JPH08250858A - Circuit board - Google Patents

Circuit board

Info

Publication number
JPH08250858A
JPH08250858A JP7077290A JP7729095A JPH08250858A JP H08250858 A JPH08250858 A JP H08250858A JP 7077290 A JP7077290 A JP 7077290A JP 7729095 A JP7729095 A JP 7729095A JP H08250858 A JPH08250858 A JP H08250858A
Authority
JP
Japan
Prior art keywords
layer
circuit board
copper
plating layer
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP7077290A
Other languages
Japanese (ja)
Inventor
Masao Kuroda
正雄 黒田
Sotaro Tsukamoto
宗太郎 塚本
Susumu Wakamatsu
進 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP7077290A priority Critical patent/JPH08250858A/en
Publication of JPH08250858A publication Critical patent/JPH08250858A/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Waveguides (AREA)

Abstract

PURPOSE: To provide a circuit board with low loss and high signal transmission speed at high frequencies. CONSTITUTION: On a nickel-plated layer 22 which is a magnetic material formed on a copper-plated layer 20, a gold-plated layer 24 which is a non-magnetic material is further formed. Thus when a circuit board is used at high frequencies, though inductance of the nickel-plated layer 22 increases, current flows to the overlying gold-plated layer 24 and to the underlying copper-plated layer 20 due to skin effects, while no current flows to the nickel-plated layer 22 made of the magnetic material located in between, thereby generating no transmission loss due to the nickel-plated layer 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回路基板に関し、特
に、有機高分子材料で複数の絶縁層を形成し、その間に
信号配線を形成した、高周波用に用いられる回路基板に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit board, and more particularly to a circuit board used for high frequencies in which a plurality of insulating layers are formed of an organic polymer material and signal wirings are formed between them.

【0002】[0002]

【従来の技術】衛星通信等に用いられるGHz帯の高周波
で動作させるための発振回路やフィルタ等、あるいは高
速動作させるCPUやメモリ等のデジタル回路等に、ポ
リイミド樹脂等の有機高分子材料で絶縁層を形成し、こ
の絶縁層間に銅の信号配線を施した回路基板が用いられ
ている。ポリイミド樹脂等は、比誘電率が3程度である
ため、比誘電率が9〜10のアルミナよりも信号の伝送
速度を高め得る利点があるからである。ここで、図8を
参照してポリイミド樹脂を用いる回路基板の従来技術に
係る製造方法について説明する。
2. Description of the Related Art Insulation with an organic polymer material such as a polyimide resin for an oscillator circuit and a filter for operating at a high frequency of GHz band used for satellite communication or for a digital circuit such as a CPU and a memory for operating at high speed. A circuit board in which layers are formed and copper signal wiring is provided between the insulating layers is used. This is because polyimide resin or the like has a relative permittivity of about 3, and therefore has an advantage that the signal transmission speed can be increased as compared with alumina having a relative permittivity of 9 to 10. Here, a conventional method of manufacturing a circuit board using a polyimide resin will be described with reference to FIG.

【0003】まず、図8(A)に示すように絶縁性基板
110の上に導体からなるグランド層112を形成し、
その上にポリイミド前駆体を塗布してから加熱・硬化さ
せてポリイミド絶縁層114aを得る。そして、該ポリ
イミド絶縁層114aの上にスパッタリングによりチタ
ン薄膜116を、更にその上にスパッタリングにより銅
薄膜118を形成し、信号配線を形成するための下地層
117とする。その後、該銅薄膜118の上に、フォト
レジストを塗布し、フォトリソグラフィ技術により所望
のパターンを形成した後、所望の厚みを有する銅メッキ
層120を形成する。更に、該銅メッキ層120上に後
述するエッチング処理において、銅を腐食から保護する
ためのバリヤの役割を果たすニッケルメッキ層122を
設け、フォトレジストを除去する。
First, a ground layer 112 made of a conductor is formed on an insulating substrate 110 as shown in FIG.
A polyimide precursor is applied thereon and then heated and cured to obtain a polyimide insulating layer 114a. Then, a titanium thin film 116 is formed on the polyimide insulating layer 114a by sputtering, and a copper thin film 118 is further formed thereon by sputtering to form a base layer 117 for forming a signal wiring. After that, a photoresist is applied on the copper thin film 118, a desired pattern is formed by a photolithography technique, and then a copper plating layer 120 having a desired thickness is formed. Further, a nickel plating layer 122 which serves as a barrier for protecting copper from corrosion is provided on the copper plating layer 120 in an etching process described later, and the photoresist is removed.

【0004】この後、金属エッチングを行い、図8
(B)に示すように銅メッキ層120の下方以外のチタ
ン薄膜116及び銅薄膜118を除去する。そして、図
8(C)に示すように、ポリイミド絶縁層114aの上
にポリイミド絶縁層114bを乗せる。以上の処理を繰
り返すことにより回路基板を形成していた。
After that, metal etching is carried out, and then, as shown in FIG.
As shown in (B), the titanium thin film 116 and the copper thin film 118 other than below the copper plating layer 120 are removed. Then, as shown in FIG. 8C, a polyimide insulating layer 114b is placed on the polyimide insulating layer 114a. The circuit board is formed by repeating the above processing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記構
成に係る回路基板は、高周波信号の伝送において伝送損
失が大きく信号の伝送速度が低いとの課題があった。本
発明者は、この原因を、金属エッチングの際のバリヤを
なすニッケルメッキ層122にあるのではないかとの知
見を得るに至った。即ち、ニッケルは、耐腐食性に優れ
エッチング時の銅の保護用として適当であり、廉価で、
銅との調和性もある反面、磁性体であるために比透磁率
が非常に高く、また抵抗値も銅と比べて高い。従って、
図8(C)に示す銅メッキ層120とニッケルメッキ層
122とから成る信号配線に高周波を印加すると、表皮
効果により電流は銅メッキ層120のうち、グランド層
112に近い下部付近と、ニッケルメッキ層122とに
主に流れるため、ニッケルメッキ層122の存在によっ
て、インダクタンスや抵抗が増加し、損失が発生してい
るのではないかと推測した。このため、本発明者は、金
属エッチングの際のバリヤとしての耐腐食性を有すると
共に非磁性体である金を用いることを検討したが、銅メ
ッキ層120の上に金メッキを施すと、該銅メッキ層1
20と金メッキとの間で拡散が生じて抵抗分が逆に増大
するとの結論に至った。
However, the circuit board having the above structure has a problem that the transmission loss is large and the signal transmission speed is low in the transmission of high frequency signals. The present inventor has come to the knowledge that the cause may be the nickel plating layer 122 that forms a barrier during metal etching. That is, nickel is excellent in corrosion resistance, suitable for protecting copper during etching, inexpensive,
Although it has harmony with copper, it has a very high relative permeability because it is a magnetic material, and its resistance is also higher than that of copper. Therefore,
When a high frequency is applied to the signal wiring composed of the copper plating layer 120 and the nickel plating layer 122 shown in FIG. 8C, the current is generated by the skin effect in the lower portion of the copper plating layer 120 near the ground layer 112 and the nickel plating. Since it mainly flows to the layer 122, it is speculated that the presence of the nickel plating layer 122 may increase the inductance and the resistance and cause a loss. For this reason, the present inventor has studied the use of gold, which is a non-magnetic material and has corrosion resistance as a barrier during metal etching. However, when gold plating is performed on the copper plating layer 120, the copper Plating layer 1
It was concluded that diffusion occurred between 20 and gold plating, and the resistance component increased conversely.

