JPS5843305A - Mixed pressure type waste heat recovery boiler device - Google Patents

Mixed pressure type waste heat recovery boiler device

Info

Publication number
JPS5843305A
JPS5843305A JP56140375A JP14037581A JPS5843305A JP S5843305 A JPS5843305 A JP S5843305A JP 56140375 A JP56140375 A JP 56140375A JP 14037581 A JP14037581 A JP 14037581A JP S5843305 A JPS5843305 A JP S5843305A
Authority
JP
Japan
Prior art keywords
pressure
low
economizer
boiler
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56140375A
Other languages
Japanese (ja)
Other versions
JPH0330764B2 (en
Inventor
小河内 俊雄
敏彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP56140375A priority Critical patent/JPS5843305A/en
Publication of JPS5843305A publication Critical patent/JPS5843305A/en
Publication of JPH0330764B2 publication Critical patent/JPH0330764B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は低圧、高圧の各節炭器のスチーミングを防止
し、かつ併せて低圧、高圧ボイラドラムの相互干渉を防
止する混圧型廃熱回収ボイラに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mixed-pressure waste heat recovery boiler that prevents steaming of low-pressure and high-pressure economizers and also prevents mutual interference between low-pressure and high-pressure boiler drums.

ガスタービン発電により生じた排ガスを始めとして各種
排ガスの熱を回収する方法として排ガス流中に廃熱ボイ
ラを配置して熱回収を行なうが、この場合、廃熱回収効
率を高めるため高圧ボイラと低圧ボイラを併設した混圧
型ボイラを設置することがある。第1図は従来の混圧ボ
イラの一例を示す。図において、脱気器lの貯水は低圧
給水ポンプ2により主給水管路15を経て低圧節炭器3
において昇温した後低圧ドラム4に供給される。
A waste heat boiler is placed in the exhaust gas stream to recover heat from various types of exhaust gas, including the exhaust gas generated by gas turbine power generation.In this case, a high pressure boiler and a low pressure A mixed pressure boiler with an attached boiler may be installed. FIG. 1 shows an example of a conventional mixed pressure boiler. In the figure, the water stored in the deaerator l is pumped through a main water supply pipe 15 by a low-pressure water pump 2 to a low-pressure energy saver 3.
After being heated at , it is supplied to the low pressure drum 4.

低圧ドラム4内の缶水は降水管5および蒸発器6を循環
し、発生した蒸気はドラム4から低圧蒸気へとして低圧
タービン等所定の機器に送られる。一方陣水管5を下降
した缶水の一部は高圧給水管路16.高圧給水ポンプ7
、高圧節炭器8を経て高圧ドラム9に至る。高圧ドラム
9内の缶水も低圧ドラム4内の缶水と同様降水管10、
蒸発器11を循環し、発生した蒸気は高圧ドラム9.過
熱器12を経て高圧蒸気S2として高圧タービン等の機
器に供給される。
The canned water in the low-pressure drum 4 circulates through the downcomer pipe 5 and the evaporator 6, and the generated steam is sent from the drum 4 to predetermined equipment such as a low-pressure turbine as low-pressure steam. On the other hand, a portion of the canned water that has descended through the water pipe 5 is transferred to the high pressure water supply pipe 16. High pressure water pump 7
, and reaches the high-pressure drum 9 via the high-pressure economizer 8. The canned water in the high-pressure drum 9 is the same as the canned water in the low-pressure drum 4.
The generated steam circulates through the evaporator 11 and is sent to the high pressure drum 9. It passes through the superheater 12 and is supplied to equipment such as a high-pressure turbine as high-pressure steam S2.

この型式のボイラにおいては、低圧節炭器3および高圧
節炭器8に供給する給水の流量は主給水管路15を通過
する給水量によって調節されることになるため、弁15
aを絞ってボイラ負荷低下に対応して給水流量を減少さ
せると低圧。
In this type of boiler, the flow rate of the water supplied to the low-pressure economizer 3 and the high-pressure economizer 8 is adjusted by the amount of water that passes through the main water supply pipe 15, so the valve 15
If a is throttled and the water supply flow rate is reduced in response to the drop in boiler load, the pressure will be low.

