JPH0334574A - Mos type semiconductor device and manufacture thereof - Google Patents

Mos type semiconductor device and manufacture thereof

Info

Publication number
JPH0334574A
JPH0334574A JP16957589A JP16957589A JPH0334574A JP H0334574 A JPH0334574 A JP H0334574A JP 16957589 A JP16957589 A JP 16957589A JP 16957589 A JP16957589 A JP 16957589A JP H0334574 A JPH0334574 A JP H0334574A
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
gate insulating
gate
diffusion layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16957589A
Other languages
Japanese (ja)
Inventor
Tetsuo Endo
哲郎 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16957589A priority Critical patent/JPH0334574A/en
Publication of JPH0334574A publication Critical patent/JPH0334574A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To suppress the breakdown at source and drain diffusion layers effectively by thickening a gate insulating film at the region where source and drain diffusion layers and a gate electrode overlap each other than that above a channel region. CONSTITUTION:A gate electrode 3, consisting of a polycrystalline silicon film, is formed through a gate insulating film 2 on a p-type silicon substrate 1 where an element isolating insulating film is formed. N<+>-diffusion layers 4 and 5 to become a source and a drain in self-alignment are formed for a gate electrode 3. The n<+>-diffusion layers 4 and 5 overlap the gate electrode 3 partially, and the gate insulating film 22 at this overlapping part is made thicker than the gate insulating film 2 above a channel region. The topside of the substrate, where elements are formed, is covered with a CVD insulating film, and a contact hole is opened in this film, and Al wiring is formed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、微細構造のMOS型半導体装置とその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a finely structured MOS type semiconductor device and a manufacturing method thereof.

(従来の技術) MOSトランジスタを集積形成した各種集積回路は、加
工技術の進歩により素子の微細化、高集積化が著しく進
んでいる。素子の微細化が進むにつれて、スケーリング
則によってゲート絶縁膜は極めて薄いものとなっている
。この様な微細MO8素子において最近、ゲート電極近
傍の拡散層内で発生するリーク電流の増大が大きい問題
として注目されている。これは、ソース、ドレイン拡散
層のゲート絶縁膜との界面近傍でゲート絶縁膜の薄膜化
による強電界の影響で深いデプレション状態が生じ、そ
の結果拡散層内で価電子帯から伝導帯への電子のトンネ
リング(ツェナー)が起こることによる。この新しいツ
ェナー現象によるリーク電流は、集積回路の消費電力増
大をもたらし、また素子の信頼性を低下させる。
(Prior Art) Various integrated circuits in which MOS transistors are integrally formed are becoming increasingly miniaturized and highly integrated due to advances in processing technology. As devices become smaller, gate insulating films are becoming extremely thin due to scaling laws. Recently, in such fine MO8 devices, an increase in leakage current generated in the diffusion layer near the gate electrode has been attracting attention as a major problem. This is because a deep depletion state occurs near the interface between the source and drain diffusion layers and the gate insulating film due to the strong electric field caused by the thinning of the gate insulating film, resulting in a shift from the valence band to the conduction band within the diffusion layer. This is caused by electron tunneling (Zener). Leakage current due to this new Zener phenomenon increases the power consumption of the integrated circuit and also reduces the reliability of the device.

(発明が解決しようとする課題) 以上のように微細構造のMOS)ランジスダでは、ゲー
ト電極直下のソース、ドレイン拡散層で生じるブレーク
ダウンが大きい問題となっている。
(Problems to be Solved by the Invention) As described above, in the finely structured MOS transistor, breakdown occurring in the source and drain diffusion layers directly under the gate electrode is a major problem.

本発明は、この様な問題を解決したMOS型半導体装置
とその製造方法を提供することを目的とする。
An object of the present invention is to provide a MOS type semiconductor device and a method for manufacturing the same that solves such problems.

[発明の構成] (課題を解決するための手段) 本発明に係るMOS型半導体装置は、ゲート電極とソー
ス、ドレイン拡散層の重なる領域でのゲート絶縁膜をチ
ャネル領域上のそれに比べて厚くしたことを特徴とする
[Structure of the Invention] (Means for Solving the Problems) A MOS semiconductor device according to the present invention has a gate insulating film thicker in the region where the gate electrode and the source and drain diffusion layers overlap than that on the channel region. It is characterized by

本発明の方法は、この様な構造のMOS型半導体装置を
製造するに当たって、半導体基板上にゲート絶縁膜を介
してゲート電極を形成した後に、ゲート電極下のゲート
絶縁膜を等方性エツチングによってゲート電極端部から
横方向に所定距離エツチングして隙間を形成し、熱酸化
を行ってこのゲート電極端部下に当初のゲート絶縁膜よ
り厚い絶縁膜を埋込み形成するようにしたことを特徴と
する。
In manufacturing a MOS type semiconductor device having such a structure, the method of the present invention involves forming a gate electrode on a semiconductor substrate via a gate insulating film, and then etching the gate insulating film under the gate electrode by isotropic etching. A gap is formed by etching a predetermined distance laterally from the end of the gate electrode, and thermal oxidation is performed to embed an insulating film thicker than the original gate insulating film under the end of the gate electrode. .