【0006】本発明は、上述した課題を解決するために
なされたものであり、その目的とするところは、高周波
において低損失で信号伝送速度の早い信号配線構造を備
える回路基板を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a circuit board having a signal wiring structure with low loss and high signal transmission speed at high frequencies. is there.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、請求項1の回路基板では、有機高分子材料からなる
複数の絶縁層と、該複数の絶縁層間に形成された信号配
線であって、該絶縁層上に形成され銅を主成分とする銅
配線層と、該銅配線層上に形成され磁性材料を主成分と
し耐腐食性を有する磁性導体層と、該磁性導体層上に形
成され非磁性材料を主成分とし耐腐食性を有する非磁性
導体層と、からなる信号線と、を備えるたことを要旨と
する。
To achieve the above object, a circuit board according to a first aspect of the present invention comprises a plurality of insulating layers made of an organic polymer material and signal wirings formed between the plurality of insulating layers. A copper wiring layer containing copper as a main component formed on the insulating layer, a magnetic conductor layer containing a magnetic material as a main component and having corrosion resistance formed on the copper wiring layer, and a magnetic conductor layer on the magnetic conductor layer. The gist of the present invention is to include a signal line formed of a non-magnetic conductor layer which is formed and has a non-magnetic material as a main component and which has corrosion resistance.

【0008】また、請求項2の回路基板では、請求項1
において、前記非磁性導体層の厚さを、前記信号配線に
印加する信号の周波数により規定される表皮厚さ以上の
厚さにしたことを要旨とする。
In the circuit board according to claim 2, the circuit board according to claim 1
In the above, the gist is that the thickness of the non-magnetic conductor layer is equal to or larger than the skin thickness defined by the frequency of the signal applied to the signal wiring.

【0009】また、請求項3の回路基板では、請求項1
または2において、前記有機高分子材料が、ポリイミド
樹脂、ペンゾシクロブデン樹脂、およびエポキシ樹脂の
うちのいずれかから成ることを要旨とする。
According to a third aspect of the present invention, there is provided a circuit board according to the first aspect.
In the second or second aspect, the gist is that the organic polymer material is made of any one of a polyimide resin, a penzocyclobutene resin, and an epoxy resin.

【0010】また、請求項4の回路基板では、請求項1
〜3において、前記磁性導体層が、ニッケル、クロムお
よびこれらの合金のうちのいずれかを主成分とすること
を要旨とする。
According to the circuit board of claim 4,
3 to 3, the gist of the magnetic conductor layer is that the main component is any one of nickel, chromium and alloys thereof.

【0011】更に、請求項4の回路基板では、請求項1
〜4において、前記非磁性導体層が、銀、金、白金、パ
ラジウム、ロジウムおよびこれらの合金のうちのいずれ
かを主成分とすることを要旨とする。
Further, in the circuit board of claim 4,
4 to 4, the gist of the non-magnetic conductor layer is that the main component is any one of silver, gold, platinum, palladium, rhodium and alloys thereof.

【0012】[0012]

【作用】請求項1の回路基板では、銅を主成分とする銅
配線層の上に形成され磁性材料を主成分とする磁性導体
層の上に、更に、非磁性材料を主成分とする非磁性導体
層が形成されている。このため、この回路基板に高周波
信号を印加しても該磁性導体層による伝送損失が少なく
なる。表皮効果により信号配線の最上部に位置する非磁
性導体層と、最下部に位置する銅配線層とに主に電流が
流れ、中間に位置する該磁性導体層に流れる電流は少な
いからである。
In the circuit board according to the present invention, a non-magnetic material containing a non-magnetic material as a main component is formed on a magnetic conductor layer containing a magnetic material as a main material, which is formed on a copper wiring layer containing copper as a main ingredient. A magnetic conductor layer is formed. Therefore, even if a high frequency signal is applied to this circuit board, the transmission loss due to the magnetic conductor layer is reduced. This is because due to the skin effect, a current mainly flows through the non-magnetic conductor layer located at the top of the signal wiring and the copper wiring layer located at the bottom, and a small amount of current flows through the magnetic conductor layer located in the middle.

【0013】また、請求項2の回路基板では、非磁性導
体層の厚さを、信号配線に印加する信号の周波数により
規定される表皮厚さ以上の厚さにしてある。このため、
高周波数電流が表皮効果により信号配線の表皮部分(上
部及び下部)を流れる際に、大半の電流が該非磁性導体
層内及び、銅配線層内を通り、該非磁性導体層の下層の
磁性導体層には流れないため、高周波電流が該磁性導体
層内を流れることによる伝送損失を十分小さくすること
ができる。
In the circuit board according to the second aspect, the thickness of the nonmagnetic conductor layer is equal to or larger than the skin thickness defined by the frequency of the signal applied to the signal wiring. For this reason,
When a high frequency current flows through the skin portions (upper and lower portions) of the signal wiring due to the skin effect, most of the current passes through the non-magnetic conductor layer and the copper wiring layer, and the magnetic conductor layer below the non-magnetic conductor layer. Therefore, the transmission loss due to the high-frequency current flowing in the magnetic conductor layer can be sufficiently reduced.

