JPS58164901A - Exhaust-heat recovery heat exchanger - Google Patents

Exhaust-heat recovery heat exchanger

Info

Publication number
JPS58164901A
JPS58164901A JP19055381A JP19055381A JPS58164901A JP S58164901 A JPS58164901 A JP S58164901A JP 19055381 A JP19055381 A JP 19055381A JP 19055381 A JP19055381 A JP 19055381A JP S58164901 A JPS58164901 A JP S58164901A
Authority
JP
Japan
Prior art keywords
economizer
heat
exhaust
water supply
steam drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19055381A
Other languages
Japanese (ja)
Inventor
板垣 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP19055381A priority Critical patent/JPS58164901A/en
Publication of JPS58164901A publication Critical patent/JPS58164901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はコンバインドサイクル′発電プラントなどに使
用される特番ニブラントの高効率化および高欅動率化を
促進するm熱回収熱交換装置じ関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat recovery heat exchange device that promotes higher efficiency and higher perturbation rate in special-number nibrants used in combined cycle power plants and the like.

コンバインドサイクルとは、ガスタービンと蒸気タービ
ンを組み合せること(二よってプラント効率を高めた発
電システムであり、その中の代N的なコンバインドサイ
クルは、排熱目収形と叶ばれるサイクルである。排熱凹
収形コンバインドサイクル発電ブラシトの主戦な構成要
素でaる排熱回収熱交換番は、ガスタービンの島温排気
(二よって水を加熱し、蒸気を発生させる臓交換器であ
る。
A combined cycle is a power generation system that increases plant efficiency by combining a gas turbine and a steam turbine (2), and among these, the N-type combined cycle is a cycle that achieves exhaust heat recovery. The exhaust heat recovery heat exchanger, which is the main component of the exhaust heat concave combined cycle power generation system, is an internal exchanger that heats water using the gas turbine's island hot exhaust (2) to generate steam.

第1図に一般的なコンノくインドティク1発電プラント
を示している0同図弧二おいて、発電プラントはガスタ
ービン1および蒸気タービン2とこれらから駆動゛され
る発電機3の組み合せからなる。
Figure 1 shows a typical power generation plant. In Figure 1, the power plant consists of a combination of a gas turbine 1, a steam turbine 2, and a generator 3 driven by them. .

ガスタービン1の仕事を終えた排気ガスの温度は、普通
約500℃〜600℃の高温であり、これをこのまま排
ガスとして捨てるのは非常に不経済である。
The temperature of the exhaust gas after the work of the gas turbine 1 is normally high, about 500° C. to 600° C., and it is extremely uneconomical to discard this as it is as exhaust gas.

そこでガスタービン1の高温排気を排熱回収熱交換器4
0送って蒸気タービン2の復水盤5から送られてくる復
水と熱交換を行なう。
Therefore, the high temperature exhaust gas of the gas turbine 1 is transferred to the exhaust heat recovery heat exchanger 4.
0 and exchanges heat with condensate sent from the condensate disk 5 of the steam turbine 2.

排熱回収熱交換器4には、多数の伝熱管6からなる蒸発
器7とエコノマイザ8を配設している。
The exhaust heat recovery heat exchanger 4 is provided with an evaporator 7 consisting of a large number of heat transfer tubes 6 and an economizer 8.

蒸発器7の伝熱t6の一端は、ポンプ9を介して蒸気ド
ラムIOの底部+:連通し、その他端は蒸気ドラムlO
の上部蒸気室C二連通されている。またエコノマイザ8
の伝熱管6の一端は蒸気ドラムlOの底部附近に連通し
、その他端は給水管111ユより給水制御弁I2および
給水ポンプ13を介して復水器5N二連通している。な
お蒸気ドラムlOの蒸気は、蒸気管14で導かれて蒸気
タービン2に送られる。
One end of the heat transfer t6 of the evaporator 7 communicates with the bottom of the steam drum IO via the pump 9, and the other end communicates with the bottom of the steam drum IO.
The two upper steam chambers C are in communication. Also economizer 8
One end of the heat transfer tube 6 communicates with the vicinity of the bottom of the steam drum IO, and the other end communicates with the condenser 5N through a water supply pipe 111 and a water supply control valve I2 and a water supply pump 13. Note that the steam in the steam drum IO is guided through a steam pipe 14 and sent to the steam turbine 2.