(作 用) 本発明の素子構造では、ソース、ドレイン拡散層とゲー
ト電極の重なる領域のゲート絶縁膜をチャネル領域上の
それより厚くすることによって、ゲート絶縁膜の薄膜化
に起因するソース、ドレイン拡散層でのブレークダウン
を防止することができる。
(Function) In the device structure of the present invention, by making the gate insulating film in the region where the source and drain diffusion layers overlap with the gate electrode thicker than that on the channel region, the source and drain Breakdown in the diffusion layer can be prevented.

また本発明の方法によれば、ゲート電極を形成した後に
、等方性エツチングと熱酸化によってゲート電極端部下
に厚いゲート絶縁膜を形成することができる。すなわち
PEP工程やマスク合わせ工程を要せず、ゲート電極に
自己整合された状態でゲート絶縁膜内に段差を形成する
ことができる。
Further, according to the method of the present invention, after forming the gate electrode, a thick gate insulating film can be formed under the end of the gate electrode by isotropic etching and thermal oxidation. That is, a step can be formed in the gate insulating film in a self-aligned state with the gate electrode without requiring a PEP process or a mask alignment process.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図(a) (b)は、一実施例にかかるMOSトラ
ンジスタを示す平面図とそのA−A’断面図である。素
子分離絶縁膜が形成されたp型シリコン基板1に、ゲー
ト絶縁膜2を介して多結晶シリコン膜からなるゲート電
極3が形成されている。
FIGS. 1(a) and 1(b) are a plan view and a sectional view taken along the line AA' of the MOS transistor according to one embodiment. A gate electrode 3 made of a polycrystalline silicon film is formed on a p-type silicon substrate 1 on which an element isolation insulating film is formed, with a gate insulating film 2 interposed therebetween.

ゲート電極3に自己整合的にソース、ドレインとなるn
+拡散層4,5が形成されている。n+拡散層4,5は
、ゲート電極3と一部重なっており、この重なり部分で
のゲート絶縁膜2□は、チャネル領域上のゲート絶縁膜
21に比べて厚く形成されている。素子形成された基板
上はCVD絶縁膜により覆われ、これにコンタクト孔が
開けられてAρ配線が形成されている。
n that becomes the source and drain in self-alignment with the gate electrode 3
+ Diffusion layers 4 and 5 are formed. The n+ diffusion layers 4 and 5 partially overlap the gate electrode 3, and the gate insulating film 2□ at this overlapping portion is formed thicker than the gate insulating film 21 on the channel region. The substrate on which the elements are formed is covered with a CVD insulating film, and contact holes are formed in this to form Aρ wiring.

第2図(a)〜(d)は、第1図の素子の製造工程断面
図である。p型シリコン基板1に素子分離絶縁膜を形成
した後、熱酸化によって50〜200λのゲート絶縁膜
2Iを形成し、この上に減圧プラズマCVD法によって
多結晶シリコン膜3゜を堆積する(第2図(a))。多
結晶シリコン膜3゜には不純物をイオン注入して導電性
を付与する。
2(a) to 2(d) are cross-sectional views of the manufacturing process of the device of FIG. 1. After forming an element isolation insulating film on a p-type silicon substrate 1, a gate insulating film 2I with a thickness of 50 to 200λ is formed by thermal oxidation, and a 3° polycrystalline silicon film is deposited on this by a low pressure plasma CVD method (second Figure (a)). Impurity ions are implanted into the polycrystalline silicon film 3° to impart conductivity.

次にPEPと反応性イオンエツチング法によって多結晶
シリコン膜3゜をパターニングして、ゲート電極3を形
成する。そしてゲート電極3をマスクとして不純物をイ
オン注入してn+拡散層4゜5を形成するC’j52図
(b))。
Next, the polycrystalline silicon film 3° is patterned by PEP and reactive ion etching to form the gate electrode 3. Then, using the gate electrode 3 as a mask, impurity ions are implanted to form an n+ diffusion layer 4.5 (Fig. C'j52(b)).