高圧あ各節炭器3およδ8においてスチーミン□ グが生じる。つまり各ポ・、イラを通過する加熱媒に7
.=6 #y X iitw晶−1−一あ、−1お水通
過量が減少すると給水の単位体積当りの吸熱量が増大し
てスチーミングが生じる。この様な負荷低下時にスチー
ミングを防止するためには節炭器内圧力をこの節倹器内
給水温度に対する飽和圧力以上に保持しておく必要があ
る。しかし第1図に示す流量調節弁15aは低圧節炭器
3の入口側に配置しであるため低圧節炭器3の圧力調節
は不可能であり、スチーミングの防止はできない。同様
に高圧節炭器8に対する流量調節弁16aも節炭器入口
側に配置しであるので高圧節炭器8内のスチーミング防
止も不可能である。
Steaming occurs in each high pressure economizer 3 and δ8. In other words, the heating medium passing through each hole is
.. =6 #y In order to prevent steaming during such a load drop, it is necessary to maintain the pressure inside the economizer at a level higher than the saturation pressure with respect to the water supply temperature within the economizer. However, since the flow control valve 15a shown in FIG. 1 is disposed on the inlet side of the low-pressure economizer 3, it is impossible to adjust the pressure of the low-pressure economizer 3, and steaming cannot be prevented. Similarly, since the flow control valve 16a for the high-pressure economizer 8 is also arranged on the inlet side of the economizer, it is impossible to prevent steaming inside the high-pressure economizer 8.

また高圧ドラム9と低圧ドラム4は降水管5゜高圧給水
ライン16.高圧節炭器16を介して連通状態となって
いるため高圧ドラム9のレベル変動が生じると低圧ドラ
ム4の缶木取り出し量が変化し低圧ドラム4のレベル変
動となって現れる。すなわち両ドラムに相互干渉が発生
して両ドラムのレベルを;ニ一定に保持することが非常
に困難となる。この疑め低圧ドラム4をバイパスして管
路17を設けることもあるが、この場合には低圧節炭器
内でスチーミングが生じると気液混合物が高圧給水ポン
プ7に直接流入するため同ポンプ7のキャビテーション
という問題も発生する。
Also, the high pressure drum 9 and the low pressure drum 4 are connected to a downcomer pipe 5° and a high pressure water supply line 16. Since they are in a communicating state via the high-pressure economizer 16, when the level of the high-pressure drum 9 fluctuates, the amount of canned wood taken out of the low-pressure drum 4 changes, resulting in a level fluctuation of the low-pressure drum 4. In other words, mutual interference occurs between both drums, making it extremely difficult to maintain the levels of both drums at a constant level. If this is suspected, the low pressure drum 4 may be bypassed and a pipe line 17 may be provided, but in this case, if steaming occurs in the low pressure economizer, the gas-liquid mixture will flow directly into the high pressure water supply pump 7, so the pump 7 cavitation problem also occurs.

この発明の目的は上述した従来技術の問題点を除去し、
低圧、高圧の各節炭器のスチーミングをボイラ負荷に係
りなく常時防止することができ、かつ低圧、高圧の各ボ
イラドラムの相互干渉も生じない混圧型廃熱回収ボイラ
を提供することにある。
The purpose of this invention is to eliminate the problems of the prior art mentioned above,
To provide a mixed-pressure waste heat recovery boiler that can always prevent steaming of low-pressure and high-pressure economizers regardless of the boiler load and that does not cause mutual interference between low-pressure and high-pressure boiler drums. .

要するにこの発明は高圧、低圧節炭器内圧、低圧の各ド
ラムを接続する管路に流量調節弁を配置して各ドラムに
対する給水流量を調節すると共に節炭器内圧力を調節し
、かつ高圧給水管路を低圧ボイラ降水管を経由せずに設
置す6、:よ1.よ、各、2五よす、給え。供給や独立
してドラムの相互干渉を防止するよう構成したものであ
る。
In short, this invention arranges a flow rate control valve in the pipeline connecting the high-pressure, low-pressure economizer internal pressure, and low-pressure drums to adjust the flow rate of water supplied to each drum, as well as the internal pressure of the economizer, and to adjust the high-pressure water supply. Installing the pipeline without going through the low-pressure boiler downcomer pipe 6: 1. Give each of you 25 yosu. It is constructed to prevent mutual interference between the drums during supply and independently.

以下この発明の実施例を図面により説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図において、18は給水再循環管路であり低圧節炭
器3と低圧ドラム4を接続する管路(以下「低圧節炭器
出口管路」と称、する)19と脱気器1とを接続する。
In FIG. 2, reference numeral 18 denotes a feed water recirculation pipe, which connects the low-pressure economizer 3 and the low-pressure drum 4 to a pipe (hereinafter referred to as "low-pressure economizer outlet pipe") 19 and the deaerator 1. Connect with.

