JPH0330764B2 - - Google Patents

Info

Publication number
JPH0330764B2
JPH0330764B2 JP56140375A JP14037581A JPH0330764B2 JP H0330764 B2 JPH0330764 B2 JP H0330764B2 JP 56140375 A JP56140375 A JP 56140375A JP 14037581 A JP14037581 A JP 14037581A JP H0330764 B2 JPH0330764 B2 JP H0330764B2
Authority
JP
Japan
Prior art keywords
pressure
low
boiler
economizer
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56140375A
Other languages
Japanese (ja)
Other versions
JPS5843305A (en
Inventor
Toshio Ogauchi
Toshihiko Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP56140375A priority Critical patent/JPS5843305A/en
Publication of JPS5843305A publication Critical patent/JPS5843305A/en
Publication of JPH0330764B2 publication Critical patent/JPH0330764B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 この発明は廃ガス流路内に位置し一の給水供給
源より給水を受ける複数のボイラの夫々の節炭器
のスチーミングを防止し、ドラム相互の水位につ
いての干渉を防止する廃熱回収ボイラに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention prevents steaming of the economizers of each of a plurality of boilers located in a waste gas flow path and receiving water from a single water supply source, and prevents water level interference between drums. This invention relates to a waste heat recovery boiler that prevents.

ガスタービン発電により生じた排ガスを始めと
して各種排ガスの熱を回収する方法として排ガス
流中に廃熱ボイラを配置して熱回収を行なうが、
この場合、廃熱回収効率を高めるため複数のボイ
ラ、例えば高圧ボイラと低圧ボイラを併設した混
圧型ボイラを設置することがある。第1図は従来
の混圧ボイラの一例を示す。図において、脱気器
1の貯水は低圧給水ポンプ2により主給水管路1
5を経て低圧節炭器3において昇温した後低圧ド
ラム4に供給される。
A waste heat boiler is placed in the exhaust gas stream to recover heat from various types of exhaust gas, including exhaust gas generated by gas turbine power generation.
In this case, in order to improve waste heat recovery efficiency, a plurality of boilers, such as a mixed pressure boiler that includes a high pressure boiler and a low pressure boiler, may be installed. FIG. 1 shows an example of a conventional mixed pressure boiler. In the figure, the water in the deaerator 1 is stored in the main water supply pipe 1 by a low-pressure water supply pump 2.
5, the temperature is raised in a low-pressure economizer 3, and then supplied to a low-pressure drum 4.

低圧ドラム4内の缶水は降水管5および蒸発器
6を循環し、発生した蒸気はドラム4から低圧蒸
気S1として低圧タービン等所定の機器に送られ
る。一方降水管5を下降した缶水の一部は高圧給
水管路16、高圧給水ポンプ7、高圧節炭器8を
経て高圧ドラム9に至る。高圧ドラム9内の缶水
も低圧ドラム4内の缶水と同様降水管10、蒸発
器11を循環し、発生した蒸気は高圧ドラム9、
過熱器12を経て高圧蒸気S2として高圧タービン
等の機器に供給される。
The canned water in the low-pressure drum 4 circulates through the downcomer pipe 5 and the evaporator 6, and the generated steam is sent from the drum 4 as low-pressure steam S1 to predetermined equipment such as a low-pressure turbine. On the other hand, a portion of the canned water that has descended through the downcomer pipe 5 reaches the high-pressure drum 9 via the high-pressure water supply pipe 16, the high-pressure water supply pump 7, and the high-pressure economizer 8. The canned water in the high-pressure drum 9 is also circulated through the downcomer pipe 10 and the evaporator 11 in the same way as the canned water in the low-pressure drum 4, and the generated steam is circulated through the high-pressure drum 9,
It passes through the superheater 12 and is supplied to equipment such as a high-pressure turbine as high-pressure steam S2 .