その後、SiO2に対するエツチング速度がStに対す
るそれより大きく、かつ等方性を示すエツチング法、例
えば弗化アンモニウムを用いた溶液エツチングを行って
、ゲート絶縁膜21を横方向にエツチングしゲート電極
3の端部から所定距離の範囲、少なくとも拡散層4.5
上の部分を除去する(第2図(C))。その後熱酸化法
によって、ゲート電極3の露出している底部および基板
1を酸化して、当初のゲート絶縁膜2Iよりも厚いゲー
ト絶縁膜2・2をゲート電極3の下に埋込み形成する(
第2図(d))。
Thereafter, the gate insulating film 21 is laterally etched by an etching method in which the etching rate for SiO2 is higher than that for St and is isotropic, such as solution etching using ammonium fluoride, and the edges of the gate electrode 3 are etched. at least a predetermined distance from the diffusion layer 4.5
Remove the upper part (Fig. 2(C)). Thereafter, the exposed bottom of the gate electrode 3 and the substrate 1 are oxidized by a thermal oxidation method, and a gate insulating film 2, which is thicker than the original gate insulating film 2I, is buried under the gate electrode 3 (
Figure 2(d)).

この実施例の素子では、ゲート電極3と重なる領域の拡
散層4,5上部に厚いゲート絶縁膜22を形成すること
によって、微細構造でのゲート絶縁膜の薄膜化による拡
散層内でのブレークダウンを効果的に抑制することがで
きる。
In the device of this example, by forming a thick gate insulating film 22 on top of the diffusion layers 4 and 5 in the region overlapping with the gate electrode 3, breakdown in the diffusion layer due to thinning of the gate insulating film in the fine structure is prevented. can be effectively suppressed.

またこの実施例の工程によれば、微細なゲート長内でゲ
ート絶縁膜の厚さの変化がゲート電極に自己整合されて
形成される。これは例えば、厚いゲート絶縁膜を形成し
、その一部を選択エツチングして改めて薄いゲート絶縁
膜を形成してこの上にゲート電極をパターン形成する方
法と比べて、工程は極めて簡単であり、制御性も優れて
いる。
Further, according to the process of this embodiment, the thickness of the gate insulating film is formed in such a manner that the change in thickness within a minute gate length is self-aligned with the gate electrode. This process is extremely simple compared to, for example, a method in which a thick gate insulating film is formed, a part of it is selectively etched to form a thinner gate insulating film, and a gate electrode is patterned on this. Controllability is also excellent.

なお本発明は上記実施例に限られるものではない。例え
ば実施例の方法では、ゲート電極形成後にゲート絶縁膜
の一部を横方向エツチングを利用して除去して改めて厚
いゲート絶縁膜を形成した。
Note that the present invention is not limited to the above embodiments. For example, in the method of the embodiment, after forming the gate electrode, a part of the gate insulating film was removed using lateral etching to form a new thick gate insulating film.

この様な方法ではなく、厚いゲート絶縁膜を先に形成し
、ソース、ドレイン拡散層と重なる位置を除くチャネル
領域上の部分をエツチングしてここに薄いゲート絶縁膜
を形成することも、工程は複雑:1こなるが可能である
Instead of this method, it is also possible to first form a thick gate insulating film, and then etch the part above the channel region except for the position overlapping with the source and drain diffusion layers to form a thin gate insulating film there. Complex: 1 step is possible.

その他本発明はその趣旨を逸脱しない範囲で種々変形し
て実施することができる。
In addition, the present invention can be implemented with various modifications without departing from the spirit thereof.

[発明の効果] 以上述べたように本発明によるMOS型半導体装置は、
微細構造に特有の問題であるソース、ドレイン拡散層で
のフレークダウンを効果的に抑制することができる。
[Effects of the Invention] As described above, the MOS semiconductor device according to the present invention has the following effects:
Flakdown in the source and drain diffusion layers, which is a problem specific to microstructures, can be effectively suppressed.

また本発明の方法によれば、その様な微細構造のMOS
型半導体装置を簡単な工程で制御性よく形成することが
できる。
Further, according to the method of the present invention, MOS with such a fine structure
A type semiconductor device can be formed in a simple process with good controllability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) (b)は本発明の一実施例によるMOS
)ランジスタを示す平面図とそのA−A’断面図、 第2図(a)〜(d)はそのMOSトランジスタの製造
工程を示す断面図、 第3図は従来のMOSトランジスタ構造を示す断面図、 第4図は従来のMOS)ランジスタでの微細化によるブ
レークダウンの様子を示す図である。 1・・・p型シリコン基板、2(2,,2□)・・・ゲ
ート絶縁膜、3・・・ゲート電極、4,5・・・n+型
型数散層
FIGS. 1(a) and 1(b) show a MOS according to an embodiment of the present invention.
) A plan view showing a transistor and its AA' cross-sectional view, Figures 2 (a) to (d) are cross-sectional views showing the manufacturing process of the MOS transistor, and Figure 3 is a cross-sectional view showing the conventional MOS transistor structure. , FIG. 4 is a diagram showing the state of breakdown due to miniaturization in a conventional MOS transistor. 1...p-type silicon substrate, 2(2,,2□)...gate insulating film, 3...gate electrode, 4,5...n+ type scattered layer