20はこの低圧節炭器出口管路19の給水再循環管路分
岐部下流側に設けた流量調節弁である。21は循環量を
調節する流量調節弁であって、高圧給水管路16はこの
流量調節弁21の上流側において給水再循環管路18に
接一方高圧ボイラ側においても、高圧節炭器8と高圧ド
ラムとは高圧節炭器出口管路23が配置してあり、この
管路23に対して流量調節弁22が設けである。
Reference numeral 20 denotes a flow rate control valve provided on the downstream side of the feedwater recirculation line branch of the low-pressure economizer outlet line 19. Reference numeral 21 denotes a flow control valve for adjusting the circulation amount, and the high-pressure water supply pipe 16 is connected to the feed water recirculation pipe 18 on the upstream side of the flow control valve 21, and is connected to the high-pressure energy saver 8 on the high-pressure boiler side as well. A high-pressure economizer outlet conduit 23 is disposed in the high-pressure drum, and a flow rate control valve 22 is provided for this conduit 23.

以上のボイラにおいて、脱気器1の貯水は低圧給水ポン
プ2.主給水管路15を経て低圧節倹  。
In the above boiler, the water stored in the deaerator 1 is stored in the low pressure feed water pump 2. Low pressure is saved through the main water supply pipe 15.

器3に流入し、節炭器3を出た給水はボイラ負荷に対応
して弁20を調節することにより低圧節炭器出口管路1
9を経て所定量がボイラドラム4に供給される。この流
量調節弁20はドラム4に対する給水の供給量を調節す
る外、後述の如く高圧給水管路16に給水が吸引される
ことによる節炭器内の圧力の一部を弁21と共に調整し
、低圧節炭器内でのスチーミングを防止する。すなわち
低圧節炭器内の圧力を調節すると共に節炭器内の給水通
過量を調節することによりスチーミングを防止する。
The feed water flowing into the boiler 3 and exiting the economizer 3 is transferred to the low pressure economizer outlet pipe 1 by adjusting the valve 20 according to the boiler load.
9, a predetermined amount is supplied to the boiler drum 4. In addition to adjusting the amount of water supplied to the drum 4, this flow rate regulating valve 20 also adjusts a part of the pressure inside the economizer due to water being sucked into the high-pressure water supply pipe 16, as will be described later, together with the valve 21. Prevents steaming in low pressure economizers. That is, steaming is prevented by adjusting the pressure within the low-pressure economizer and the amount of water that passes through the economizer.

低圧ドラム4に至った給水は降水管5.蒸発器6を循環
し、発生した蒸気は低圧ドラム4を経て低圧蒸気S工と
して低圧タービンに供給される〇 一方高圧給水管路16に至った給水は高圧給水ポンプ7
において昇圧された後、高圧節炭器8に至る。高圧ドラ
ム9に対する給水供給量の調節は高圧節炭器出口管路2
3に設けた流量調節弁22を調節することにより行なう
ため高圧節炭器内でのスチーミングは防止できる。すな
わち弁22を絞ると高圧節炭器8に対する給水通過量が
減少し、給水温度は上昇することになるが、弁22が節
炭器出口に配置□しであるため節炭器内圧力も上昇し、
節炭器、^1′、鰺給水温度に対する飽和圧力以上の圧
力を保持することになる。つまり高圧給水ポンプ7の吐
出圧力を適切に調節しておけば、弁22により給水流量
を調節すると共に、高圧節炭器内圧力を常時飽和圧力以
上に保持しておくことができる。
The water supply reaching the low pressure drum 4 is fed to the downcomer pipe 5. The generated steam circulates through the evaporator 6 and is supplied to the low-pressure turbine as low-pressure steam S through the low-pressure drum 4. On the other hand, the water that has reached the high-pressure water supply pipe 16 is supplied to the high-pressure water supply pump 7.
After being pressurized at , it reaches the high-pressure economizer 8 . The amount of water supplied to the high-pressure drum 9 is adjusted by the high-pressure economizer outlet pipe 2.
Since this is done by adjusting the flow rate control valve 22 provided at 3, steaming within the high pressure economizer can be prevented. In other words, when the valve 22 is throttled, the amount of water that passes through the high-pressure economizer 8 decreases, and the temperature of the water supply increases, but since the valve 22 is located at the outlet of the economizer, the pressure inside the economizer also increases. death,
The economizer, ^1', maintains a pressure higher than the saturation pressure for the horse mackerel feed water temperature. In other words, if the discharge pressure of the high-pressure water supply pump 7 is appropriately adjusted, the water supply flow rate can be adjusted by the valve 22, and the internal pressure of the high-pressure economizer can be maintained at a level higher than the saturation pressure at all times.