この型式のボイラにおいては、低圧節炭器3お
よび高圧節炭器8に供給する給水の流量は主給水
管路15を通過する給水量によつて調節されるこ
とになるため、弁15aを絞つてボイラ負荷低下
に対応して給水流量を減少させると低圧、高圧の
各節炭器3および8においてスチーミングが生じ
る。つまり各ボイラを通過する加熱媒体たる排ガ
ス量は常時ほぼ一定であるため、給水通過量が減
少すると給水の単位体積当りの吸熱量が増大して
スチーミングが生じる。この様な負荷低下時にス
チーミングを防止するためには節炭器内圧力をこ
の節炭器内給水温度に対する飽和圧力以上に保持
しておく必要がある。しかし第1図に示す流量調
節弁15aは低圧節炭器3の入口側に配置してあ
るため低圧節炭器3の圧力調節は不可能であり、
スチーミングの防止はできない。同様に高圧節炭
器8に対する流量調節弁16aも節炭器入口側に
配置してあるので高圧節炭器8内のスチーミング
防止も不可能である。
In this type of boiler, the flow rate of the water supplied to the low-pressure economizer 3 and high-pressure economizer 8 is adjusted by the amount of water that passes through the main water supply pipe 15, so the valve 15a is throttled. When the water supply flow rate is reduced in response to the drop in boiler load, steaming occurs in each of the low-pressure and high-pressure economizers 3 and 8. In other words, since the amount of exhaust gas, which is a heating medium, passing through each boiler is always approximately constant, when the amount of feed water passing through decreases, the amount of heat absorbed per unit volume of feed water increases, causing steaming. In order to prevent steaming during such a load drop, it is necessary to maintain the pressure inside the economizer at a level higher than the saturation pressure with respect to the water supply temperature within the economizer. However, since the flow rate control valve 15a shown in FIG. 1 is placed on the inlet side of the low-pressure economizer 3, it is impossible to adjust the pressure of the low-pressure economizer 3.
Steaming cannot be prevented. Similarly, since the flow control valve 16a for the high-pressure economizer 8 is also arranged on the inlet side of the economizer, it is impossible to prevent steaming inside the high-pressure economizer 8.

また高圧ドラム9と低圧ドラム4は降水管5、
高圧給水ライン16、高圧節炭器16を介して連
通状態となつているため高圧ドラム9のレベル変
動が生じると低圧ドラム4の缶水取り出し量が変
化し低圧ドラム4のレベル変動となつて現れる。
すなわち両ドラムに相互干渉が発生して両ドラム
のレベルを一定に保持することが非常に困難とな
る。このため低圧ドラム4をバイパスして管路1
7を設けることもあるが、この場合には低圧節炭
器内でスチーミングが生じると気液混合物が高圧
給水ポンプ7に直接流入するため同ポンプ7のキ
ヤビテーシヨンという問題も発生する。
In addition, the high pressure drum 9 and the low pressure drum 4 are connected to the downcomer pipe 5,
Since the high-pressure water supply line 16 and the high-pressure energy saver 16 are connected to each other, if the level of the high-pressure drum 9 fluctuates, the amount of canned water taken out of the low-pressure drum 4 will change, resulting in a level fluctuation of the low-pressure drum 4. .
In other words, mutual interference occurs between both drums, making it extremely difficult to maintain the level of both drums at a constant level. Therefore, the low pressure drum 4 is bypassed and the pipe line 1
7 may be provided, but in this case, if steaming occurs in the low pressure economizer, the gas-liquid mixture will flow directly into the high pressure water supply pump 7, causing the problem of cavitation of the pump 7.

このような現象は、高圧ボイラと低圧ボイラの
組に限るものでなく、同圧のボイラであつても生
ずる。
Such a phenomenon occurs not only in a combination of a high pressure boiler and a low pressure boiler, but also in boilers having the same pressure.

この発明の目的は上述した従来技術の問題点を
除去し、廃ガス流路内に位置する複数のボイラの
組において各節炭器のスチーミングをボイラ負荷
に係りなく常時防止することができ、かつ各ボイ
ラドラムの相互干渉も生じない廃熱回収ボイラを
提供することにある。
An object of the present invention is to eliminate the problems of the prior art described above, and to constantly prevent steaming of each economizer in a set of multiple boilers located in a waste gas flow path, regardless of the boiler load. Another object of the present invention is to provide a waste heat recovery boiler in which mutual interference between boiler drums does not occur.

