JPH0336317B2 - - Google Patents
Info
- Publication number
- JPH0336317B2 JPH0336317B2 JP57040147A JP4014782A JPH0336317B2 JP H0336317 B2 JPH0336317 B2 JP H0336317B2 JP 57040147 A JP57040147 A JP 57040147A JP 4014782 A JP4014782 A JP 4014782A JP H0336317 B2 JPH0336317 B2 JP H0336317B2
- Authority
- JP
- Japan
- Prior art keywords
- lead
- plating
- film
- layer
- resist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007747 plating Methods 0.000 claims description 23
- 239000010409 thin film Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims 1
- 239000010408 film Substances 0.000 description 22
- 239000010410 layer Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 5
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 238000001259 photo etching Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/702—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof of thick-or thin-film circuits or parts thereof
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electronic Switches (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Manufacturing Of Printed Wiring (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、薄膜集積回路の高密度線形成法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] This invention relates to a method for forming high-density lines in thin film integrated circuits.
〔発明の技術的背景とその問題点〕
従来、薄膜集積回路のリード線形成は、例えば
MIC(Micro Wave Integrated Circuits)におい
てはガラスあるいはグレーズドアルミナ基板等の
絶縁基板にスパツタリング等により抵抗膜を付着
したのち、Gr(500〜1000Å)およびAu(0.5〜2μ)
を蒸着により積層付着しホトエツチング等により
第1図aの如き抵抗体および導電回路パターンを
得る。とり出し電極部のみさらにAuメツキ
(10μ)によりAu層を厚くする場合もある。[Technical background of the invention and its problems] Conventionally, lead wire formation for thin film integrated circuits has been carried out by, for example,
In MIC (Micro Wave Integrated Circuits), a resistive film is attached to an insulating substrate such as a glass or glazed alumina substrate by sputtering, and then Gr (500 to 1000 Å) and Au (0.5 to 2 μ) are attached.
A resistor and a conductive circuit pattern as shown in FIG. 1A are obtained by laminating and depositing them by vapor deposition and by photoetching or the like. In some cases, the Au layer is further thickened by Au plating (10 μm) only on the extraction electrode part.
また別の従来例として、初期におけるサーマル
ヘツドのリード形成においても基本的にはMIC
と同様で第1図bに示す如き、導電回路パターン
を得、とり出し電極にAuメツキ(10μ)を施して
いた。 Another conventional example is that MIC is basically used in the initial lead formation of thermal heads.
Similarly, a conductive circuit pattern as shown in FIG. 1b was obtained, and the lead-out electrodes were plated with Au (10μ).
いずれの場合においてもAuメツキを施す部分
は、線間ギヤツプを大きくとり、線密度の粗なる
パターンとし、形状も、第1図cに示すようにリ
ード線幅方向一杯に積層メツキされた形状になつ
ている。 In either case, the part to be plated with Au has a large gap between the lines, a pattern with a coarse line density, and a shape in which the lead wires are laminated and plated completely in the width direction, as shown in Figure 1c. It's summery.