以上の如くスチーミングを防止しつつ高圧ドラム9に至
った給水は降水管10.蒸発器11を循環流動し、発生
した蒸気は高圧ドラム9.過熱器12を経て高圧蒸気S
2として高圧タービンに供給される。
As described above, the water that has reached the high-pressure drum 9 is supplied to the downcomer pipe 10 while preventing steaming. The generated steam is circulated through the evaporator 11 and sent to the high pressure drum 9. High pressure steam S passes through superheater 12
2 to the high pressure turbine.

第3図はこの発明に係るボイラの節炭器出口圧力と、従
来の節炭器出口圧力との関係を示す線図である。
FIG. 3 is a diagram showing the relationship between the outlet pressure of the economizer of the boiler according to the present invention and the outlet pressure of the conventional economizer.

図においてP工は高圧ボイラにおける各ボイラ負荷に対
応する節炭器スチーミング防止のため最低圧力を示し、
これ以下の圧力となると高圧節炭器内でスチーミングを
生じる。P2は同様に低圧ボイラに柘けるスチーミング
防止めだめの最低圧力を示す。5・ 先ず高圧ボイラ;4いて、従来は給水調節弁が節炭器入
口側に配置しであるため、ボイラ負荷の低下に対応して
弁を絞ると節炭器内圧力が低下しスチーミングが生じ易
くなる。P3は従来方法によるボイラ負荷と節炭器内圧
力との関係を示すが、この図からも明ら、かなとおり、
負荷が約75%以下となるとスチーミングを生ずゑ。
In the figure, P works indicates the minimum pressure to prevent steaming of the economizer corresponding to each boiler load in the high pressure boiler.
If the pressure is lower than this, steaming will occur within the high-pressure economizer. P2 likewise indicates the minimum pressure of the steaming prevention reservoir in the low pressure boiler. 5. First, the high-pressure boiler; conventionally, the water supply control valve was placed on the inlet side of the economizer, so when the valve was throttled in response to a drop in the boiler load, the pressure inside the economizer decreased and steaming occurred. It becomes more likely to occur. P3 shows the relationship between the boiler load and the pressure inside the economizer according to the conventional method, and as is clear from this figure,
Steaming occurs when the load is less than about 75%.

同様に低圧ボイラにおいても線図P4に示す如く負荷約
70%でスチーミングが生じる。
Similarly, in a low pressure boiler, steaming occurs at about 70% load as shown in diagram P4.

次にPはこの発明に係るボイラの高圧給水ポンプの吐出
圧力を示すが、ボイラ負荷の低下と共に高圧節炭器出口
側の流量調節弁を絞り込むので吐出圧力は上昇する。P
6は各ボイラ負荷に対応する高圧節炭器出口圧力を示す
が、図示の如く線図P6と同様の線図となり、かつ系統
損失分だけ各ボイラ負荷における圧力が低下している。
Next, P indicates the discharge pressure of the high-pressure feed water pump of the boiler according to the present invention, and as the boiler load decreases, the flow rate control valve on the high-pressure economizer outlet side is throttled, so the discharge pressure increases. P
6 shows the high-pressure economizer outlet pressure corresponding to each boiler load, and as shown in the figure, the diagram is similar to diagram P6, and the pressure at each boiler load is reduced by the system loss.