さてこのように構成した排熱回収形コンバインドサイク
ル発電プラントにおいて、このプラントの起動は、給水
制御弁12を全戸1ユし、ガスタービンlを起動するの
が一般的である。ガスタービン1の起動5二よって排熱
(ロ)収態交換器4 t′−は、ガスタービン1の高温
の排ガスが矢示のよう1′−流れと。
In the exhaust heat recovery type combined cycle power generation plant configured as described above, the plant is generally started by closing all the water supply control valves 12 and starting the gas turbine 1. When the gas turbine 1 is started 52, the high temperature exhaust gas of the gas turbine 1 flows into the waste heat collecting exchanger 4t' as shown by the arrow.

む。このとき排熱lil!l収熱交換器4のエコノマイ
ザ8の伝熱管6(二は、給水制御弁12が全閉状態にな
っているため流れていない。そこへガスタービン1から
高温の排ガスが流れると、エコノマイザ8の伝熱管6内
の給水は、高温の排ガスと熱交換して給水の蒸発が起り
、伝熱管6の内圧力が上昇する。そして伝熱管6で発生
して蒸気は、給水との比重の違いからエコノマイザ8の
伝熱t6の上方−たまる。このとき蒸気ドラムlOがエ
コノマイザ8の伝熱管6の下方位置1二ある関係から、
給水は蒸気ドラムlOへ押し出され、エコノマイザ8の
伝熱管6内に給水が無くなって過熱状態になる。
nothing. At this time, the exhaust heat is lil! l The heat exchanger tube 6 (2) of the economizer 8 of the heat absorption exchanger 4 is not flowing because the feed water control valve 12 is in a fully closed state. When high temperature exhaust gas flows there from the gas turbine 1, the The feed water in the heat transfer tubes 6 exchanges heat with the high-temperature exhaust gas, causing evaporation of the feed water and increasing the internal pressure of the heat transfer tubes 6.Then, the steam generated in the heat transfer tubes 6 is generated due to the difference in specific gravity from the feed water. The heat is accumulated above the heat transfer t6 of the economizer 8. At this time, since the steam drum IO is located at a position 12 below the heat transfer tube 6 of the economizer 8,
The feed water is pushed out to the steam drum IO, and there is no feed water in the heat exchanger tubes 6 of the economizer 8, resulting in an overheated state.

′ こ\で給水制御弁12が開らくと、低温の給水が勢
いよくエコノマイザ8の伝熱t6に二流入し、伝熱管6
を高速に流れてそのUベンド部に衝突して大きな衝撃を
与え、最悪の場合F′i伝熱管6を損傷したり給水が漏
□楓する事故につ々がることがある。
' When the water supply control valve 12 is opened, the low-temperature water supply flows into the heat transfer tube t6 of the economizer 8, and the heat transfer tube 6
The water flows at high speed and collides with the U-bend, giving a large impact. In the worst case, the F'i heat exchanger tube 6 may be damaged or the water supply may leak or cause an accident.

□ また給水制御弁仕・が開いて給水が流れても、その給水
は伝熱管6Hの空間を満たすことに使われ、直ちに蒸気
ドラムlOのレベル4四反訳されず、給水制御弁12と
蒸気ドラムlOのレベルtの制御との絡みでハンチング
を起して起動時の蒸気ドラムlOの制御不良の原因とな
っていた。
□ Also, even if the water supply control valve 12 is opened and water flows, the water is used to fill the space in the heat transfer tube 6H, and is not immediately transferred to level 4 of the steam drum 10, but instead flows between the water supply control valve 12 and the steam drum. Hunting occurs due to the control of the lO level t, causing poor control of the steam drum lO at startup.

本発明の目的は、ガスタービンの起動に際し、エコノマ
イザの伝熱管を給水無しで過熱することを防ぎ、蒸気ド
ラムのレベル制御不良が発生しないように構成し、高信
頼性の排熱回収熱交換装置を提供するにある。
An object of the present invention is to prevent the economizer heat exchanger tubes from overheating without water supply when starting a gas turbine, and to prevent malfunctions in level control of the steam drum from occurring, thereby providing a highly reliable waste heat recovery heat exchange system. is to provide.