要するにこの発明は、廃ガス流路に高圧ボイラ
と低圧ボイラを設けた廃熱回収ボイラ装置におい
て、低圧ボイラへの給水は低圧給水ポンプ低圧節
炭器、第1の流量調節弁、低圧ボイラドラムを接
続する管路により行い、高圧ボイラ装置への給水
は前記低圧節炭器と前記第1の流量調節弁とを接
続する低圧節炭器出口管路より分岐する高圧給水
ポンプを有する高圧給水管路によりすることを特
徴とする廃熱回収ボイラ装置である。
In short, this invention provides a waste heat recovery boiler device in which a high-pressure boiler and a low-pressure boiler are installed in a waste gas flow path, and the water supply to the low-pressure boiler is performed using a low-pressure water supply pump, a low-pressure economizer, a first flow rate control valve, and a low-pressure boiler drum. A high-pressure water supply pipe having a high-pressure water supply pump that branches from a low-pressure economizer outlet pipe that connects the low-pressure economizer and the first flow rate control valve to supply water to the high-pressure boiler device through a connecting pipe. This is a waste heat recovery boiler device characterized by:

また、高圧節炭器出口と高圧ドラムとを接続す
る管路に流量調整弁をもうけ、負荷減時に高圧節
炭器でのスチーミングを防止するものである。
Additionally, a flow rate regulating valve is provided in the pipeline connecting the high-pressure economizer outlet and the high-pressure drum to prevent steaming in the high-pressure economizer when the load is reduced.

また別に、低圧節炭器出口管路より分岐し高圧
節炭器に給水する管路より更に分岐し、低圧給水
ポンプ入口側に給水を循環させるので、低圧節炭
器で昇温した給水の熱エネルギーの損失をしない
ようにし、かつ低圧節炭器の給水流量を大にする
管路を設け低圧給水ポンプの入口側に循環供給す
る管路を設けるものである。
Separately, the pipe that branches from the outlet pipe of the low-pressure economizer and further branches from the pipe that supplies water to the high-pressure economizer and circulates the water to the inlet of the low-pressure water pump, so the heat of the water that has been heated by the low-pressure economizer is A pipe line is provided to prevent energy loss and increase the flow rate of water supplied to the low-pressure energy saver, and a pipe line is provided on the inlet side of the low-pressure water supply pump to circulate and supply the water.

以下この発明の一実施例をを廃ガス流路に位置
する高圧ボイラと低圧ボイラの組につき図面によ
り説明する。
An embodiment of the present invention will be described below with reference to the drawings, with reference to a set of a high pressure boiler and a low pressure boiler located in a waste gas flow path.

第2図において、18は給水再循環管路であり
低圧節炭器3と低圧ドラム4を接続する管路(以
下「低圧節炭器出口管路」と称する)19と脱気
器1とを接続する。20はこの低圧節炭器出口管
路19の給水再循環管路分岐部下流側に設けた流
量調節弁である。21は循環量を調節する流量調
節弁であつて、高圧給水管路16はこの流量調節
弁21の上流側において給水再循環管路18に接
続している。
In FIG. 2, reference numeral 18 denotes a feed water recirculation line, which connects the low-pressure economizer 3 and the low-pressure drum 4 to a line 19 (hereinafter referred to as "low-pressure economizer outlet line") and the deaerator 1. Connecting. Reference numeral 20 denotes a flow rate control valve provided on the downstream side of the feedwater recirculation line branch of the low-pressure economizer outlet line 19. Reference numeral 21 denotes a flow rate control valve for adjusting the amount of circulation, and the high-pressure water supply pipe 16 is connected to the water supply recirculation line 18 on the upstream side of this flow rate control valve 21.

一方高圧ボイラ側においても、高圧節炭器8と
高圧ドラムとは高圧節炭器出口管路23が配置し
てあり、この管路23に対して流量調整弁22が
設けてある。
On the other hand, on the high-pressure boiler side as well, a high-pressure economizer outlet pipe line 23 is arranged between the high-pressure economizer 8 and the high-pressure drum, and a flow rate regulating valve 22 is provided for this pipe line 23.