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上にゲート絶縁膜を介してゲート電極
が形成され、このゲート電極と一部重なる状態でソース
、ドレイン拡散層が形成されたMOS型半導体装置にお
いて、ソース、ドレイン拡散層とゲート電極の重なる領
域のゲート絶縁膜がチャネル領域上のそれより厚く設定
されていることを特徴とするMOS型半導体装置。
(1) In a MOS semiconductor device in which a gate electrode is formed on a semiconductor substrate via a gate insulating film, and source and drain diffusion layers are formed partially overlapping the gate electrode, the source and drain diffusion layers and the gate A MOS type semiconductor device characterized in that a gate insulating film in a region where electrodes overlap is set to be thicker than that on a channel region.
(2)半導体基板上にゲート絶縁膜を介してゲート電極
を形成する工程と、 前記ゲート電極下の絶縁膜をゲート電極端から等方性エ
ッチング法により横方向にエッチングしてゲート電極端
部下の所定範囲に隙間を形成する工程と、 熱酸化を行って前記ゲート電極端部下の隙間に当初のゲ
ート絶縁膜厚より厚いゲート絶縁膜を埋込み形成する工
程と、 前記ゲート電極をマスクとして基板に不純物をドープし
てソース、ドレイン拡散層を形成する工程と、 を備えたことを特徴とするMOS型半導体装置の製造方
法。
(2) Forming a gate electrode on a semiconductor substrate via a gate insulating film, and laterally etching the insulating film under the gate electrode from the end of the gate electrode using an isotropic etching method to form a part under the end of the gate electrode. forming a gap in a predetermined range; performing thermal oxidation to fill the gap under the end of the gate electrode with a gate insulating film thicker than the original gate insulating film thickness; using the gate electrode as a mask, impurities are added to the substrate. 1. A method for manufacturing a MOS type semiconductor device, comprising: forming source and drain diffusion layers by doping.
JP16957589A 1989-06-30 1989-06-30 Mos type semiconductor device and manufacture thereof Pending JPH0334574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16957589A JPH0334574A (en) 1989-06-30 1989-06-30 Mos type semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16957589A JPH0334574A (en) 1989-06-30 1989-06-30 Mos type semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0334574A true JPH0334574A (en) 1991-02-14

Family

ID=15889022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16957589A Pending JPH0334574A (en) 1989-06-30 1989-06-30 Mos type semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0334574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235448A (en) * 2007-03-19 2008-10-02 Oki Electric Ind Co Ltd Manufacturing method for semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235448A (en) * 2007-03-19 2008-10-02 Oki Electric Ind Co Ltd Manufacturing method for semiconductor device

Similar Documents

Publication Publication Date Title
US4845046A (en) Process for producing semiconductor devices by self-alignment technology
JPH11204782A (en) Semiconductor device and manufacture therefor
TWI414023B (en) Method for making a semiconductor device
JPS62126675A (en) Semiconductor device and manufacture thereof
EP0268472B1 (en) Step-cut insulated gate static induction transistors and method of manufacturing the same
JPH0334574A (en) Mos type semiconductor device and manufacture thereof
JPS6298663A (en) Semiconductor integrated circuit device
JPH0298939A (en) Manufacture of semiconductor device
JPH05129335A (en) Manufacture of vertical-type transistor
JPS6237543B2 (en)
JPH02153534A (en) Manufacture of semiconductor device
KR100418517B1 (en) Power mos transistor
JPS63241965A (en) Insulated-gate field-effect transistor and manufacture thereof
JPH0621369A (en) Manufacture of mos integrated circuit
JPH0366166A (en) Semiconductor device
JPH0513758A (en) Mosfet and manufacture thereof
JPH0369137A (en) Manufacture of semiconductor integrated circuit
JPS63114173A (en) Semiconductor device and manufacture thereof
JPH04241465A (en) Manufacture of field effect type semiconductor device
JPS6122476B2 (en)
JPS6370572A (en) Mos field-effect transistor
JPS6246572A (en) Manufacture of semiconductor device
JPS62156874A (en) Mos transistor and manufacture of the same
JPS6353977A (en) Manufacture of semiconductor device
JPS5987872A (en) Insulated gate semiconductor device and manufacture thereof