【0014】また、請求項3の回路基板では、有機高分
子材料が、ポリイミド樹脂、ベンゾシクロブデン(BC
B)樹脂、エポキシ樹脂のいずれかから成る。これら材
料は、誘電率が低いため、絶縁層を形成すると、信号の
伝達速度を高めることができる。
Further, in the circuit board of claim 3, the organic polymer material is polyimide resin, benzocyclobutene (BC).
B) Made of either resin or epoxy resin. Since these materials have low dielectric constants, the formation of an insulating layer can increase the signal transmission speed.

【0015】更に、請求項4の回路基板では、磁性導体
層がニッケル、クロムのいずれか、又はこれらの合金の
うちいずれかを主成分とするため、回路基板の製造プロ
セスにおける金属エッチング時に、銅の信号配線を保護
することができる。
Furthermore, in the circuit board of claim 4, since the magnetic conductor layer contains nickel, chromium, or an alloy thereof as a main component, copper is used during metal etching in the process of manufacturing the circuit board. The signal wiring of can be protected.

【0016】また更に、請求項5の回路基板では、非磁
性導体層は、銀、金、白金、パラジウム、ロジウムのい
ずれか、又はこの合金のうちいずれを主成分とする。こ
れらの非磁性材料は、ニッケル及びクロムとの密着性が
高く、金属エッチング時の耐食性が高い。更に、例えば
ポリイミド前駆体を加熱、硬化する際にも、前駆体等と
反応せず、酸化等しないという特性を有する。
Furthermore, in the circuit board according to the present invention, the nonmagnetic conductor layer contains silver, gold, platinum, palladium, rhodium, or any alloy thereof as a main component. These non-magnetic materials have high adhesion to nickel and chromium and high corrosion resistance during metal etching. Further, for example, even when the polyimide precursor is heated and cured, it does not react with the precursor or the like and does not oxidize.

【0017】[0017]

【実施例】以下、本発明を具体化した実施例について図
を参照して説明する。図1、図2、図3は、本発明の第
1実施例に係る回路基板の製造工程を示す図である。本
実施例の回路基板は、セラミック基板10の上面に、ポ
リイミド樹脂を各信号配線間の絶縁層として形成された
ものである。セラミック基板10は、例えば、アルミナ
を主材料として作成された複数のグリーンシートを積層
して、加湿雰囲気の水素炉中で高温焼成して得られた多
層基板である。以下に、セラミック基板10上に配線基
板を形成する工程について説明する。
Embodiments of the present invention will be described below with reference to the drawings. 1, 2 and 3 are views showing a manufacturing process of a circuit board according to a first embodiment of the present invention. The circuit board according to the present embodiment is formed by forming a polyimide resin on the upper surface of the ceramic substrate 10 as an insulating layer between signal lines. The ceramic substrate 10 is, for example, a multilayer substrate obtained by stacking a plurality of green sheets made of alumina as a main material and firing at high temperature in a hydrogen furnace in a humidified atmosphere. The process of forming a wiring board on the ceramic substrate 10 will be described below.

【0018】先ず、図1(A)に示すようにセラミック
基板10の上に銅からなるグランド層12aを被着す
る。次に、グランド層12aの上に、図示しない回転式
塗布機(スピンコータ)により、一定粘度に調整された
ポリイミド前駆体を塗布してから加熱・硬化させて、厚
さ16μmのポリイミド絶縁層14aを形成する(図1
(B)参照)。
First, as shown in FIG. 1A, a ground layer 12a made of copper is deposited on the ceramic substrate 10. Next, on the ground layer 12a, a polyimide precursor adjusted to have a constant viscosity is applied by a rotary coating machine (spin coater) not shown, and then heated and cured to form a polyimide insulating layer 14a having a thickness of 16 μm. Form (Fig. 1
(B)).

【0019】その後、ポリイミド絶縁層14aの表面上
に、ポリイミドとの密着性に優れるチタンをスパッタリ
ングしてチタン薄膜16(厚さ1000Å)を形成す
る。更にこのチタン薄膜16の表面上に、後述する銅メ
ッキ層20との密着性を得るための銅をスパッタリング
して銅薄膜18(厚さ5000Å)を形成し(図1
(C)参照)、下地層17とする。
Then, titanium, which has excellent adhesion to polyimide, is sputtered on the surface of the polyimide insulating layer 14a to form a titanium thin film 16 (thickness 1000Å). Further, on the surface of the titanium thin film 16, copper is sputtered to obtain adhesion with a copper plating layer 20 described later to form a copper thin film 18 (thickness 5000Å) (see FIG. 1).
(See (C)) and the underlayer 17.

【0020】そして、図2(A)に示すように下地層1
7上に、レジスト19を塗布し、フォトリソグラフィー
技術により所望パターンを開口させた上で、下地層17
の露出した開口部19aに銅配線層となる電解メッキに
より銅メッキ層20(厚さ3μm)を形成する。本実施
例ではこの銅メッキ層20は、幅25μmであって、図
中奥手方向(紙面に垂直な方向、以下X方向とする)に
向けて配置する。更に、上述した下地層17(チタン薄
膜16及び銅薄膜18)を金属エッチングで除去する際
に銅メッキ層20を保護するため、銅メッキ層20の上
に磁性導体層となるニッケルメッキ層22(厚さ1μ
m)を形成する(図2(B)参照)。
Then, as shown in FIG. 2 (A), the underlayer 1
7 is coated with a resist 19, a desired pattern is opened by a photolithography technique, and then a base layer 17 is formed.
A copper plating layer 20 (thickness 3 μm) is formed in the exposed opening 19a by electrolytic plating to be a copper wiring layer. In this embodiment, the copper plating layer 20 has a width of 25 μm and is arranged in the depth direction in the figure (direction perpendicular to the paper surface, hereinafter referred to as X direction). Furthermore, in order to protect the copper plating layer 20 when removing the above-mentioned base layer 17 (titanium thin film 16 and copper thin film 18) by metal etching, a nickel plating layer 22 (which serves as a magnetic conductor layer) is formed on the copper plating layer 20. Thickness 1μ
m) is formed (see FIG. 2B).

