JPS6116881B2 - - Google Patents

Info

Publication number
JPS6116881B2
JPS6116881B2 JP56186921A JP18692181A JPS6116881B2 JP S6116881 B2 JPS6116881 B2 JP S6116881B2 JP 56186921 A JP56186921 A JP 56186921A JP 18692181 A JP18692181 A JP 18692181A JP S6116881 B2 JPS6116881 B2 JP S6116881B2
Authority
JP
Japan
Prior art keywords
pressure
boiler
pipe
pump
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56186921A
Other languages
Japanese (ja)
Other versions
JPS5888501A (en
Inventor
Toshio Ogauchi
Iwao Kusaka
Toshihiko Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP18692181A priority Critical patent/JPS5888501A/en
Publication of JPS5888501A publication Critical patent/JPS5888501A/en
Publication of JPS6116881B2 publication Critical patent/JPS6116881B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明はボイラ装置の運転方法に係り、特に
ボイラのホツトバンキングに際し、節炭器におけ
る蒸気の発生(スチーミング)を防止し、ボイラ
の負荷制御範囲を高めることができるボイラの運
転方法に関する。
[Detailed Description of the Invention] The present invention relates to a method of operating a boiler device, and in particular, when hotbanking a boiler, it is possible to prevent the generation of steam in a economizer and increase the load control range of the boiler. Concerning how to operate a boiler.

ガスタービン発電により生じた排ガスを始めと
して各種排ガスの熱を回収する方法として排ガス
流中に廃熱ボイラを配置して熱回収する方法があ
る。この場合排ガス流中に一基のボイラを配置す
ることもあるが、熱回収効率を高めるため高圧ボ
イラおよび低圧ボイラを併設する所謂混圧型ボイ
ラを設置する方がより一般的である。
As a method for recovering heat from various exhaust gases including exhaust gas generated by gas turbine power generation, there is a method of arranging a waste heat boiler in the exhaust gas flow and recovering heat. In this case, a single boiler may be placed in the exhaust gas stream, but it is more common to install a so-called mixed-pressure boiler that includes a high-pressure boiler and a low-pressure boiler in order to increase heat recovery efficiency.

ところが、上記廃熱回収ボイラにおいて、運転
状態にあつたボイラを短時間一時停止したのち再
起動する場合に、ボイラ内の節炭器部に一時停止
中に蒸気が発生して滞留し、この蒸気のため、ボ
イラ再起動時にウオータハンマなどによる障害が
生じることを発見し、その対策の一実施案を、出
願人は特願昭56−72898号として出願中である。
本願発明は上記問題解決の別の手段についてのも
のである。以下図面により本願発明の具体的内容
につき説明する。
However, in the above-mentioned waste heat recovery boiler, when the operating boiler is restarted after being temporarily stopped, steam is generated and accumulates in the economizer section of the boiler during the temporary stop, and this steam As a result, the applicant discovered that troubles such as water hammer occur when restarting the boiler, and the applicant is currently filing a proposal for a countermeasure for this problem in Japanese Patent Application No. 72898/1983.
The present invention relates to another means for solving the above problem. The specific contents of the present invention will be explained below with reference to the drawings.

第1図は本発明の一実施例を示す混圧型廃熱回
収ボイラを示し、脱気器1内の給水は低圧給水ポ
ンプ2、主給水管路15を経て低圧ドラムに至
る。低圧ドラム4内の給水は降水管5、蒸発器6
を循環し、発生した蒸気は低圧蒸気S1として低圧
タービン等の所定の機器に供給される。次に降水
管5を下降した給水の一部はポンプ31、管路3
0を経て高圧節炭器8に至り、所定の温度までさ
らに昇温した後出口管路23を経て高圧ドラム9
に至る。高圧ドラム9内の給水は下降管10、蒸
発器11を循環流動し、発生した蒸気は過熱器1
2においてさらに昇温されて過熱蒸気S2として所
定の機器に供給される。
FIG. 1 shows a mixed pressure type waste heat recovery boiler showing an embodiment of the present invention, in which water supplied in a deaerator 1 passes through a low pressure water supply pump 2 and a main water supply pipe 15 to reach a low pressure drum. Water is supplied to the low pressure drum 4 through a downcomer pipe 5 and an evaporator 6.
The generated steam is supplied as low-pressure steam S1 to predetermined equipment such as a low-pressure turbine. Next, a portion of the water supply that has descended down down pipe 5 is transferred to pump 31 and pipe line 3.
0 to the high-pressure economizer 8, and after further increasing the temperature to a predetermined temperature, it passes through the outlet pipe 23 to the high-pressure drum 9.
leading to. The feed water in the high-pressure drum 9 circulates through the downcomer 10 and the evaporator 11, and the generated steam flows through the superheater 1.
In step 2, the temperature is further increased and the superheated steam S2 is supplied to a predetermined device.