以上のボイラにおいて、脱気器1の貯水は低圧
給水ポンプ2、主給水管路15を経て低圧節炭器
3に流入し、節炭器3を出た給水はボイラ負荷に
対応して弁20を調節することにより低圧節炭器
出口管路19を経て所定量がボイラドラム4に供
給される。この流量調節弁20はドラム4に対す
る給水の供給量を調節する外、後述の如く高圧給
水管路16に給水が吸引されることによる節炭器
内の圧力の変動を弁21と共に調整し、低圧節炭
器内でのスチーミングを防止する。すなわち低圧
節炭器内の圧力を調節すると共に節炭器内の給水
水通過量を調節することによりスチーミングを防
止する。
In the boiler described above, the water stored in the deaerator 1 flows into the low-pressure economizer 3 via the low-pressure water supply pump 2 and the main water supply pipe 15. By adjusting the amount, a predetermined amount is supplied to the boiler drum 4 via the low pressure economizer outlet line 19. In addition to adjusting the amount of water supplied to the drum 4, this flow rate control valve 20 also adjusts the pressure fluctuations in the economizer due to water being sucked into the high-pressure water supply pipe 16, as will be described later. Prevent steaming inside the economizer. That is, steaming is prevented by adjusting the pressure within the low-pressure economizer and the amount of feed water passing through the economizer.

低圧ドラム4に至つた給水は降水管5、蒸発器
6を循環し、発生した蒸気は低圧ドラム4を経て
低圧蒸気S1として低圧タービンに供給される。
The feed water that has reached the low-pressure drum 4 circulates through the downcomer pipe 5 and the evaporator 6, and the generated steam passes through the low-pressure drum 4 and is supplied to the low-pressure turbine as low-pressure steam S1 .

一方高圧給水管路16に至つた給水は高圧給水
ポンプ7において昇圧された後、高圧節炭器8に
至る。高圧ドラム9に対する給水供給量の調節は
高圧節炭器出口管23に設けた流量調整節弁22
を調節することにより行なうため高圧節炭器内で
のスチーミングは防止できる。すなわち弁22を
絞ると高圧節炭器8に対する給水通過量が減少
し、給水温度は上昇することになるが、弁22が
節炭器出口に配置してあるため節炭器内圧力も上
昇し、節炭器内の給水温度に対する飽和圧力以上
の圧力を保持すことになる。つまり高圧給水ポン
プ7の吐出圧力を適切に調節しておけば、弁22
により給水流量を調節すると共に、高圧節炭器内
圧力を常時飽和圧力以上に保持しておくことがで
きる。
On the other hand, the water supply that has reached the high-pressure water supply pipe 16 is pressurized by the high-pressure water supply pump 7 and then reaches the high-pressure economizer 8 . The amount of water supplied to the high-pressure drum 9 is adjusted using a flow rate adjustment valve 22 provided on the high-pressure economizer outlet pipe 23.
Steaming inside the high-pressure economizer can be prevented because this is done by adjusting the In other words, when the valve 22 is throttled down, the amount of water that passes through the high-pressure economizer 8 decreases, and the temperature of the water supply increases, but since the valve 22 is located at the outlet of the economizer, the pressure inside the economizer also increases. , the pressure will be maintained above the saturation pressure for the feed water temperature in the economizer. In other words, if the discharge pressure of the high-pressure water supply pump 7 is properly adjusted, the valve 22
This allows the water supply flow rate to be adjusted and the pressure within the high-pressure economizer to be maintained above the saturation pressure at all times.

以上の如くスチーミングを防止しつつ高圧ドラ
ム9に至つた給水は降水管10、蒸発器11を循
環流動し、発生した蒸気は高圧ドラム9、過熱器
12を経て高圧蒸気S2として高圧タービンに供給
される。
As described above, the supplied water that reaches the high-pressure drum 9 while preventing steaming circulates through the downcomer pipe 10 and the evaporator 11, and the generated steam passes through the high-pressure drum 9 and superheater 12 and is sent to the high-pressure turbine as high-pressure steam S2. Supplied.

第3図は前記の実施例におけるボイラの節炭器
出口圧力と、従来の節炭器出口圧力との関係を示
す線図である。
FIG. 3 is a diagram showing the relationship between the boiler economizer outlet pressure in the above embodiment and the conventional economizer outlet pressure.