【0021】次いで、レジスト19を溶解、除去した後
に金属エッチングを行い、銅メッキ層20の下部以外に
形成された不要部分のチタン薄膜16及び銅薄膜18を
除去する(図2(C)参照)。このニッケルメッキ層2
2は、上述した金属エッチングの際に銅メッキ層20を
保護する他、更に、ポリイミド絶縁層を形成する際に、
銅メッキ層20がポリイミド前駆体と接触して化学反応
し、銅メッキ層の抵抗値が増大するのを防いでいる。ニ
ッケルメッキ層22を形成するニッケルは、上述たよう
に耐腐食性に優れると共に廉価であるが、従来技術の課
題において前述したように磁性体であるため、高周波数
において信号配線のもつインダクタンスが増大する。ま
た銅よりも抵抗率が高く、信号配線の抵抗も増加する。
Next, the resist 19 is dissolved and removed, and then metal etching is performed to remove unnecessary portions of the titanium thin film 16 and the copper thin film 18 formed except the lower part of the copper plating layer 20 (see FIG. 2C). . This nickel plating layer 2
2 protects the copper plating layer 20 during the above-described metal etching, and further, when forming a polyimide insulating layer,
This prevents the copper plating layer 20 from coming into contact with the polyimide precursor and chemically reacting with the polyimide precursor to increase the resistance value of the copper plating layer. The nickel forming the nickel plating layer 22 is excellent in corrosion resistance and is inexpensive as described above, but since it is a magnetic material as described above in the problems of the prior art, the inductance of the signal wiring increases at high frequencies. To do. In addition, the resistivity is higher than that of copper, and the resistance of the signal wiring also increases.

【0022】このため、図3(A)に示すように、該ニ
ッケルメッキ層22の上に非磁性導体層として金をメッ
キして2μmの金メッキ層24を形成し、これにより、
銅メッキ層20と、ニッケルメッキ層22と、金メッキ
層24との3層から成る信号配線26Xを完成させる。
この後、前記と同様にポリイミド前駆体を塗布してから
加熱・硬化させて、厚さ16μmのポリイミド絶縁層1
4bを形成する(図3(B)参照)。
Therefore, as shown in FIG. 3A, gold is plated as a non-magnetic conductor layer on the nickel plated layer 22 to form a 2 μm gold plated layer 24.
The signal wiring 26X composed of three layers of the copper plating layer 20, the nickel plating layer 22, and the gold plating layer 24 is completed.
Thereafter, the polyimide precursor is applied in the same manner as described above, and then heated and cured to form a polyimide insulating layer 1 having a thickness of 16 μm.
4b is formed (see FIG. 3B).

【0023】図4に示すように、該ポリイミド絶縁層1
4bの上に上記工程を繰り返し、銅メッキ層20と、ニ
ッケルメッキ層22と、金メッキ層24とを形成し、幅
25μmの信号配線26Yを図中水平方向(以下Y方向
とする)に完成する。信号配線26Yの上に更に、ポリ
イミド絶縁層14c(厚さ16μm)を形成した後、最
上部に銅によりグランド層12bを形成する。この第1
実施例においては、ポリイミド絶縁層14a、14cを
介して信号配線26X、26Yの上下にグランド層12
a、12bを配置することによりデュアルストリップラ
イン型信号伝送構造を形成している。
As shown in FIG. 4, the polyimide insulating layer 1
The above steps are repeated on 4b to form a copper plating layer 20, a nickel plating layer 22, and a gold plating layer 24, and complete a signal wiring 26Y having a width of 25 μm in the horizontal direction (hereinafter referred to as Y direction) in the drawing. . After the polyimide insulating layer 14c (thickness 16 μm) is further formed on the signal wiring 26Y, the ground layer 12b is formed by copper on the uppermost part. This first
In the embodiment, the ground layer 12 is formed above and below the signal wirings 26X and 26Y through the polyimide insulating layers 14a and 14c.
By arranging a and 12b, a dual strip line type signal transmission structure is formed.

【0024】次に、図4に示す回路基板について、信号
配線26X、26Yに信号を印加した場合の周波数に対
する信号配線の伝送ロスをシミュレートした結果につい
て図5及び図6を参照して説明する。図5は、縦軸に伝
送ロス(dB/cm)を、横軸に周波数(GHz)を取
った両対数グラフである。図中で、○印は本実施例の回
路基板によるものを示しており、比較のために信号配線
26X、26Yを前述した従来技術に係る銅メッキ層と
ニッケルメッキ層とから構成した回路基板を●印で、金
のみで構成した回路基板をΔ印で、銅のみで構成した回
路基板を■印で示している。
Next, with respect to the circuit board shown in FIG. 4, the result of simulating the transmission loss of the signal wiring with respect to the frequency when a signal is applied to the signal wirings 26X and 26Y will be described with reference to FIGS. 5 and 6. . FIG. 5 is a log-log graph in which the vertical axis represents transmission loss (dB / cm) and the horizontal axis represents frequency (GHz). In the figure, a circle indicates a circuit board of the present embodiment, and for comparison, a circuit board in which the signal wirings 26X and 26Y are composed of the above-described copper plating layer and nickel plating layer according to the related art is shown. ● indicates a circuit board made of gold only and Δ shows a circuit board made of copper only.

【0025】図6は、この信号配線を構成するスパッタ
層及びメッキ層の厚さを表にして示している。ここで
は、比較のため主たる導体を構成する銅又は金の厚さを
合計5μmに統一してある。例えば、本実施例の回路基
板においては、信号配線が上述したように3μmの銅メ
ッキ層20と、1μmのニッケルメッキ層22と、2μ
mの金メッキ層24の3層から成る。銅メッキ層とニッ
ケルメッキ層とからなる●印で示される従来技術の構成
においては、5μmの銅メッキ層の上に1μmのニッケ
ルメッキ層が被覆されている。なお、銅メッキ層又は金
メッキ層と絶縁層の間には、1000Åのチタン薄膜1
6と、5000Åの銅薄膜18とが形成されているもの
としてシュミレーションが行われている。更に、この信
号配線26X、26Yを絶縁する図4を示す各ポリイミ
ド絶縁層14a、14b、14cはそれぞれ厚さ16μ
mに形成し、信号配線の幅は25μmに形成し、ポリイ
ミドの比誘電率は3.2であるとして解析が成されてい
る。
FIG. 6 is a table showing the thicknesses of the sputter layer and the plating layer constituting the signal wiring. Here, for comparison, the total thickness of copper or gold constituting the main conductor is unified to 5 μm. For example, in the circuit board of the present embodiment, the signal wiring has the copper plating layer 20 of 3 μm, the nickel plating layer 22 of 1 μm, and 2 μm as described above.
m of gold plating layer 24. In the structure of the prior art indicated by a black circle, which is composed of a copper plating layer and a nickel plating layer, a 5 μm copper plating layer is covered with a 1 μm nickel plating layer. In addition, between the copper-plated layer or the gold-plated layer and the insulating layer, a titanium thin film 1
6 and the copper thin film 18 of 5000 Å are formed in the simulation. Further, each of the polyimide insulating layers 14a, 14b and 14c for insulating the signal wirings 26X and 26Y shown in FIG. 4 has a thickness of 16 μm.
The width of the signal wiring is 25 μm, and the relative permittivity of polyimide is 3.2.