従来法の欠点は、高密度配線かつ低リード抵抗
が要求されたときに発生する。例えば最近におけ
るサーマルヘツドは12〜16本/mmと高密度になり
且つ同一基板上に駆動回路、制御回路を同一チツ
プ上にIC化し搭載する構造になつており、高密
度でかつ多種類のリード配線を形成する必要があ
る。従来法の如く基板全面にわたつて同一厚さで
厚いリード層を形成してから、ホトエツチングす
る方法においては微細パターンのホトエツチング
が困難となり、微細パターンが可能になる薄い厚
さのリード層では、低リード抵抗配線が困難とな
る欠点があつた。具体的な例を上げればリード材
料としてAuを用いた場合、Auの比抵抗は2.2×
10-6Ωcmであるか、IC駆動配線の中には低リード
抵抗を必要とするものがあり、0.6Ω以下のリー
ド抵抗配線を行なうとすると、そのリード長が、
32mm、リード幅が50μの場合、23μの厚さを有す
るAuリード層を用いなければならない。これは
線間ギヤツプとほぼ同じか、場所によつては1.5
倍の値であるので通常のホトエツチングでは不可
能と言つて良い。2μ厚程度の薄いリード層を全
面に付着しホトエツチングにより微細パターンを
形成したのち、Auをさらにメツキ等により付着
する方法においても図1の如く付着する従来法に
おいてはメツキの成長は、垂直方向のみならず、
横方向にも成長するため、線間シヨートが発生
し、実用に供せられなかつた。 The drawbacks of the conventional method arise when high wiring density and low lead resistance are required. For example, recent thermal heads have a high density of 12 to 16 leads/mm, and have a structure in which the drive circuit and control circuit are mounted as ICs on the same chip, resulting in high density and many types of leads. It is necessary to form wiring. In the conventional method of forming a thick lead layer with the same thickness over the entire surface of the substrate and then photo-etching it, it is difficult to photo-etch fine patterns. There was a drawback that lead resistance wiring was difficult. To give a specific example, when Au is used as the lead material, the specific resistance of Au is 2.2×
Some IC drive wiring requires low lead resistance, such as 10 -6 Ωcm, and when wiring with a lead resistance of 0.6Ω or less, the lead length is
If the lead width is 32mm and the lead width is 50μ, an Au lead layer with a thickness of 23μ must be used. This is approximately the same as the line gap, or 1.5 depending on the location.
Since the value is twice that, it can be said that normal photoetching is impossible. Even in the method of depositing a thin lead layer of about 2 μm thick over the entire surface and forming a fine pattern by photo-etching, and then depositing Au by plating, etc., the plating grows only in the vertical direction in the conventional method where it is deposited as shown in Figure 1. Not,
Since it also grows in the lateral direction, shorts occur between the lines, making it impractical.
この発明の目的は、このような高密度配線に関
し、従来の欠点を克服し、高密度で、低リード抵
抗配線の要求を満たす方法を提供するにある。
An object of the present invention is to provide a method for overcoming the conventional drawbacks regarding such high-density wiring and meeting the requirements for high-density, low-lead resistance wiring.
この発明は、高密度配線の微細パターンが形成
できる十分薄いリード層を全面に付着し、特に低
リード抵抗を必要としない大部分のリード線を形
成し、低リード抵抗が必要なリード線にのみメツ
キをし、かつリード線幅方向両端にはメツキ厚よ
りも大きい寸法でメツキをしない領域を作るもの
でる。
This invention deposits a sufficiently thin lead layer on the entire surface to form fine patterns of high-density wiring, forms most of the lead wires that do not require particularly low lead resistance, and only applies to lead wires that require low lead resistance. The lead wire is plated, and at both ends in the width direction of the lead wire, an area where no plating is formed is created with a dimension larger than the plating thickness.
次に本発明の実施例について説明する。 Next, examples of the present invention will be described.
グレーズドアルミナ基板1に抵抗膜を付着した
上にCr/Au膜3をCr膜を約1000Å、Au膜を2μ
積層付着する(第2図a)。この厚さは12〜16本
の高密度配線は十分可能な厚さである。この全面
膜の上に低リード抵抗配線が必要な部分のみを露
出し、他はレジスト4でカバーするようにマスク
プロセスをおこない第2図b露出しているAu膜
上にAuメツキ6を施す(第2図c)。Auメツキ
6は約10〜25μ程度の厚さに形成される。このと
き、少なくともメツキ厚分は、端より引込んだ領
域のみにメツキすることがポイントである。(そ
のようにメツキマスクを作つておく。)。 A resistive film is attached to a glazed alumina substrate 1, and then a Cr/Au film 3 is formed with a Cr film of about 1000Å and an Au film of 2μ.
It is deposited in layers (Fig. 2a). This thickness is sufficient for 12 to 16 high-density wirings. On this entire film, a mask process is performed to expose only the parts where low lead resistance wiring is required and cover the rest with resist 4, and Au plating 6 is applied on the exposed Au film (see Figure 2b). Figure 2 c). The Au plating 6 is formed to have a thickness of about 10 to 25 μm. At this time, it is important to plate only the area recessed from the end, at least the plating thickness. (Make a Metsuki mask like that.)