本発明は以上の目的を達成するため、高温の排ガスが導
かれる交換器と、この交換器内に配設された多数の伝熱
管からなるエコノマイザおよび蒸発器と、このエコノマ
イザで排ガスと熱交換して加熱された給水が導かれかつ
この給水を蒸発器で排ガスと熱交換してできた蒸気を再
び回収する蒸気ドラムとをA偏し、前記エコノマイザと
蒸気ドラムとの間の給水w1ニエロノマイプの伝熱管内
の異常圧力によって生じる蒸気ドラムへの給水の流れを
抑制する抵抗部を設けたことを特徴とする排熱回収熟交
換器装fItJ二関するものである〇以下本発明を第2
図および第3図に示す一実施例1:ついて説明する。第
2図および第3図の第1図と同一符号は同一部分を示す
ものであるからその説明を省略する。本発明1ユおいて
はエコノマイザ8の伝熱管6の蒸気ドラム10の底部附
近に接続される途中(−1伝熱t6の内部の異常圧力で
生じる蒸気ドラムlOへの給水の流れを抑制する抵抗部
15を設けたものである0図面に示す実施例では、抵抗
部15を蒸気ドラムlOとエコノマイザ8の伝熱管6と
を接続する給水管16の中途6二逆U字形のループ管■
5を設けた実施例をあけている。このループ管15 F
i、エコノマイザ8へ給水を導く給水管11の高さ6二
対して同等またはそれ以上の高さに立ち上げ、エコノマ
イザ8の伝熱管6の給水1:水頭Hを与える構造にして
いる。
In order to achieve the above objects, the present invention includes an exchanger through which high-temperature exhaust gas is introduced, an economizer and an evaporator comprising a large number of heat transfer tubes disposed in the exchanger, and an economizer that exchanges heat with the exhaust gas. The steam drum, into which the heated feed water is introduced and the steam produced by exchanging heat with the exhaust gas in the evaporator and then recovered again, is biased A, and the transmission of the feed water w1 nieronomyp between the economizer and the steam drum is This invention relates to an exhaust heat recovery mature exchanger system fItJ, characterized in that it is provided with a resistance part that suppresses the flow of water supplied to the steam drum caused by abnormal pressure in the heat pipe.
Embodiment 1 shown in FIG. 1 and FIG. 3 will be described. Since the same reference numerals in FIGS. 2 and 3 as in FIG. 1 indicate the same parts, the explanation thereof will be omitted. In the first unit of the present invention, the heat transfer tube 6 of the economizer 8 is connected to the bottom of the steam drum 10 (-1) due to the abnormal pressure inside the heat transfer t6. In the embodiment shown in drawing 0 in which the resistor part 15 is provided, the resistor part 15 is connected to the water supply pipe 16 which connects the steam drum lO and the heat exchanger tube 6 of the economizer 8.
5 is shown in the example. This loop tube 15F
i. The water supply pipe 11 that leads the water supply to the economizer 8 is raised to a height equal to or higher than the height 62, and the structure is such that the water supply 1:water head of the heat exchanger tube 6 of the economizer 8 is given.

つぎシ二本発明区二よる排熱回収熱交換装置の作動につ
いて説明する。いま第2図1=示す発電プラントの起動
時8二は、給水制御弁12が全閉状態であるので、エコ
ノマイザ8の伝熱管6に給水が流れこまない。しかしガ
スタービン1の起wJによって高温の排ガスが交換器4
+二流入し、エコノマイザ8の伝熱管60内部にある給
水と熱交換し、その伝熱t6の給水が蒸発して内部圧力
が急上昇する。
Next, the operation of the exhaust heat recovery heat exchange device according to the second aspect of the present invention will be explained. At the start-up time 82 of the power generation plant shown in FIG. 2, the feed water control valve 12 is in a fully closed state, so no feed water flows into the heat transfer tubes 6 of the economizer 8. However, due to the startup of the gas turbine 1, high temperature exhaust gas is transferred to the exchanger 4.
+2 flows in and exchanges heat with the feed water inside the heat transfer tube 60 of the economizer 8, and the feed water of the heat transfer t6 evaporates and the internal pressure rises rapidly.