【0026】図5から分かるように、信号配線26X、
26Yを金のみで構成したΔ印、銅のみで構成した■印
及び、本実施例の銅メッキ層とニッケルメッキ層と金メ
ッキ層とからなる構成に係る○印は、0.5GHzの相
対的に低い周波数から10GHzの相対的に高い周波数
においてほぼ等しい伝送ロス特性を示している。これに
対して、従来技術の銅メッキ層とニッケルメッキ層とか
らなる構成に係る●印は、高周波数になるに従い損失ロ
スが大きくなっている。例えば、1GHzにおいて、本
実施例の回路基板が0.3dB/cmであるのに対して、
従来技術の回路基板が0.6dB/cmで約2倍である。
また、10GHzにおいて、本実施例が0.9dB/cm
であるのに対して、従来技術の回路基板が2.5dB/
cmで3倍近くになっている。
As can be seen from FIG. 5, the signal wiring 26X,
26A is composed of only gold, Δ is composed of only copper, and ○ is related to the structure of the copper plating layer, the nickel plating layer, and the gold plating layer of this embodiment. It shows almost equal transmission loss characteristics from a low frequency to a relatively high frequency of 10 GHz. On the other hand, the mark ● related to the structure including the copper-plated layer and the nickel-plated layer of the prior art has a large loss loss as the frequency becomes higher. For example, at 1 GHz, the circuit board of the present embodiment has 0.3 dB / cm,
The circuit board of the prior art is about 2 times at 0.6 dB / cm.
Also, at 10 GHz, this embodiment has 0.9 dB / cm.
In contrast, the prior art circuit board is 2.5 dB /
It is nearly tripled in cm.

【0027】このように従来技術の回路基板は高周波数
において伝送ロスが大きい。これは、図8(C)を参照
して前述したように銅メッキ層120とニッケルメッキ
層122とから成る信号配線に高周波信号を印加する
と、表皮効果により電流は銅メッキ層120の下部と、
ニッケルメッキ層122とに主に流れる。このため、銅
メッキ層等に比べてインダクタンスや抵抗の高いニッケ
ルメッキ層122において損失が発生していると推測さ
れる。
As described above, the conventional circuit board has a large transmission loss at high frequencies. As described above with reference to FIG. 8C, when a high-frequency signal is applied to the signal wiring formed of the copper plating layer 120 and the nickel plating layer 122, the current is generated below the copper plating layer 120 due to the skin effect.
Mainly flows to the nickel plating layer 122. Therefore, it is presumed that loss occurs in the nickel plating layer 122 having higher inductance and resistance than the copper plating layer or the like.

【0028】これに対して本実施例の回路基板では、ニ
ッケルメッキ層22の上に2μm厚の金メッキ層24
(図4参照)を設けている。従って高周波信号を印加し
た際に表皮効果により、主として上部に位置する金メッ
キ層24と、下部に位置する3μm厚の銅メッキ層20
とに電流が流れ、中間に位置する該磁性材料のニッケル
メッキ層22には電流がほとんど流れないため、該ニッ
ケルメッキ層22による伝送損失が発生しないと考えら
れる。従って、図5中に示すように本実施例の回路基板
は、ニッケルメッキ層を有さない図5中にΔ印で示す金
のみで5μmの信号配線を形成した場合や、■印で示す
銅のみで5μmの信号配線を形成した場合と同様な伝送
ロス特性を得たものと考えられる。
On the other hand, in the circuit board of this embodiment, the gold plating layer 24 having a thickness of 2 μm is formed on the nickel plating layer 22.
(See FIG. 4). Therefore, when a high frequency signal is applied, due to the skin effect, the gold plating layer 24 located mainly on the upper side and the copper plating layer 20 having a thickness of 3 μm located on the lower side.
It is considered that a transmission loss due to the nickel plating layer 22 does not occur because a current flows through the nickel plating layer 22 of the magnetic material located in the middle and almost no current flows. Therefore, as shown in FIG. 5, the circuit board of this embodiment has no nickel plating layer and has a signal wiring of 5 .mu.m formed only by gold shown by .DELTA. In FIG. It is considered that the same transmission loss characteristics as those obtained when the signal wiring of 5 μm was formed by only the above were obtained.

【0029】また、上述したように、高周波における伝
送ロスは、表皮効果に起因するものである。従って、上
記非磁性金属層( 金メッキ層24) は、厚いほど良いの
であるが、大半の表皮電流がその中を流れ得るようにす
るため表皮厚さ(スキンディプス)よりも厚く形成する
のが望ましい。この表皮厚さδは、使用される非磁性金
属の透磁率をμ、電気伝導率をσ、角振動数をωとする
と次式で表される。
Further, as described above, the transmission loss at high frequencies is due to the skin effect. Therefore, the thicker the non-magnetic metal layer (gold-plated layer 24) is, the better. However, it is desirable that the non-magnetic metal layer (gold plated layer 24) is formed thicker than the skin depth (skin depth) so that most skin current can flow therein. . The skin thickness δ is expressed by the following equation, where μ is the magnetic permeability of the nonmagnetic metal used, σ is the electrical conductivity, and ω is the angular frequency.

【数1】δ=√(2/μσω) ここで、非磁性金属に金を用いて10GHz用の回路基
板を形成する際のスキンディプスδの値としては、数1
の式に金の透磁率と電気伝導率とを代入して約0.78
4μmが得られる。このため第1実施例の回路基板を1
0GHzで用いる際には、金メッキ層24の厚さを0.
784μm以上に形成することが望ましい。なお、上述
した第1実施例では、3層のポリイミド絶縁層14a、
14b、14cにより回路基板を構成する例を挙げた
が、更に多層のポリイミド絶縁層を用いて回路基板を形
成することも可能である。
## EQU1 ## δ = √ (2 / μσω) Here, the value of the skin depth δ when forming a circuit board for 10 GHz by using gold as a non-magnetic metal is as follows:
Substituting the magnetic permeability and electrical conductivity of gold into the formula
4 μm is obtained. Therefore, the circuit board of the first embodiment is
When used at 0 GHz, the thickness of the gold plating layer 24 is set to 0.
It is desirable to form it to 784 μm or more. In addition, in the above-described first embodiment, three layers of polyimide insulating layers 14a,
Although the example in which the circuit board is configured by 14b and 14c has been described, it is also possible to form the circuit board by using a multilayered polyimide insulating layer.