図においてP1は高圧ボイラにおける各ボイラ
負荷に対応する節炭器スチーミング防止のため最
低圧力を示し、これ以下の圧力となると高圧節炭
器内でスチーミングを生じる。P2は同様に低圧
ボイラにおけるスチーミング防止のための最低圧
力を示す。
In the figure, P1 indicates the minimum pressure to prevent steaming in the economizer corresponding to each boiler load in the high-pressure boiler, and if the pressure is lower than this, steaming will occur in the high-pressure economizer. P 2 likewise indicates the minimum pressure for steaming prevention in low-pressure boilers.

先ず高圧ボイラにおいて、従来は給水調節弁が
節炭器入口側に配置してあるため、ボイラ負荷の
低下に対応して弁を絞ると節炭器内圧力が低下し
スチーミングが生じ易くなる。P3は従来方法に
よるボイラ負荷と節炭器内圧力との関係を示す
が、この図からも明らかなとおり、負荷が約75%
以下となるとスチーミングを生ずる。同様に低圧
ボイラにおいても線図P4に示す如く負荷約70%
でスチーミングが生じる。
First, in a high-pressure boiler, the water supply control valve has conventionally been placed on the inlet side of the economizer, so when the valve is throttled in response to a drop in the boiler load, the pressure inside the economizer decreases, making steaming more likely to occur. P 3 shows the relationship between the boiler load and the pressure inside the economizer using the conventional method, and as is clear from this figure, the load is approximately 75%.
Steaming will occur if the temperature is below. Similarly, in a low pressure boiler, the load is approximately 70% as shown in diagram P4.
steaming occurs.

次にP5はこの発明に係るボイラの高圧給水ポ
ンプの吐出圧力を示すが、ボイラ負荷の低下と共
に高圧節炭器出口側の流量調節弁を絞り込むので
吐出圧力は上昇する。P5は各ボイラ負荷に対応
する高圧節炭器出口圧力を示すが、図示の如く線
図P6と同様の線図となり、かつ系統損失分だけ
各ボイラ負荷における圧力が低下している。いづ
れにしても高圧節炭器出口圧力P6は前述の線図
P1よりも全ボイラ負荷範囲にわたつて常時高い
ので高圧節炭器内スチーミングは生じないことが
わかる。
Next, P 5 indicates the discharge pressure of the high-pressure water feed pump of the boiler according to the present invention, and as the boiler load decreases, the flow rate control valve on the high-pressure economizer outlet side is throttled, so the discharge pressure increases. P5 shows the high-pressure economizer outlet pressure corresponding to each boiler load, and as shown in the diagram, the diagram is similar to diagram P6 , and the pressure at each boiler load is reduced by the system loss. In any case, the high pressure economizer outlet pressure P 6 is as shown in the above diagram.
It can be seen that steaming in the high-pressure economizer does not occur because it is always higher than P 1 over the entire boiler load range.

次にP7は低圧給水ポンプ吐出圧力、P8は低圧
節炭器出口圧力を示し、この場合も線図P8は全
ボイラ負荷範囲にわたつてP2よりも高圧を保持
するためスチーミングの心配はない。なお、低圧
ボイラにおいては高圧ボイラの場合に比較してボ
イラ負荷が低下した場合の節炭器出口圧力の上昇
率が少ないが、これは低圧節炭器3を通過した給
水の一部管路18をバイパスしたり、高圧給水管
路16に流入するためである。このため低圧節炭
器3にはボイラ負荷と関係なく常時十分な給水通
過量が確保され、給水温度は比較的低く押えられ
るので、現実にはP2は図示の場合よりも各ボイ
ラ負荷において低くなり、各ボイラ負荷における
P8とP2の差圧は図示の場合よりも大きくなる。
Next, P 7 shows the low-pressure feedwater pump discharge pressure, P 8 shows the low-pressure economizer outlet pressure, and in this case too, the diagram P 8 shows the steaming pressure in order to maintain a higher pressure than P 2 over the entire boiler load range. No worries. Note that in a low-pressure boiler, the rate of increase in the outlet pressure of the economizer when the boiler load decreases is smaller than in the case of a high-pressure boiler; This is to bypass the water or flow into the high-pressure water supply pipe 16. Therefore, a sufficient amount of feed water is always ensured through the low-pressure economizer 3 regardless of the boiler load, and the feed water temperature is kept relatively low, so in reality, P 2 is lower at each boiler load than in the case shown in the figure. and at each boiler load
The differential pressure between P 8 and P 2 will be greater than in the illustrated case.