このとき蒸気は、給水との比重の違いから伝熱管6の上
方(二たまるが、その内部1−ある給水を蒸気ドラム1
0に押し出すため口は、伝熱管6の内圧力がループ1i
15で与えられる水頭Hより高い圧力Cユならなけれは
ならない。
At this time, due to the difference in specific gravity between the steam and the feed water, the steam is drawn above the heat transfer tube 6 (although it accumulates in two places, inside the tube 1).
In order to push it out to 0, the internal pressure of the heat transfer tube 6 is
The pressure C must be higher than the head H given by 15.

伝熱管6の内圧力がループ管15で与えられる水頭Hと
同等の圧力に上昇するまでI:は時間遅れがある。この
時間遅れの間C二給水匍」御弁12が開かれ、給水をエ
コノマイザ8の伝熱管60流すこと番ユなる。したがっ
て伝熱管6の内部の給水が無くなることはなく、その過
熱および過熱状態の伝熱管65二低温の給水が流れこむ
こと5二よる伝熱管のUベンド部口対する衝撃を有効I
ニー和することができ喋 る。またエコノマイザ8の伝)熱管6内の給水が無くな
る前C供給水制御弁12が−くため、エコノマイザ8に
供給される給水は、 ”’i”ちC二iドラ410のレ
ベル4に反訣し、起動時−二おける蒸気ドラムlOのレ
ベル制御が支障をきたすことはない。第4図(二示す他
の実施例ではループ管15が大きく迂回したループ伏シ
ニ形成されたもので、第3図の場合と同様の作用効果を
奏することは勿論である。
There is a time delay until the internal pressure of the heat exchanger tube 6 rises to a pressure equivalent to the water head H given by the loop tube 15. During this time delay, the C2 water supply control valve 12 is opened, allowing the supply water to flow through the heat exchanger tubes 60 of the economizer 8. Therefore, the water supply inside the heat exchanger tube 6 does not run out, and the impact on the U-bend portion of the heat exchanger tube 65 due to the overheated and overheated heat exchanger tube 65 and the low-temperature supply water flowing into the heat exchanger tube 65 is effective.
Can speak and kneel. In addition, since the C supply water control valve 12 closes before the supply water in the heat pipe 6 of the economizer 8 runs out, the supply water supplied to the economizer 8 is ``'i'', which is the level 4 of the C2i driver 410. However, the level control of the steam drum 10 during startup is not affected. In the other embodiment shown in FIG. 4 (2), the loop tube 15 is formed in a loop with a large detour, and it goes without saying that the same effect as in the case of FIG. 3 can be obtained.

なお、図面(二示す実施例では、抵抗部15をループ管
を使用することによって実現しているが、例えはエコノ
マイザ8の伝熱管6と蒸気ドラムとの間の給水管16の
途中1ニオリフスを作り、通常の状態では抵抗を少なく
シ、エコノマイザ8の伝熱管6の内部に異常圧力が生じ
たとき、その異常圧力で伝熱管6内の給水が蒸気ドラム
lOへ急速に流れる給水に対して抵抗が大きくなり、そ
の流れを抑制するようC二設計することも可能である。
In the embodiment shown in Figure 2, the resistance section 15 is realized by using a loop pipe, but for example, one nitrogen rift may be installed in the middle of the water supply pipe 16 between the heat exchanger tube 6 of the economizer 8 and the steam drum. Under normal conditions, the resistance is low, but when abnormal pressure occurs inside the heat transfer tubes 6 of the economizer 8, the feed water in the heat transfer tubes 6 rapidly flows to the steam drum IO due to the abnormal pressure. It is also possible to design C2 so that the flow becomes large and the flow is suppressed.

但しオリフスの場合は、エコノマイザ8の伝熱管6の圧
力が正常なとき(二給水の流れ5二対する抵抗は少なく
なるよう設計、する必Iiある。
However, in the case of an orifice, it is necessary to design it so that when the pressure in the heat exchanger tube 6 of the economizer 8 is normal (2) the resistance to the flow of water 52 is small.