【0030】次に、本発明の第2実施例に係る回路基板
の製造工程について、図7を参照して説明する。この第
2実施例においては、先ず、図7(A)に示すようにセ
ラミック基板10の上に銅からなるグランド層12aを
被着する。次に、グランド層12aの上に、厚さ16μ
mのベンゾシクロブデン絶縁層54aを形成する。そし
て、該ベンゾシクロブデン絶縁層54aの表面上に、ベ
ンゾシクロブデンとの密着性に優れるチタンをスパッタ
リングしてチタン薄膜16(厚さ1000Å)を形成
し、更にこのチタン薄膜16の表面上に、銅メッキ層2
0との密着性を得るための銅をスパッタリングして銅薄
膜18(厚さ5000Å)を形成し、下地層17とす
る。
Next, the manufacturing process of the circuit board according to the second embodiment of the present invention will be described with reference to FIG. In the second embodiment, first, as shown in FIG. 7A, a ground layer 12a made of copper is deposited on the ceramic substrate 10. Next, on the ground layer 12a, a thickness of 16μ
The m benzocyclobutene insulating layer 54a is formed. Then, titanium having excellent adhesion to benzocyclobutene is sputtered on the surface of the benzocyclobutene insulating layer 54a to form a titanium thin film 16 (thickness 1000Å), and further, on the surface of the titanium thin film 16, Copper plating layer 2
Copper for obtaining adhesiveness with 0 is sputtered to form a copper thin film 18 (thickness 5000Å), which is used as a base layer 17.

【0031】そして、第1実施例の場合(図2A、B参
照)と同様に、フォトリソグラフィー技術により所定パ
ターンのレジスト層を設けた上で、回路基板内の信号配
線を形成する位置に無電解メッキにより銅配線層となる
銅メッキ層20(厚さ3μm)を形成する。この後、レ
ジストを除去し、更に上述したチタン薄膜16及び銅薄
膜18を金属エッチングで除去する際に、銅メッキ層2
0を保護するため、クロムを該銅メッキ層20の上にス
パッタリングして磁性導電層となるクロムスパッタ層7
2(厚さ1μm)を形成する。この後、金属エッチング
を行い、該銅メッキ層20以外に形成された不要部分の
チタン薄膜56及び銅薄膜18を除去する。クロムスパ
ッタ層72を形成するクロムは、上述たように耐腐食性
に優れると共に廉価であるが、磁性体であるため高周波
数信号領域においてインダクタンスが増大する。
Then, as in the case of the first embodiment (see FIGS. 2A and 2B), a resist layer having a predetermined pattern is provided by the photolithography technique, and then electroless is formed at the position where the signal wiring is formed in the circuit board. A copper plating layer 20 (thickness 3 μm) to be a copper wiring layer is formed by plating. After that, when the resist is removed and the titanium thin film 16 and the copper thin film 18 are removed by metal etching, the copper plating layer 2
In order to protect 0, chromium is sputtered on the copper plating layer 20 to form a magnetic conductive layer, which is a chromium sputter layer 7
2 (thickness 1 μm) is formed. Then, metal etching is performed to remove unnecessary portions of the titanium thin film 56 and the copper thin film 18 other than the copper plating layer 20. Chromium forming the chromium sputter layer 72 is excellent in corrosion resistance and is inexpensive as described above, but since it is a magnetic material, the inductance increases in the high frequency signal region.

【0032】このため、該クロムスパッタ層72の上に
非磁性導電層となる白金をメッキして非磁性導体層とか
ら白金メッキ層74(厚さ2μm)を形成し、これによ
り、銅メッキ層20と、クロムスパッタ層72と、白金
メッキ層74との3層から成る信号配線26Xを完成さ
せる。この後、更に、厚さ16μmのベンゾシクロブデ
ン絶縁層54bを形成する(図7(B)参照)。以上の
処理を繰り返すことにより回路基板を完成させる。
Therefore, platinum serving as a non-magnetic conductive layer is plated on the chromium sputter layer 72 to form a platinum plating layer 74 (thickness 2 μm) from the non-magnetic conductor layer, whereby a copper plating layer is formed. The signal wiring 26X composed of three layers of 20, the chromium sputter layer 72, and the platinum plating layer 74 is completed. After that, a benzocyclobutene insulating layer 54b having a thickness of 16 μm is further formed (see FIG. 7B). The circuit board is completed by repeating the above processing.

【0033】この第2実施例の回路基板においても、表
皮効果により主として上部に位置する2μmの白金メッ
キ層74と、下部に位置する3μmの銅メッキ層20と
に電流が流れ、中間に位置する該磁性材料のクロムスパ
ッタ層72には電流が流れ難いため、該クロムスパッタ
層72による伝送損失は発生しないものと推測される。
Also in the circuit board of the second embodiment, due to the skin effect, a current flows mainly through the upper 2 μm platinum plating layer 74 and the lower 3 μm copper plating layer 20, and is positioned in the middle. Since it is difficult for an electric current to flow in the chromium sputter layer 72 of the magnetic material, it is presumed that transmission loss due to the chromium sputter layer 72 does not occur.

【0034】なお、回路基板の絶縁層を形成する材料と
して、上述した第1実施例では耐熱性が高い特徴を有す
るポリイミドを、第2実施例では誘電率の低い特徴を有
するベンゾシクロブデンを用いる例を挙げたが、セラミ
ックと比較して誘電率が低く、回路基板を構成し得る有
機高分子材料であれば、例えば、安価であるエポキシ樹
脂、あるいはその他の材料を用いることも可能である。
また、銅メッキ層20の金属エッチング時の保護層とな
る磁性導体層として、第1実施例ではニッケルを、第2
実施例ではクロムを用いたが、例えばNi−Co、Ni
−P、Ni−B、Cr−P等の銅メッキ層20を保護
し、金などの非磁性導体層を下層の銅と反応を防止でき
るものあれば、ニッケル、クロムを主成分とする合金、
又は他の金属を用いることもできる。
As the material for forming the insulating layer of the circuit board, polyimide having a high heat resistance characteristic is used in the first embodiment, and benzocyclobutene having a low dielectric constant characteristic is used in the second embodiment. Although examples have been given, it is possible to use, for example, an inexpensive epoxy resin or another material as long as it is an organic polymer material having a lower dielectric constant than ceramics and capable of forming a circuit board.
In addition, nickel is used as the magnetic conductor layer serving as a protective layer at the time of metal etching of the copper plating layer 20 in the first embodiment.
Although chromium is used in the examples, for example, Ni-Co, Ni
As long as it can protect the copper plating layer 20 such as -P, Ni-B and Cr-P and prevent the reaction of the non-magnetic conductor layer such as gold with the underlying copper, an alloy containing nickel and chromium as main components,
Alternatively, other metals can be used.