次にメツキ用レジストマスクを除去し、新たに
高密度配線のメインマスクによるレジストパター
ン5を形成する(第2図d)。Auのエツチヤン
ト、続いてCrのエツチヤント最後に抵抗膜のエ
ツチヤントによりそれぞれをエツチングする。最
後にレジスト5を除去すれば目的のものが形成さ
れている。 Next, the plating resist mask is removed, and a new resist pattern 5 is formed using the main mask for high-density wiring (FIG. 2d). Each is etched using an Au etchant, then a Cr etchant, and finally a resistive film etchant. Finally, when the resist 5 is removed, the desired object is formed.
次に参考例について説明する。 Next, a reference example will be explained.
グレーズドアルミナ基板1に抵抗膜を付着した
上にCr膜を約1000Å、Au膜を約2μ積層付着し、
Cr/Au膜3を形成する(第3図a)。 A resistive film is attached to the glazed alumina substrate 1, and then a Cr film of about 1000 Å and an Au film of about 2 μm are stacked.
A Cr/Au film 3 is formed (FIG. 3a).
次に、高密度配線のメインマスクによるレジス
トパターン4を形成する(第3図b)。Auエツチ
ヤント、続いてCrエツチヤント最後に抵抗膜の
エツチヤントによりそれぞれをエツチングする
(第3図c)。このレジスト4を除去し、次に新た
なレジストマスクにより、低リード抵抗配線が必
要なリード線幅の線方向の端より少なくてもメツ
キ厚分だけはレジストマスクが残るようにレジス
ト5コーテイングされる(第3図d)。 Next, a resist pattern 4 is formed using a main mask for high-density wiring (FIG. 3b). Each is etched using an Au etchant, then a Cr etchant, and finally a resistive film etchant (FIG. 3c). This resist 4 is removed, and then a new resist mask is used to coat the resist 5 so that the resist mask remains at least as much as the plating thickness, which is less than the line direction edge of the lead line width that requires low lead resistance wiring. (Figure 3d).
次に露呈している蒸着Au上にAuメツキ6を施
す。Auメツキ6厚さは約10〜25μである。その後
メツキ用レジスト5を除去すれば、目的のものが
形成される。この工程の場合には、前者と違い先
に高密度PEPがあり、その後に数10μのメツキが
付着されるので、高解像が得やすい長所がある
が、一方において、Auメツキ6のためのリード
形成に留意する必要があり、均一メツキを行なう
ために、場合によつては、Al蒸着と、そのPEP
の工程を追加しなければならない場合がある。極
端な例で言えば、島状リードパターンにメツキの
必要がある場合がそうである。そのような場合で
もAuメツキ6後、メツキレジスト除去し、Al電
極除去を行なえばfの如き目的のものが残され
る。 Next, Au plating 6 is applied to the exposed vapor-deposited Au. The thickness of the Au plating 6 is approximately 10 to 25μ. After that, by removing the plating resist 5, the desired object is formed. In this process, unlike the former, there is a high-density PEP first and then a plating of several tens of microns is attached, so it has the advantage of easily obtaining high resolution. It is necessary to pay attention to lead formation, and in some cases Al evaporation and its PEP may be necessary to achieve uniform plating.
Additional steps may be required. An extreme example is the case where it is necessary to plate an island-shaped lead pattern. Even in such a case, after Au plating 6, if the plating resist is removed and the Al electrode is removed, the desired object like f will remain.
メタライゼーシヨンをCr/Auの例で実施例を
説明したが、他のメタルシステムに置換えること
が出来ることはもちろんである。 Although the embodiment has been described using an example of Cr/Au metallization, it is of course possible to substitute other metal systems.
