodiment may include a frequency analyzer 121 and a gain error estimation calculator 122, as shown in FIG. The frequency analyzer 121 inputs the d-axis current detection value, speed detection value, and either time or the rotation angle of the three-phase motor 10, and calculates the frequency of the current pulsation component caused by the gain error and parameter error. Amplitude information A and amplitude information B, and amplitude information A and amplitude information B of the frequency of the speed pulsation component caused by the gain error and parameter error are output. Here, amplitude information A is amplitude information of a cosine (cos) component, and amplitude information B is amplitude information of a sine (sin) component.
 周波数解析器121から出力された振幅情報A及び振幅情報Bは、ゲイン誤差推定演算器122に入力される。ゲイン誤差推定演算器122は、入力された電流及び速度の脈動成分の振幅情報A及び振幅情報Bを用いて、d軸電流の脈動を最小にするように推定された第1ゲイン誤差推定値と、速度検出値の脈動を最小にするように推定された第3ゲイン誤差推定値とを算出して出力する。したがって、この実施の形態のゲイン誤差推定器120は、電流の脈動成分と速度検出値の脈動成分の両方の入力に対応してゲイン誤差を推定できる。 Amplitude information A and amplitude information B output from the frequency analyzer 121 are input to the gain error estimation calculator 122. The gain error estimation calculator 122 uses the input amplitude information A and amplitude information B of the pulsation components of the current and speed to calculate a first gain error estimate estimated to minimize the pulsation of the d-axis current. , and a third gain error estimate estimated to minimize the pulsation of the detected speed value. Therefore, the gain error estimator 120 of this embodiment can estimate the gain error in response to inputs of both the pulsating component of the current and the pulsating component of the detected speed value.
 本開示に係る制御装置は、三相電動機の制御に適用できる。 The control device according to the present disclosure can be applied to control a three-phase electric motor.
 10  三相電動機
 20  速度検出器
100  制御装置
101  速度制御器
102  d軸電流指令生成器
103  d軸電流制御器
104  q軸電流制御器
111  第1座標変換器
112  第2座標変換器
120  ゲイン誤差推定器
121  周波数解析器
122  ゲイン誤差推定演算器
130  パラメータ誤差推定器
200  電流検出器
301  プロセッサ
302  メモリ
303  専用ハードウェア
10 three-phase electric motor 20 speed detector 100 control device 101 speed controller 102 d-axis current command generator 103 d-axis current controller 104 q-axis current controller 111 first coordinate converter 112 second coordinate converter 120 gain error estimation device 121 frequency analyzer 122 gain error estimation calculator 130 parameter error estimator 200 current detector 301 processor 302 memory 303 dedicated hardware

Claims (4)