【0035】更に、磁性導体層の上の非磁性導体層とし
て金属として、第1実施例では金メッキ層24を、第2
実施例では白金メッキ層74を形成したが、磁性導体層
との密着性が高く、絶縁層14、54を塗布、硬化した
ときに有機高分子材料又はその前駆体と反応しない金属
であれば、金、白金の他、例えば、銀、パラジウム、ロ
ジウム等の貴金属或いは、Ag−Pd等、金、白金、
銀、パラジウム、ロジウムを主成分とする合金等を用い
ることも可能である。更に、第1、第2実施例において
は、銅配線層、磁性導体層、非磁性導体層を電解メッ
キ、無電解メッキ、スパータリングにより設けたが、他
の手段例えば蒸着、イオンプレーティング等の手法を用
いて形成しても良い。また、上述した第1、第2実施例
では、銅配線層と磁性導体層を設けた際、レジストを除
去し下地層をエッチング除去してから金などの非磁性導
体層を設けたが、レジスト除去前に非磁性導体層を設け
てから下地層をエッチング除去しても良い。
Further, as a non-magnetic conductor layer on the magnetic conductor layer, a gold plating layer 24 is used as the second metal in the first embodiment.
Although the platinum-plated layer 74 is formed in the embodiment, if the metal has high adhesion to the magnetic conductor layer and does not react with the organic polymer material or its precursor when the insulating layers 14 and 54 are applied and cured, In addition to gold and platinum, for example, noble metals such as silver, palladium and rhodium, or Ag-Pd, gold, platinum,
It is also possible to use an alloy containing silver, palladium, or rhodium as a main component. Further, in the first and second embodiments, the copper wiring layer, the magnetic conductor layer and the non-magnetic conductor layer are provided by electrolytic plating, electroless plating and sputtering, but other means such as vapor deposition, ion plating, etc. You may form using a method. Further, in the above-described first and second embodiments, when the copper wiring layer and the magnetic conductor layer were provided, the resist was removed and the underlayer was removed by etching, and then the nonmagnetic conductor layer such as gold was provided. The underlayer may be removed by etching after the nonmagnetic conductor layer is provided before the removal.

【0036】第1、第2実施例の回路基板は、衛星通信
等でGHz帯の高周波で動作させるための発振回路やフィ
ルタ等の他、非常に高い周波数のクロック信号により駆
動させる集積回路用の基板等にも用いることができる。
The circuit boards of the first and second embodiments are used for an oscillator circuit for operating at a high frequency of GHz band in satellite communication or the like, a filter, and an integrated circuit driven by a clock signal of a very high frequency. It can also be used as a substrate or the like.

【0037】[0037]

【効果】以上記述したように本発明の回路基板では、銅
配線層の保護に磁性材料の導体膜を用いた場合に、高い
周波数で用いた際に磁性導体層のインダクタンス分が増
大しても、表皮効果により上部に位置する非磁性導体層
と、下部に位置する銅配線層とに電流が流れ、中間に位
置する該磁性導体層には電流が流れ難いため、該磁性導
体層による伝送損失の増大及び伝送速度の低下を防ぐこ
とができる。
As described above, in the circuit board of the present invention, when the conductor film of the magnetic material is used to protect the copper wiring layer, even if the inductance of the magnetic conductor layer increases when used at a high frequency. , Due to the skin effect, a current flows through the non-magnetic conductor layer located at the top and the copper wiring layer located at the bottom, and it is difficult for the current to flow in the magnetic conductor layer located in the middle. It is possible to prevent an increase in the transmission rate and a decrease in the transmission rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る回路基板の製造工程
を示す説明である。
FIG. 1 is an illustration showing a manufacturing process of a circuit board according to a first embodiment of the present invention.

【図2】本発明の第1実施例に係る回路基板の製造工程
を示す説明である。
FIG. 2 is an illustration showing a manufacturing process of the circuit board according to the first exemplary embodiment of the present invention.

【図3】本発明の第1実施例に係る回路基板の製造工程
を示す説明である。
FIG. 3 is an illustration showing a manufacturing process of the circuit board according to the first exemplary embodiment of the present invention.

【図4】第1実施例に係る回路基板の構成を示す断面図
である。
FIG. 4 is a cross-sectional view showing the configuration of the circuit board according to the first example.

【図5】第1実施例に係る回路基板と従来技術の回路基
板との周波数と伝送ロスとの関係を示すグラフである。
FIG. 5 is a graph showing the relationship between frequency and transmission loss between the circuit board according to the first embodiment and the circuit board of the related art.

【図6】第1実施例に係る回路基板と従来技術の回路基
板とのスパッタ層とメッキ層の厚さを示す図表である。
FIG. 6 is a table showing the thicknesses of a sputter layer and a plating layer on the circuit board according to the first embodiment and the circuit board according to the related art.

【図7】本発明の第2実施例に係る回路基板の製造工程
を示す説明である。
FIG. 7 is an illustration showing a manufacturing process of a circuit board according to a second embodiment of the present invention.

【図8】従来技術の回路基板の構成を示す断面図であ
る。
FIG. 8 is a cross-sectional view showing a configuration of a conventional circuit board.