ル・づれ5しても高圧節炭器出口圧力P6は前常時高い
ので高圧節炭器内スチーミングは生じ次に は低圧給水
ポンプ吐出圧力、P8は低圧7 節炭器出口圧力を示し、この場合も線図P8は全ボイラ
負荷範囲にわたってP2よりも高圧を保持するためスチ
ーミングの心配はない。なお、低圧ボイラにおいては高
圧ボイラの場合に比較してボイラ負荷が低下した場合の
節炭器出口圧力の上昇率が少ないが、これは低圧節炭器
3を通過した給水の一部が管路18をバイノぐスしたり
、高圧給水管路16に流入するためである。このため低
圧節炭器3にはボイラ、負荷と関係なく常時十分な給水
通過量が確保され、給水温度は比較的低く押えられるの
で、現実には隻は図示の場合よりも各ボイラ負荷におい
て低くなり、各ボイラ負荷におけるP8とちの差圧は図
示の場合よりも大きくなる。
Even if the high-pressure economizer outlet pressure P6 is always high, steaming occurs in the high-pressure economizer.Next, P8 indicates the low-pressure water pump discharge pressure, and P8 indicates the low pressure 7 economizer outlet pressure. In this case, there is no worry of steaming because the pressure in the diagram P8 is maintained higher than that in P2 over the entire boiler load range. In addition, in a low-pressure boiler, the rate of increase in the outlet pressure of the economizer when the boiler load decreases is smaller than in the case of a high-pressure boiler, but this is because part of the feed water that has passed through the low-pressure economizer 3 is 18 or to flow into the high-pressure water supply pipe 16. For this reason, a sufficient amount of feed water is always ensured through the low-pressure economizer 3 regardless of the boiler and load, and the feed water temperature is kept relatively low.In reality, the ship will be lower at each boiler load than in the case shown in the figure. Therefore, the differential pressure between P8 and each boiler load becomes larger than in the illustrated case.

この発明を実施することにより、給水流量調節弁を各節
炭器の出口側に配置したので給水の流量を調節すると共
に節炭器内圧力の調節も可能となり、全ボイラ負荷範囲
にわたって節炭器内圧力を節炭器給水温度に対する飽和
圧力以上に保持することができ、スチーミングの虞れが
ない。
By carrying out this invention, the feed water flow rate control valve is placed on the outlet side of each economizer, so it is possible to adjust the flow rate of the feed water and also adjust the pressure inside the economizer. The internal pressure can be maintained above the saturation pressure with respect to the water supply temperature of the economizer, and there is no risk of steaming.

また高圧給水供給系統を低圧ドラムをバイパスして設置
したので高圧ドラムと低圧ドラムの相f互干渉を生じる
こともない。
Furthermore, since the high-pressure water supply system is installed to bypass the low-pressure drum, there is no possibility of mutual interference between the high-pressure drum and the low-pressure drum.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の混圧型廃熱回収ボイラの系統図、第2図
はこの発明に係る混圧型廃熱回収ボイラの系統図、第3
図は節炭器出口圧力とボイラ負荷との関係を示す線図で
ある。 2・・・・・・低圧給水ポンプ 3・・・・・・低圧節炭器 4・・・・・・低圧ドラム 7・・・・・・高圧給水ポンプ 8・・・・・・高圧節炭器 9・・・・・・高圧ドラム 16・・・・・・高圧給水管路 18・・・・・・給水再循環管路 19・・・・・・低圧節炭器出口管路 20、22・・・・・・流量調節弁 23・・・・・・高圧節炭器′亀旧管路代理人弁理士 
岡 1)梧部
Figure 1 is a system diagram of a conventional mixed pressure type waste heat recovery boiler, Figure 2 is a system diagram of a mixed pressure type waste heat recovery boiler according to the present invention, and Figure 3 is a system diagram of a conventional mixed pressure type waste heat recovery boiler.
The figure is a diagram showing the relationship between economizer outlet pressure and boiler load. 2...Low pressure water pump 3...Low pressure energy saver 4...Low pressure drum 7...High pressure water pump 8...High pressure energy saver Container 9... High pressure drum 16... High pressure water supply pipe 18... Water supply recirculation pipe 19... Low pressure economizer outlet pipes 20, 22 ...Flow rate control valve 23 ...High pressure energy saver 'Kame former pipeline agent patent attorney
Oka 1) Gobe

Claims (1)