第1の発明では、第1の流量調節弁の抵抗によ
り低圧節炭器内の圧力を増加させることができ、
低負荷に於いて低圧給水ポンプの性能にもとずく
ポンプの吐き出し圧力の増加とあいまつてスチー
ミング防止の効果をあげることができる。また同
時にその増大した圧力の給水を高圧給水ポンプが
うけるので、高圧給水ポンプの動力が少なくて済
むということになる。
In the first invention, the pressure in the low pressure economizer can be increased by the resistance of the first flow rate control valve,
Combined with an increase in the discharge pressure of the pump based on the performance of the low-pressure water supply pump at low loads, the effect of preventing steaming can be achieved. At the same time, the high-pressure water supply pump receives water at the increased pressure, so the power of the high-pressure water pump can be reduced.

第2の発明では、高圧節炭器と高圧ボイラのド
ラムとの間に第2の流量調節弁を設けているの
で、低負荷時に高圧節炭器内の圧力を高めること
ができ、高圧節炭器でのスチーミングの防止の効
果を挙げることができる。
In the second invention, since the second flow control valve is provided between the high-pressure economizer and the drum of the high-pressure boiler, the pressure inside the high-pressure economizer can be increased during low load, and the high-pressure economizer can increase the pressure in the high-pressure economizer. The effect of preventing steaming in the container can be mentioned.

第3の発明では、前記第1の発明と第2の発明
の相乗した効果を挙げることができる。第4の発
明では、低温節炭器出口管路から分岐する高圧給
水ポンプへの管路から更に分岐する管路を設け給
水の一部を低圧給水ポンプの入口側に再循環させ
ており、低温節炭器で昇温した給水の保有熱量の
回収ができ、熱効率を向上させることができ、か
つ低温節炭器を通過する給水量の増大ができ、ス
チーミング防止の効果をさらに大とすることがで
きる。またその再循環管路には第3の流量調節弁
が設けられており、給水量調節により低圧、高圧
の両節炭器のスチーミング防止をより効果的に行
うことができる。
In the third invention, a synergistic effect of the first invention and the second invention can be obtained. In the fourth invention, a pipe line is further branched from the pipe line to the high-pressure water supply pump that branches from the outlet pipe of the low-temperature economizer, and a part of the water supply is recirculated to the inlet side of the low-pressure water pump. It is possible to recover the retained heat of the water that has been heated by the economizer, improve thermal efficiency, and increase the amount of water that passes through the low-temperature economizer, further increasing the effect of preventing steaming. Can be done. Further, the recirculation pipe line is provided with a third flow rate regulating valve, and steaming of both the low pressure and high pressure economizers can be more effectively prevented by regulating the amount of water supplied.

この発明を実施することにより、給水流量調節
弁を各節炭器の出口側に配置したので給水の流量
を調節すると共に節炭器内圧力の調節も可能とな
り、全ボイラ負荷範囲にわたつて節炭器内圧力を
節炭器給水温度に対する飽和圧力以上に保持する
ことができ、スチーミングの虞れがない。
By implementing this invention, since the feed water flow rate control valve is placed on the outlet side of each economizer, it is possible to adjust the flow rate of the feed water and also adjust the pressure inside the economizer, resulting in savings over the entire boiler load range. The pressure inside the coal boiler can be maintained above the saturation pressure with respect to the water supply temperature of the economizer, and there is no risk of steaming.