【符号の説明】 14a ポリイミド絶縁層 20 銅メッキ層 22 ニッケルメッキ層 24 金メッキ層 54a ベンゾシクロブデン絶縁層 72 クロムスパッタ層 74 白金メッキ層[Explanation of reference signs] 14a Polyimide insulating layer 20 Copper plating layer 22 Nickel plating layer 24 Gold plating layer 54a Benzocyclobutene insulating layer 72 Chromium sputter layer 74 Platinum plating layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有機高分子材料からなる複数の絶縁層
と、 該複数の絶縁層間に形成された信号配線であって、 該絶縁層上に形成され銅を主成分とする銅配線層と、 該銅配線層上に形成され磁性材料を主成分とし耐腐食性
を有する磁性導体層と、 該磁性導体層上に形成され非磁性材料を主成分とし耐腐
食性を有する非磁性導体層と、 からなる信号線と、 を備える回路基板。
1. A plurality of insulating layers made of an organic polymer material, a signal wiring formed between the plurality of insulating layers, and a copper wiring layer formed on the insulating layers and containing copper as a main component. A magnetic conductor layer formed on the copper wiring layer and containing a magnetic material as a main component and having corrosion resistance; a non-magnetic conductor layer formed on the magnetic conductor layer and containing a non-magnetic material as a main component and having corrosion resistance; A circuit board comprising:
【請求項2】 前記非磁性導体層の厚さを、 前記信号配線に印加する信号の周波数により規定される
表皮厚さ以上の厚さにしたことを特徴とする請求項1に
記載の回路基板。
2. The circuit board according to claim 1, wherein the thickness of the nonmagnetic conductor layer is equal to or larger than a skin thickness defined by a frequency of a signal applied to the signal wiring. .
【請求項3】 前記有機高分子材料が、ポリイミド樹
脂、ペンゾシクロブデン樹脂、およびエポキシ樹脂のう
ちのいずれかからなることを特徴とする請求項1または
2に記載の回路基板。
3. The circuit board according to claim 1, wherein the organic polymer material is made of any one of polyimide resin, penzocyclobutene resin, and epoxy resin.
【請求項4】 前記磁性導体層が、ニッケル、クロムお
よびこれらの合金のうちのいずれかを主成分とすること
を特徴とする請求項1〜3に記載の回路基板。
4. The circuit board according to claim 1, wherein the magnetic conductor layer contains nickel, chromium, or an alloy thereof as a main component.
【請求項5】 前記非磁性導体層が、銀、金、白金、パ
ラジウム、ロジウムおよびこれらの合金のうちのいずれ
かを主成分とすることを特徴とする請求項1〜4に記載
の回路基板。
5. The circuit board according to claim 1, wherein the non-magnetic conductor layer contains silver, gold, platinum, palladium, rhodium, or an alloy thereof as a main component. .
JP7077290A 1995-03-07 1995-03-07 Circuit board Ceased JPH08250858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7077290A JPH08250858A (en) 1995-03-07 1995-03-07 Circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7077290A JPH08250858A (en) 1995-03-07 1995-03-07 Circuit board

Publications (1)

Publication Number Publication Date
JPH08250858A true JPH08250858A (en) 1996-09-27

Family

ID=13629753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7077290A Ceased JPH08250858A (en) 1995-03-07 1995-03-07 Circuit board

Country Status (1)

Country Link
JP (1) JPH08250858A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143774A2 (en) * 2000-04-04 2001-10-10 Tokin Corporation Wiring board comprising granular magnetic film
JP2010238932A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp Power module substrate, power module substrate having heat sink, and method of manufacturing power module
JP2013229851A (en) * 2012-03-30 2013-11-07 Tdk Corp High frequency transmission line, antenna and electronic circuit board
JP2018107212A (en) * 2016-12-22 2018-07-05 京セラ株式会社 Printed-circuit board
CN114126187A (en) * 2020-08-26 2022-03-01 宏恒胜电子科技(淮安)有限公司 Circuit board with embedded heat dissipation structure and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143774A2 (en) * 2000-04-04 2001-10-10 Tokin Corporation Wiring board comprising granular magnetic film
EP1143774A3 (en) * 2000-04-04 2002-02-27 Tokin Corporation Wiring board comprising granular magnetic film
US6653573B2 (en) 2000-04-04 2003-11-25 Nec Tokin Corporation Wiring board comprising granular magnetic film
US6919772B2 (en) 2000-04-04 2005-07-19 Nec Tokin Corporation Wiring board comprising granular magnetic film
US6953899B1 (en) 2000-04-04 2005-10-11 Nec Tokin Corporation Wiring board comprising granular magnetic film
US6956173B2 (en) 2000-04-04 2005-10-18 Nec Tokin Corporation Wiring board comprising granular magnetic film
JP2010238932A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp Power module substrate, power module substrate having heat sink, and method of manufacturing power module
JP2013229851A (en) * 2012-03-30 2013-11-07 Tdk Corp High frequency transmission line, antenna and electronic circuit board
JP2018107212A (en) * 2016-12-22 2018-07-05 京セラ株式会社 Printed-circuit board
CN114126187A (en) * 2020-08-26 2022-03-01 宏恒胜电子科技(淮安)有限公司 Circuit board with embedded heat dissipation structure and manufacturing method thereof
CN114126187B (en) * 2020-08-26 2024-05-10 宏恒胜电子科技(淮安)有限公司 Circuit board with embedded heat dissipation structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3014310B2 (en) Structure and manufacturing method of laminated wiring board
US5745333A (en) Laminar stackable circuit board structure with capacitor
US4629681A (en) Method of manufacturing multilayer circuit board
JP3361556B2 (en) Method of forming circuit wiring pattern
TWI251920B (en) Circuit barrier structure of semiconductor package substrate and method for fabricating the same
KR20010050609A (en) Thin integral resistor/capacitor/inductor package, method of manufacture
US4942373A (en) Thin film delay lines having a serpentine delay path
JP2982193B2 (en) Manufacturing method of high frequency coil
US4569876A (en) Multi-layered substrate having a fine wiring structure for LSI or VLSI circuits
JPH08250858A (en) Circuit board
JPH07235768A (en) Production process for thin film multilayer wiring board
JP2002280219A (en) Inductor and/or circuit wiring near in vicinity and its manufacturing method
JPH0442841B2 (en)
JPH0245996A (en) Manufacture of hybrid integrated circuit
JP2002231502A (en) Fillet-less chip resistor and method for manufacturing the same
JP2530008B2 (en) Wiring board manufacturing method
JPH0832244A (en) Multilayer wiring board
JP3144596B2 (en) Thin film electronic component and method of manufacturing the same
JP3049161B2 (en) Method for manufacturing multi-chip thin film multilayer wiring board
TW592007B (en) Build-up circuit board with conductive barrier structure and method for fabricating the same
JP2002075784A (en) Thin-film capacitor, its manufacturing method and its mounting structure
JP3174411B2 (en) Method of manufacturing multilayer thin film wiring board
JP2825050B2 (en) Multilayer wiring board
JPH10190198A (en) Manufacture of printed wiring board
JPS62295494A (en) Manufacture of circuit board for mounting high speed device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050615

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050621

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050729

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20080422