Ti/Au蒸着膜にAuメツキの場合
Ti/Au蒸着膜にNi/Cuメツキの場合
Ti/Cu蒸着膜にCu/Ni/Auメツキの場合
Al/Ti/Cu蒸着膜にCu/Ni/Auメツキの場
合
等が実用的なメタルシステムとして考えられる。 When a Ti/Au evaporated film is plated with Au When a Ti/Au evaporated film is plated with Ni/Cu When a Ti/Cu evaporated film is plated with Cu/Ni/Au When an Al/Ti/Cu evaporated film is plated with Cu/Ni/Au The following cases can be considered as practical metal systems.
上記の実施例の説明文中、蒸着膜と述べたとこ
ろ、スパツタリング、イオンプレーテイング、
CVD等他の薄膜形成手段によつても良い。 In the explanation of the above examples, when the vapor deposition film is mentioned, sputtering, ion plating,
Other thin film forming means such as CVD may also be used.
(1) 蒸着膜のみのリード層から高密度配線を形成
し、蒸着膜にメツキ膜を積層したリード層から
低リード抵抗配線を形成するため、高密度配線
と低リード抵抗配線とを同一基板上に形成する
ことが可能となる。
(1) High-density wiring and low lead resistance wiring are formed on the same substrate in order to form high-density wiring from a lead layer consisting of only a vapor-deposited film, and to form low-lead resistance wiring from a lead layer in which a plating film is laminated on a vapor-deposited film. It becomes possible to form
(2) 低リード抵抗配線のメツキは線幅一杯に行な
うのでは無く、中央部のみにメツキし、リード
線幅方向の両端にはメツキ厚よりも大きい寸法
でメツキをしない領域をつくるため、隣の線と
の線間ギヤツプを、小さくすることができる。
このためコンパクトになる。(2) Plating low lead resistance wiring is not done over the full width of the line, but only in the center, and at both ends of the lead line in the width direction, an area larger than the plating thickness is created without plating. The gap between the two lines can be made smaller.
This makes it compact.
(3) 同上のため、メツキ成長による線間シヨート
が起こらない。(3) Because of the same as above, line-to-line shoots due to matte growth do not occur.
本発明の用途に関しては、一層の高密度配線と
して使えることは勿論であるが、この上に絶縁膜
を施し、さらにリード配線を形成し、2層あるい
は多層の高密度配線を行なうこともできる。更に
は受動素子あるいは能動素子を実装してハイブリ
ツドICとして使用することもできる。 Regarding the application of the present invention, it is of course possible to use it as a single-layer high-density wiring, but it is also possible to form a two-layer or multilayer high-density wiring by applying an insulating film thereon and further forming lead wiring. Furthermore, it can be used as a hybrid IC by mounting passive elements or active elements.
その例として第4図の如くサーマルヘツドに適
応した場合、A4サイズの大基板に、線間ギヤツ
プ15μで12本/mmのリード線2000余本を形成し、
低リード抵抗が必要なリード線には、23μのメツ
キを施し、全長32mmのリード線のリード抵抗を
0.6Ω以下に押えることができ、能動素子約100チ
ツプを一様に駆動することが可能となつた。 As an example, when adapting to a thermal head as shown in Figure 4, over 2000 lead wires are formed on a large A4 size board at a rate of 12 wires/mm with a line gap of 15μ.
Lead wires that require low lead resistance are plated with 23μ to reduce the lead resistance of a lead wire with a total length of 32 mm.
We were able to keep the resistance to 0.6Ω or less, making it possible to drive approximately 100 active chips uniformly.
第1図は従来例の説明図、第2図は本発明の一
実施例を示す工程毎の断面図、第3図は本発明の
参考例を示す工程毎の断面図、第4図は本発明の
一実施例の平面図である。
1…絶縁基板、2…接着層、3…リード層、
4,5…レジスト。
Fig. 1 is an explanatory diagram of a conventional example, Fig. 2 is a sectional view of each step showing an embodiment of the present invention, Fig. 3 is a sectional view of each step showing a reference example of the present invention, and Fig. 4 is a sectional view of the present invention. FIG. 1 is a plan view of an embodiment of the invention. 1... Insulating substrate, 2... Adhesive layer, 3... Lead layer,
4, 5...Resist.