また一のボイラのドラム水位が他のボイラのド
ラム水位の影響を受けぬように設けたので従来の
廃ガス流路に設けた二つのボイラにおけるような
ドラム間の相互干渉を生じることもない。
Furthermore, since the drum water level of one boiler is not influenced by the drum water level of the other boiler, mutual interference between the drums does not occur as in the case of two boilers installed in a conventional waste gas flow path.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の混圧型熱回収ボイラの系統図、
第2図はこの発明の一実施例にかゝる廃熱回収ボ
イラの系統図、第3図は節炭器出口圧力とボイラ
負荷との関係を示す線図である。 2……低圧給水ポンプ、3……低圧節炭器、4
……低圧ドラム、7……高圧給水ポンプ、8……
高圧節炭器、9……高圧ドラム、16……高圧給
水管路、18……給水再循環管路、19……低圧
節炭器出口管路、20,22……流量調節弁、2
3……高圧節炭器出口管路。
Figure 1 is a system diagram of a conventional mixed pressure heat recovery boiler.
FIG. 2 is a system diagram of a waste heat recovery boiler according to an embodiment of the present invention, and FIG. 3 is a diagram showing the relationship between economizer outlet pressure and boiler load. 2...Low pressure water supply pump, 3...Low pressure energy saver, 4
...Low pressure drum, 7...High pressure water supply pump, 8...
High pressure economizer, 9... High pressure drum, 16... High pressure water supply pipe, 18... Water supply recirculation pipe, 19... Low pressure economizer outlet pipe, 20, 22... Flow rate adjustment valve, 2
3...High-pressure economizer outlet pipe.

Claims (1)

【特許請求の範囲】 1 廃ガス流路に高圧ボイラと低圧ボイラを設け
た廃熱回収ボイラ装置において、低圧ボイラへの
給水は低圧給水ポンプ、低圧節炭器、第1の流量
調節弁、低圧ボイラドラムを接続する管路により
行い、高圧ボイラ装置への給水は前記低圧節炭器
と前記第1の流量調節弁とを接続する低圧節炭器
出口管路より分岐する高圧給水ポンプを有する高
圧給水管路によりすることを特徴とする廃熱回収
ボイラ装置。 2 廃ガス流路に高圧ボイラと低圧ボイラを設け
た廃熱回収ボイラ装置において、低圧ボイラへの
給水は低圧給水ポンプ、低圧節炭器、第1の流量
調節弁、低圧ボイラドラムを接続する管路により
行い、高圧ボイラ装置への給水は前記低圧節炭器
と前記第1の流量調節弁とを接続する低圧節炭器
出口管路より分岐する管路により高圧節炭器、第
2の流量調節弁を経由し高圧ボイラドラムに供給
することを特徴とする廃熱回収ボイラ装置。 3 廃ガス流路に高圧ボイラと低圧ボイラを設け
た廃熱回収ボイラ装置において、低圧ボイラへの
給水は低圧給水ポンプ、低圧節炭器、第1の流量
調節弁、低圧ボイラドラムを接続する管路により
行ない、高圧ボイラ装置への給水は、前記低圧節
炭器と前記第1の流量調節弁とを接続する低圧節
炭器出口管路より分岐する高圧給水ポンプ付き管
路により行ない、さらに高圧節炭器、第2の流量
調整弁を経由して高圧ボイラドラムに供給するこ
とを特徴とする廃熱回収ボイラ装置。 4 廃ガス流路に高圧ボイラと低圧ボイラを設け
た廃熱回収ボイラ装置において、低圧ボイラへの
給水は低圧給水ポンプ、低圧節炭器、第1の流量
調節弁、低圧ボイラドラムを接続する管路により
行ない、高圧ボイラ装置への給水は前記低圧節炭
器と前記第1の流量調節弁とを接続する低圧節炭
器出口管路より分岐する高圧給水ポンプ付き管路
より行ない、前記低圧節炭器出口管路より分岐し
前記高圧給水ポンプと接続する管路より更に分岐
し、前記低圧給水ポンプ入口側に給水を循環する
管路に第3の流量調節弁を設けたことを特徴とす
る廃熱回収ボイラ装置。
[Claims] 1. In a waste heat recovery boiler device in which a high-pressure boiler and a low-pressure boiler are provided in a waste gas flow path, water is supplied to the low-pressure boiler by a low-pressure water supply pump, a low-pressure energy saver, a first flow control valve, and a low-pressure boiler. Water is supplied to the high-pressure boiler device through a pipe line connecting the boiler drum, and water is supplied to the high-pressure boiler device by a high-pressure water supply pump that branches from the low-pressure economizer outlet pipe connecting the low-pressure economizer and the first flow rate control valve. A waste heat recovery boiler device characterized by being operated by a water supply pipe. 2 In a waste heat recovery boiler device that has a high pressure boiler and a low pressure boiler installed in the waste gas flow path, water is supplied to the low pressure boiler through a pipe connecting the low pressure water supply pump, low pressure economizer, first flow rate control valve, and low pressure boiler drum. Water is supplied to the high-pressure boiler device through a pipe line branching from the low-pressure economizer outlet pipe connecting the low-pressure economizer and the first flow rate control valve. A waste heat recovery boiler device characterized by supplying heat to a high pressure boiler drum via a control valve. 3 In a waste heat recovery boiler system that has a high pressure boiler and a low pressure boiler installed in the waste gas flow path, water is supplied to the low pressure boiler through a pipe connecting the low pressure water supply pump, low pressure economizer, first flow rate control valve, and low pressure boiler drum. Water is supplied to the high-pressure boiler device through a pipe line equipped with a high-pressure water supply pump that branches from the low-pressure economizer outlet pipe line that connects the low-pressure economizer and the first flow rate control valve. A waste heat recovery boiler device characterized in that the waste heat is supplied to a high pressure boiler drum via a energy saver and a second flow rate regulating valve. 4 In a waste heat recovery boiler system that has a high-pressure boiler and a low-pressure boiler installed in the waste gas flow path, water is supplied to the low-pressure boiler through a pipe connecting the low-pressure water supply pump, low-pressure economizer, first flow rate control valve, and low-pressure boiler drum. The water supply to the high pressure boiler device is carried out through a conduit equipped with a high pressure water supply pump that branches from the low pressure economizer outlet conduit connecting the low pressure economizer and the first flow rate control valve. A third flow rate regulating valve is provided in a pipe that branches from the charcoal machine outlet pipe, further branches from a pipe that connects to the high-pressure water supply pump, and circulates water supply to the inlet side of the low-pressure water supply pump. Waste heat recovery boiler equipment.
JP56140375A 1981-09-08 1981-09-08 Mixed pressure type waste heat recovery boiler device Granted JPS5843305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56140375A JPS5843305A (en) 1981-09-08 1981-09-08 Mixed pressure type waste heat recovery boiler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56140375A JPS5843305A (en) 1981-09-08 1981-09-08 Mixed pressure type waste heat recovery boiler device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP237694A Division JPH06257701A (en) 1994-01-14 1994-01-14 Method for operating waste heat recovery boiler