以上のようt; ’2F発明6二よれば、エコノマイザ
の伝熱管と蒸気(°1.i、ラムとの間の給水管の途中
に、伝熱管内の異常圧力によって生じた蒸気ドラムへの
給水の流を抑制する抵抗部を設けたこと6二より、伝熱
管内の給水が無くなった状態で過熱するようなことがな
くなり、蒸気ドラムのレベル制御不良を起すことなく、
信頼性の高い排熱回収熱交換装置を得ることができる。
As described above, according to the '2F invention 62, water supply to the steam drum caused by abnormal pressure in the heat exchanger tubes occurs in the middle of the water supply pipe between the heat exchanger tubes of the economizer and the steam (°1.i, ram). By providing a resistance part that suppresses the flow of water, there is no possibility of overheating when there is no water supply in the heat exchanger tubes, and there is no possibility of poor level control of the steam drum.
A highly reliable exhaust heat recovery heat exchange device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の排熱回収熱交換器を有するコンバインド
サイクル発電プラントを示す系統図、第2図は本発明響
二よる排熱(ロ)収態交換装置を採用した=ンバインド
サイクルを示す系統図、第3図は本発明≦二よる排熱回
収熱交換装置の一実施例な示す構造図である。 l・・・ガスタービン  2・・・蒸気タービン3・・
・発電機     4・・・排熱回収熱交換器5・・・
復水巷     6・・・伝熱管7・・・蒸発巷   
  8・・・エコノマイザ9・・・ポンプ     l
O・・・蒸気ドラム11.16・・・給水管   12
・・・給水制御弁13・・・給水ポンプ   15・・
・抵抗部(ループ管)H・・・水頭      4・・
・水面レベル(ト〜 斃       ト\ Oご       ト 笥  ′−o  ト   寸 手続補正1方式) 1.事件の表示 特願昭56−190553号 2、発明の名称 排熱回収熱交換装置 3、補正をする省 事件との関係  特許出願人 (307)東京芝浦電気株式会社 4、代理人 〒105 東京都港区虎ノ門1丁目9番10号 港電設ピル5、補
正命令の日付 昭和58年4月26日(発送日) 6、補正の対象         、。 1、図面の簡単な説明の欄 − ど「である」との間に[第4図は本発明の他の実施例を
示す構造図」の記載を挿入する。 以上 □・、、′・ 11・
Fig. 1 is a system diagram showing a combined cycle power generation plant having a conventional waste heat recovery heat exchanger, and Fig. 2 shows an unbound cycle employing the waste heat (b) convergence exchange device according to the present invention by Hibiki. System diagram, FIG. 3 is a structural diagram showing one embodiment of the exhaust heat recovery heat exchange device according to the present invention≦2. l...Gas turbine 2...Steam turbine 3...
- Generator 4...Exhaust heat recovery heat exchanger 5...
Condensate width 6...Heat transfer tube 7...Evaporation width
8...Economizer 9...Pump l
O...Steam drum 11.16...Water supply pipe 12
...Water supply control valve 13...Water supply pump 15...
・Resistance part (loop pipe) H... Water head 4...
・Water surface level (To~ 斃 ト\OGo ト笥'-o ト Size procedure correction method 1) 1. Display of the case Japanese Patent Application No. 56-190553 2 Name of the invention Waste heat recovery heat exchange device 3 Relationship with the amended ministry case Patent applicant (307) Tokyo Shibaura Electric Co., Ltd. 4 Agent Address: 105 Tokyo 1-9-10 Toranomon, Minato-ku Minato-ku Densei Pill 5, Date of amendment order: April 26, 1982 (shipment date) 6. Subject of amendment. 1. Column for a brief explanation of the drawings - Insert the statement [Fig. 4 is a structural diagram showing another embodiment of the present invention] between the words "is" and "is". That's all □・,,′・ 11・

Claims (1)