  1.  電動機の回転速度を検出する速度検出器と、
     前記速度検出器の速度検出値が速度指令値に追従するようにq軸電流指令を出力する速度制御器と、
     前記電動機に入力されるu相、v相及びw相のうち少なくとも2相の電流値を検出する電流検出器と、
     前記電流検出器の電流検出値を、d軸及びq軸の電流検出値に座標変換する第1座標変換器と、
     d軸電流指令を生成するd軸電流指令生成器と、
     前記d軸電流指令生成器から出力されたd軸電流指令に、前記第1座標変換器から出力されたd軸電流検出値が追従するように、電圧指令値を出力するd軸電流制御器と、
     前記速度制御器から出力されたq軸電流指令値に、前記第1座標変換器から出力されたq軸電流検出値が追従するように、電圧指令値を出力するq軸電流制御器と、
     前記第1座標変換器から出力されたd軸及びq軸の電流検出値に基づいて、前記電流検出器のゲイン誤差を推定するゲイン誤差推定器と、
     前記ゲイン誤差推定器によるゲイン誤差推定値に基づいて前記電動機の電気パラメータの三相不均衡によるパラメータ誤差を推定するパラメータ誤差推定器と、を備え、
     前記ゲイン誤差推定器は、前記ゲイン誤差として、d軸電流の脈動を最小にするように推定された第1ゲイン誤差推定値と、q軸電流の脈動を最小にするように推定された第2ゲイン誤差推定値とを出力し、
     前記パラメータ誤差推定器は、前記第1ゲイン誤差推定値及び前記第2ゲイン誤差推定値を用いて、パラメータ誤差を推定し、
     前記第2ゲイン誤差推定値に基づいて前記電流検出器のゲイン誤差補正を行う電動機の制御装置。
    a speed detector that detects the rotational speed of the electric motor;
    a speed controller that outputs a q-axis current command so that the speed detection value of the speed detector follows the speed command value;
    a current detector that detects current values of at least two phases among the u-phase, v-phase, and w-phase input to the electric motor;
    a first coordinate converter that converts the current detection value of the current detector into d-axis and q-axis current detection values;
    a d-axis current command generator that generates a d-axis current command;
    a d-axis current controller that outputs a voltage command value so that the d-axis current detection value output from the first coordinate converter follows the d-axis current command output from the d-axis current command generator; ,
    a q-axis current controller that outputs a voltage command value so that the q-axis current detection value output from the first coordinate converter follows the q-axis current command value output from the speed controller;
    a gain error estimator that estimates a gain error of the current detector based on the d-axis and q-axis current detection values output from the first coordinate converter;
    a parameter error estimator that estimates a parameter error due to three-phase imbalance of electrical parameters of the motor based on a gain error estimated value by the gain error estimator;
    The gain error estimator includes, as the gain error, a first gain error estimate estimated to minimize pulsations in the d-axis current, and a second gain error estimated to minimize pulsations in the q-axis current. output the gain error estimate and
    The parameter error estimator estimates a parameter error using the first gain error estimate and the second gain error estimate,
    A motor control device that performs gain error correction of the current detector based on the second gain error estimate.
  2.  電動機の回転速度を検出する速度検出器と、
     前記速度検出器の速度検出値が速度指令値に追従するようにq軸電流指令を出力する速度制御器と、
     前記電動機に入力されるu相、v相及びw相のうち少なくとも2相の電流値を検出する電流検出器と、
     前記電流検出器の電流検出値を、d軸及びq軸の電流検出値に座標変換する第1座標変換器と、
     d軸電流指令を生成するd軸電流指令生成器と、
     前記d軸電流指令生成器から出力されたd軸電流指令に、前記第1座標変換器から出力されたd軸電流検出値が追従するように、電圧指令値を出力するd軸電流制御器と、
     前記速度制御器から出力されたq軸電流指令値に、前記第1座標変換器から出力されたq軸電流検出値が追従するように、電圧指令値を出力するq軸電流制御器と、
     前記第1座標変換器から出力されたd軸の電流検出値と前記速度検出値とに基づいて、前記電流検出器のゲイン誤差を推定するゲイン誤差推定器と、
     前記ゲイン誤差推定器によるゲイン誤差推定値に基づいて前記電動機の電気パラメータの三相不均衡によるパラメータ誤差を推定するパラメータ誤差推定器と、を備え、
     前記ゲイン誤差推定器は、前記ゲイン誤差として、d軸電流の脈動を最小にするように推定された第1ゲイン誤差推定値と、前記速度検出値の脈動を最小にするように推定された第3ゲイン誤差推定値とを出力し、
     前記パラメータ誤差推定器は、前記第1ゲイン誤差推定値及び前記第3ゲイン誤差推定値を用いて、パラメータ誤差を推定し、
     前記第3ゲイン誤差推定値に基づいて前記電流検出器のゲイン誤差補正を行う電動機の制御装置。
    a speed detector that detects the rotational speed of the electric motor;
    a speed controller that outputs a q-axis current command so that the speed detection value of the speed detector follows the speed command value;
    a current detector that detects current values of at least two phases among the u-phase, v-phase, and w-phase input to the electric motor;
    a first coordinate converter that converts the current detection value of the current detector into d-axis and q-axis current detection values;
    a d-axis current command generator that generates a d-axis current command;
    a d-axis current controller that outputs a voltage command value so that the d-axis current detection value output from the first coordinate converter follows the d-axis current command output from the d-axis current command generator; ,
    a q-axis current controller that outputs a voltage command value so that the q-axis current detection value output from the first coordinate converter follows the q-axis current command value output from the speed controller;
    a gain error estimator that estimates a gain error of the current detector based on the d-axis current detection value output from the first coordinate converter and the speed detection value;
    a parameter error estimator that estimates a parameter error due to three-phase imbalance of electrical parameters of the motor based on a gain error estimated value by the gain error estimator;
    The gain error estimator includes, as the gain errors, a first gain error estimate estimated to minimize pulsations in the d-axis current, and a first gain error estimate estimated to minimize pulsations in the detected speed value. 3 output the gain error estimate,
    The parameter error estimator estimates a parameter error using the first gain error estimate and the third gain error estimate,
    A motor control device that performs gain error correction of the current detector based on the third gain error estimate.
  3.  前記ゲイン誤差推定器は、前記電動機が一定速回転中に前記電流検出器のゲイン誤差を推定する請求項1または請求項2の電動機の制御装置。 3. The electric motor control device according to claim 1, wherein the gain error estimator estimates the gain error of the current detector while the electric motor is rotating at a constant speed.
  4.  前記ゲイン誤差推定器は、前記電動機の通常動作時とは異なる電流制御応答において前記電流検出器のゲイン誤差を推定する請求項1または請求項2の電動機の制御装置。 3. The electric motor control device according to claim 1, wherein the gain error estimator estimates the gain error of the current detector in a current control response different from that during normal operation of the electric motor.
PCT/JP2022/024355 2022-06-17 2022-06-17 Electric motor control device WO2023243087A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024355 WO2023243087A1 (en) 2022-06-17 2022-06-17 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024355 WO2023243087A1 (en) 2022-06-17 2022-06-17 Electric motor control device