Publications (2)

Publication Number Publication Date
JPS5843305A JPS5843305A (en) 1983-03-14
JPH0330764B2 true JPH0330764B2 (en) 1991-05-01

Family

ID=15267356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56140375A Granted JPS5843305A (en) 1981-09-08 1981-09-08 Mixed pressure type waste heat recovery boiler device

Country Status (1)

Country Link
JP (1) JPS5843305A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164901A (en) * 1981-11-30 1983-09-29 株式会社東芝 Exhaust-heat recovery heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PROCEEDINGS OF THE AMERICAN POWER CONFERENCE=1973US *

Also Published As

Publication number Publication date
JPS5843305A (en) 1983-03-14

Similar Documents

Publication Publication Date Title
US5762031A (en) Vertical drum-type boiler with enhanced circulation
US4745757A (en) Combined heat recovery and make-up water heating system
JP3452927B2 (en) Method and apparatus for operating a water / steam cycle of a thermal power plant
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
JP3140539B2 (en) Waste heat recovery boiler and method of supplying de-heated water
JPH0330764B2 (en)
JPH10292902A (en) Main steam temperature controller
JPH05240402A (en) Method of operating waste heat recovery boiler
JPH0330762B2 (en)
JP3222035B2 (en) Double pressure type waste heat recovery boiler feeder
JPH06257701A (en) Method for operating waste heat recovery boiler
JPH0330763B2 (en)
JPH07217802A (en) Waste heat recovery boiler
JPH05322105A (en) Device for heating feedwater for boiler
JPH0658161B2 (en) Waste heat recovery boiler
JPH0227282Y2 (en)
JPH0330761B2 (en)
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JPS5888501A (en) Waste-heat recovery boiler device
JPH055501A (en) Controlling method of waste heat recovery boiler of sintering machine
JPS59110811A (en) Steam turbine plant
JPS59150203A (en) Waste-heat recovery steam generator
JPH07122485B2 (en) Steamer steam prevention device for once-through thermal power generation boiler system
JPH10176804A (en) Vertical waste heat recovery boiler and operating method thereof
JPS6138302A (en) Waste-heat recovery device