Claims (1)
工程と、 第1の所定の開孔部を露出する様に第1のレジ
スト層をこの薄膜メタル層に形成する第2の工程
と、 この第1の所定の開孔部およびこの第1の所定
の開孔部から少なくともメツキ厚分だけの距離周
辺にメツキ層を形成する第3の工程と、 前記第1のレジスト層を除去する第4の工程
と、 前記薄膜メタル層に第2の所定の開孔部を形成
する様に少なくとも前記薄膜メタル層上に第2の
レジスト層を形成する第5の工程と、 この第2の所定の開孔部を用いて前記薄膜メタ
ル層に開孔部を形成する第6の工程と、 前記第2のレジスト層を除去する第7の工程と
を少なくとも備えた高密度薄膜回路配線基板の製
造方法。[Claims] 1. A first step of forming a thin film metal layer on an insulating substrate, and a first step of forming a first resist layer on the thin film metal layer so as to expose a first predetermined opening. a third step of forming a plating layer around the first predetermined opening and a distance of at least the plating thickness from the first predetermined opening; and the first resist. a fourth step of removing the layer; a fifth step of forming a second resist layer on at least the thin film metal layer so as to form a second predetermined opening in the thin film metal layer; A high-density thin film circuit comprising at least a sixth step of forming an opening in the thin film metal layer using a second predetermined opening, and a seventh step of removing the second resist layer. A method of manufacturing a wiring board.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4014782A JPS58158959A (en) | 1982-03-16 | 1982-03-16 | High density thin film circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4014782A JPS58158959A (en) | 1982-03-16 | 1982-03-16 | High density thin film circuit board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58158959A JPS58158959A (en) | 1983-09-21 |
JPH0336317B2 true JPH0336317B2 (en) | 1991-05-31 |
Family
ID=12572653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4014782A Granted JPS58158959A (en) | 1982-03-16 | 1982-03-16 | High density thin film circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58158959A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5662337A (en) * | 1979-10-26 | 1981-05-28 | Nippon Telegr & Teleph Corp <Ntt> | Production of wiring and electrode |
-
1982
- 1982-03-16 JP JP4014782A patent/JPS58158959A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5662337A (en) * | 1979-10-26 | 1981-05-28 | Nippon Telegr & Teleph Corp <Ntt> | Production of wiring and electrode |
Also Published As
Publication number | Publication date |
---|---|
JPS58158959A (en) | 1983-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060176138A1 (en) | Thin-film type common-mode choke coil | |
JPH11274407A (en) | Electronic component structure and method of manufacturing thin film multilayer capacitor | |
TWI251920B (en) | Circuit barrier structure of semiconductor package substrate and method for fabricating the same | |
JPS5837992B2 (en) | Manufacturing method of semiconductor device | |
JP2622156B2 (en) | Contact method and structure for integrated circuit pads | |
US5049244A (en) | Method of manufacturing double-sided wiring substrate | |
JPH0336317B2 (en) | ||
JP3086081B2 (en) | Wiring board and its manufacturing method | |
CN214014637U (en) | Buried resistance metal foil | |
JP2002231502A (en) | Fillet-less chip resistor and method for manufacturing the same | |
JP2762672B2 (en) | Solder connection pad and method of forming the same | |
JPH0245996A (en) | Manufacture of hybrid integrated circuit | |
JPS6359535B2 (en) | ||
JPS6155797B2 (en) | ||
JPH08250858A (en) | Circuit board | |
JP3057832B2 (en) | Semiconductor device | |
JPS61148859A (en) | Hybrid integrated circuit device and its manufacturing method | |
JP3144596B2 (en) | Thin film electronic component and method of manufacturing the same | |
JPH03101233A (en) | Electrode structure and its manufacture | |
JPH03159152A (en) | Manufacture of bump electrode | |
JPS5811113B2 (en) | electronic circuit equipment | |
JP3880505B2 (en) | Thin film high frequency circuit and manufacturing method thereof | |
JPH0496254A (en) | Thin film multilayer circuit board and its manufacturing method | |
JPH0360192A (en) | Copper wired ceramic board and manufacture thereof | |
JPS59207691A (en) | Method of producing multilayer circuit board |