Publications (1)

Publication Number Publication Date
WO2023243087A1 true WO2023243087A1 (en) 2023-12-21

Family

ID=89192730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024355 WO2023243087A1 (en) 2022-06-17 2022-06-17 Electric motor control device

Country Status (1)

Country Link
WO (1) WO2023243087A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110470A (en) * 2003-10-02 2005-04-21 Toshiba Kyaria Kk Operation controller for motor
JP2011050118A (en) * 2009-08-25 2011-03-10 Meidensha Corp System for suppressing torque ripple of electric motor
JP2011067023A (en) * 2009-09-17 2011-03-31 Hitachi Appliances Inc Current detection method, inverter device and converter device utilizing current detection method, motor drive equipped with such device, and refrigeration and air-conditioning equipment
JP2013219988A (en) * 2012-04-12 2013-10-24 Denso Corp Control device of rotating machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110470A (en) * 2003-10-02 2005-04-21 Toshiba Kyaria Kk Operation controller for motor
JP2011050118A (en) * 2009-08-25 2011-03-10 Meidensha Corp System for suppressing torque ripple of electric motor
JP2011067023A (en) * 2009-09-17 2011-03-31 Hitachi Appliances Inc Current detection method, inverter device and converter device utilizing current detection method, motor drive equipped with such device, and refrigeration and air-conditioning equipment
JP2013219988A (en) * 2012-04-12 2013-10-24 Denso Corp Control device of rotating machine

Similar Documents

Publication Publication Date Title
JP6375757B2 (en) Electric motor control device, electric motor magnetic flux estimation device, and electric motor magnetic flux estimation method
CN103503304B (en) Applied-voltage electrical angle setting method for synchronous motor, and motor control apparatus
JP5877733B2 (en) Electric motor control device
JP5510842B2 (en) Three-phase motor control device, three-phase motor system, three-phase motor control method and program
JPH1127999A (en) Estimating method for induced electromotive force for induction motor, speed estimating method, shaft deviation correcting method and induction motor control equipment
JP5277787B2 (en) Synchronous motor drive control device
CN107085193B (en) Detection of offset errors in phase current measurements for motor control systems
JP5839111B2 (en) Control device for three-phase AC induction motor and control method for three-phase AC induction motor
US20140265953A1 (en) Generation of a current reference to control a brushless motor
US11296633B2 (en) Rotary machine control device
JP3832443B2 (en) AC motor control device
JP5416183B2 (en) Control device for permanent magnet synchronous motor
JP7151872B2 (en) Controller for permanent magnet synchronous machine
JP3675192B2 (en) Motor control device, electric vehicle control device, and hybrid vehicle control device
JP2010035352A (en) Device for estimating rotor position of synchronous electric motor
CN112394312B (en) Fault diagnosis method for current sensor of three-phase motor driving system
JP2929344B2 (en) Method and apparatus for measuring motor constants
JP3920750B2 (en) DC brushless motor control device
WO2023243087A1 (en) Electric motor control device
KR102621423B1 (en) Motor drive device and outdoor unit of air conditioner using it
JP2019221105A (en) Motor drive device
JP2001352798A (en) Control equipment and control method of permanent magnet synchronous motor
JP5744151B2 (en) Electric motor driving apparatus and electric motor driving method
JP5996485B2 (en) Motor drive control device
JP4038412B2 (en) Vector control inverter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946902

Country of ref document: EP

Kind code of ref document: A1