【特許請求の範囲】 (1)高温の排ガスが導かれる排熱回収熱交換器と、こ
の交換巷内に配設された多数の伝熱管から゛なるエコノ
マイザおよび蒸発器と、このエコノマイザで排ガスと熱
交換して加熱された給水が導かれかつこの給水を蒸発器
で排ガスと熱交換してできた蒸気を再び回収する蒸気ド
ラムとを具備し、wii記エコノマイザと蒸気ドラムと
の間の給水管にエコノマイザの伝熱管内の異常圧力によ
って生じた蒸気ドラムへの給水の流れを抑制する抵抗部
を設けたことを特徴とする排熱回収熱交換装置(2)抵
抗部はエコノマイザ6二導く給水管と同等まfcはそれ
以上の高さまで立ちよけたループ管で形成したことを特
徴とする特軒−求の範囲第1項記載の排熱回収熱交換装
置 (8)抵抗部はエコノマイザと蒸気ドラムとの間の給水
管の途中籠二設けたオリフィスで形成し泥ことを特徴と
する特許梢求の範囲第1項記載の排熱回収熱交換装置′
[Scope of Claims] (1) An exhaust heat recovery heat exchanger to which high-temperature exhaust gas is introduced, an economizer and an evaporator consisting of a large number of heat transfer tubes arranged in this exchange path, and an economizer and an evaporator to which exhaust gas is introduced. A water supply pipe between the economizer and the steam drum, comprising a steam drum through which feed water heated by heat exchange is guided and from which the steam produced by heat exchange with exhaust gas in an evaporator is recovered, and An exhaust heat recovery heat exchange device characterized in that a resistance part is provided to suppress the flow of water to the steam drum caused by abnormal pressure in the heat transfer tube of the economizer (2) The resistance part is connected to the water supply pipe leading to the economizer 6. The exhaust heat recovery heat exchange device (8) described in item 1 of the scope of the request, characterized in that the fc is formed by a loop pipe set aside to a height higher than that, and the resistance part is an economizer and a steam drum. The exhaust heat recovery heat exchange device according to item 1 of the claimed scope of the patent, characterized in that the orifice is formed by an orifice provided in the middle of a water supply pipe between the
JP19055381A 1981-11-30 1981-11-30 Exhaust-heat recovery heat exchanger Pending JPS58164901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19055381A JPS58164901A (en) 1981-11-30 1981-11-30 Exhaust-heat recovery heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19055381A JPS58164901A (en) 1981-11-30 1981-11-30 Exhaust-heat recovery heat exchanger

Publications (1)

Publication Number Publication Date
JPS58164901A true JPS58164901A (en) 1983-09-29

Family

ID=16259985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19055381A Pending JPS58164901A (en) 1981-11-30 1981-11-30 Exhaust-heat recovery heat exchanger

Country Status (1)

Country Link
JP (1) JPS58164901A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184801A (en) * 1981-05-07 1982-11-13 Babcock Hitachi Kk Recovering boiler for waste heat from turbine
JPS5843305A (en) * 1981-09-08 1983-03-14 バブコツク日立株式会社 Mixed pressure type waste heat recovery boiler device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184801A (en) * 1981-05-07 1982-11-13 Babcock Hitachi Kk Recovering boiler for waste heat from turbine
JPS5843305A (en) * 1981-09-08 1983-03-14 バブコツク日立株式会社 Mixed pressure type waste heat recovery boiler device

Similar Documents

Publication Publication Date Title
US4164849A (en) Method and apparatus for thermal power generation
US20070017207A1 (en) Combined Cycle Power Plant
JPH0339166B2 (en)
US4961311A (en) Deaerator heat exchanger for combined cycle power plant
CA2019748C (en) Combined gas and steam turbine plant with coal gasification
US6052997A (en) Reheat cycle for a sub-ambient turbine system
CN214198738U (en) Flue gas waste heat recovery system of coal-fired power plant
JPS597862A (en) Absorption type heat pump system
JPS58164901A (en) Exhaust-heat recovery heat exchanger
JPH0933004A (en) Waste heat recovery boiler
JP3147322B2 (en) Absorption chiller / heater
US1961788A (en) Two fluid power plant
JPH09170405A (en) Pressurized fluidized bed compound power generation facility
JPH0555787B2 (en)
JPH06294305A (en) Exhaust heat recovery boiler
JP2908085B2 (en) Waste heat recovery boiler
JPS6212805Y2 (en)
JPH01150763A (en) Waste heat recovery chilling unit
JPS5829424Y2 (en) absorption cold water machine
JPS6232384B2 (en)
JPS5867A (en) Multiple-effect absorption type cold and hot water machine
JPS6257831B2 (en)
JPS6014082Y2 (en) Exhaust gas heat recovery device
JPH06221115A (en) Heat recovery type power generation device
JPS6280458A (en) Absorption type heat pump