【特許請求の範囲】 1、 低圧節炭器および高圧節炭器の給水入口側にそれ
ぞれ給水ポンプを設置したものにおいて、低圧節炭器と
低圧ドラム、とを低圧節炭器出口管路で、高圧節炭器と
高圧ドラムとを高圧節炭器出口管路で接続し、かつ低圧
節炭器出口管路および高圧節炭器出口管路に各々流量−
節介を配置し、これら各流量調節弁により高圧、低圧の
各ドラムに対する給水供給量を調節しドラム水位レベル
を保持すると共に、高圧、低圧の各節炭器内圧力を全ボ
イラ負荷範囲において節炭器内圧力−の温度に対する飽
和圧力以上に保持することを特徴とする混圧型廃熱回収
ボイラ装置。 2、低圧節炭器出口管路の流量調節弁設置部上流側と脱
気器とを給水再循環管路で接続し、かつこの給水再循環
管路に対して高圧節炭器に給水を供給する高圧給水管路
を接続し高圧ボイラ、低圧ボイラを独立運転可能に形成
したことを特徴とする特許請求の範囲第1項記載の混圧
型廃熱回収ボイラ装置。
[Claims] 1. In a system in which a water supply pump is installed on the water supply inlet side of a low-pressure economizer and a high-pressure economizer, the low-pressure economizer and the low-pressure drum are connected by the low-pressure economizer outlet pipe, The high-pressure economizer and the high-pressure drum are connected by a high-pressure economizer outlet pipe, and the low-pressure economizer outlet pipe and the high-pressure economizer outlet pipe have a flow rate of -
Arrangements are made to maintain the drum water level by adjusting the amount of water supplied to each high-pressure and low-pressure drum using these flow control valves, and also to reduce the pressure inside each high-pressure and low-pressure economizer over the entire boiler load range. A mixed pressure type waste heat recovery boiler device characterized in that the internal pressure of the coal boiler is maintained at a temperature higher than the saturation pressure. 2. Connect the upstream side of the flow control valve installation part of the low-pressure economizer outlet conduit and the deaerator with a feed water recirculation conduit, and supply water to the high-pressure economizer through this feed water recirculation conduit. 2. The mixed pressure waste heat recovery boiler device according to claim 1, wherein the high pressure boiler and the low pressure boiler are connected to each other to enable independent operation of the high pressure boiler and the low pressure boiler.
JP56140375A 1981-09-08 1981-09-08 Mixed pressure type waste heat recovery boiler device Granted JPS5843305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56140375A JPS5843305A (en) 1981-09-08 1981-09-08 Mixed pressure type waste heat recovery boiler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56140375A JPS5843305A (en) 1981-09-08 1981-09-08 Mixed pressure type waste heat recovery boiler device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP237694A Division JPH06257701A (en) 1994-01-14 1994-01-14 Method for operating waste heat recovery boiler

Publications (2)

Publication Number Publication Date
JPS5843305A true JPS5843305A (en) 1983-03-14
JPH0330764B2 JPH0330764B2 (en) 1991-05-01

Family

ID=15267356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56140375A Granted JPS5843305A (en) 1981-09-08 1981-09-08 Mixed pressure type waste heat recovery boiler device

Country Status (1)

Country Link
JP (1) JPS5843305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164901A (en) * 1981-11-30 1983-09-29 株式会社東芝 Exhaust-heat recovery heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PROCEEDINGS OF THE AMERICAN POWER CONFERENCE=1973US *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164901A (en) * 1981-11-30 1983-09-29 株式会社東芝 Exhaust-heat recovery heat exchanger

Also Published As

Publication number Publication date
JPH0330764B2 (en) 1991-05-01

Similar Documents

Publication Publication Date Title
US5762031A (en) Vertical drum-type boiler with enhanced circulation
JP3452927B2 (en) Method and apparatus for operating a water / steam cycle of a thermal power plant
JPS5843305A (en) Mixed pressure type waste heat recovery boiler device
JPH05240402A (en) Method of operating waste heat recovery boiler
JPS5843303A (en) Mixed pressure type waste heat recovery boiler
JPH0330763B2 (en)
JP3222035B2 (en) Double pressure type waste heat recovery boiler feeder
JPH06257701A (en) Method for operating waste heat recovery boiler
JPH0658161B2 (en) Waste heat recovery boiler
JPS59150203A (en) Waste-heat recovery steam generator
JPH07217802A (en) Waste heat recovery boiler
JPH0330761B2 (en)
JPS58187701A (en) Waste heat recovery boiler device
JPS63183304A (en) Steam-temperature control method of waste gas boiler
US3240187A (en) Method of starting once-through type boilers
JPS58187705A (en) Waste heat recovery boiler device
US3698363A (en) Once-through boilers
JPH0227282Y2 (en)
JPS6093205A (en) Method and device for controlling dry heater system of generating plant
JPS6380104A (en) Exhaust gas economizer
JPS6116881B2 (en)
JPS63251703A (en) Feedwater-heater drain system oxygen-concentration controller
JPS62234590A (en) Apparatus for controlling ph value of boiler water
JPS62162808A (en) Fuel-economizer steaming preventive device for thermal powerboiler system
JPH0949606A (en) Variable pressure once-through boiler