以上のボイラ装置は当然のことながら廃熱発生
源である装置の運転状態によつてその運転が左右
されるわけであるが、ボイラ運転停止時には次回
の運転に即応するように保鑵しておく必要があ
る。つまりボイラ内には給水を高温のまま貯留し
ておき、いわゆるホツトバンキング(hot
banking)状態としておく。この場合排ガスダク
ト内の残留熱量および伝熱面の保有熱量により節
炭器内の給水が昇温して蒸気を発生し、この蒸気
が節炭器内に滞留する。この蒸気をこのまま放置
してボイラの再起動を行なうと、給水流れが不均
一となつたり、気液混合物の通過により伝電管に
激しい衝撃を与え、いわゆるウオータハンマ現象
を生じ、著しい場合には伝熱管に損傷を与えるこ
とになる。
Of course, the operation of the boiler equipment described above is affected by the operating status of the equipment that generates waste heat, but when the boiler stops operating, maintenance must be carried out so that it can immediately respond to the next operation. There is a need. In other words, the feed water is stored in the boiler at a high temperature, resulting in so-called hot banking (hot banking).
banking) state. In this case, the temperature of the feed water in the economizer rises due to the amount of residual heat in the exhaust gas duct and the amount of heat held by the heat transfer surface to generate steam, and this steam stays in the economizer. If this steam is left as it is and the boiler is restarted, the water supply flow will become uneven, and the passage of the gas-liquid mixture will give a severe impact to the conductor tubes, causing the so-called water hammer phenomenon, and in severe cases. This will cause damage to the heat exchanger tubes.

このため、低圧ボイラおよび高圧ボイラ共に循
環管路32,33を設け、各管路に設けた循環ポ
ンプ34,35によりホツトバンキング中に発生
した蒸気をボイラドラム側にバージする方法を採
用する。さて、第1回の実施例においては低圧給
水ポンプ2、ポンプ31に加えて上記の2基のポ
ンプ34,35が必要で、最低限4基のポンプが
必要となり不経済である。とりわけポンプ31お
よび循環ポンプ34,35は高温高圧のドラム内
給水を通過させるものであるため特殊ポンプとせ
ねばならず回転部分のシーリングに特別な機構部
材を必要とし経済性をさらに悪化させる原因とな
つている。なお、この事は高圧ボイラあるいは低
圧ボイラいずれか1基のみ設置した廃熱単圧力採
用の回収ボイラにおいても同様に問題となる。第
1図にて示した実施例における上記問題点は、以
下の第2図、第3図および第4図に示す本発明の
他の実施例により解決することができる。
For this reason, a method is adopted in which circulation pipes 32 and 33 are provided for both the low-pressure boiler and the high-pressure boiler, and the steam generated during hotbanking is barged to the boiler drum side using circulation pumps 34 and 35 provided in each pipe. Now, in the first embodiment, in addition to the low-pressure water supply pump 2 and the pump 31, the above-mentioned two pumps 34 and 35 are required, and a minimum of four pumps are required, which is uneconomical. In particular, the pump 31 and the circulation pumps 34 and 35 pass high-temperature, high-pressure drum water supply, so they must be special pumps, and special mechanical members are required to seal the rotating parts, further deteriorating economic efficiency. ing. Note that this problem also occurs in a waste heat single pressure recovery boiler in which only one high pressure boiler or one low pressure boiler is installed. The above problems in the embodiment shown in FIG. 1 can be solved by other embodiments of the present invention shown in FIGS. 2, 3 and 4 below.

第2図はこの発明の他の実施例を示し、この実
施例の場合には廃熱回収ボイラは排ガス流中に1
基のみ設置した単一圧力型のものとなつている。
常時は弁36開、弁37閉として脱気器1内の給
水は弁36、逆止弁38、給水ポンプ2aを経て
主給水管路15により節炭器3aに至る。節炭器
3a内で昇温した給水は節炭器出口管19、弁2
0を経てボイラドラム4aに流入し、降水管5
a、蒸発器6aを循環流動し、その間に生じた蒸
気Sは系外に取り出され利用される。
FIG. 2 shows another embodiment of the invention, in which a waste heat recovery boiler is installed in the exhaust gas stream.
It is a single pressure type with only the base installed.
Normally, the valve 36 is open and the valve 37 is closed, and the water supply in the deaerator 1 is delivered to the energy saver 3a via the main water supply pipe 15 via the valve 36, the check valve 38, and the water supply pump 2a. The supplied water whose temperature has risen in the economizer 3a is passed through the economizer outlet pipe 19 and the valve 2.
0, flows into the boiler drum 4a, and flows into the downcomer pipe 5.
a, the vapor S is circulated through the evaporator 6a, and the vapor S generated during this period is taken out of the system and used.

次にボイラのホツトバンキング中は弁36閉、
弁37開として脱気器1からの給水の供給を停止
すると共にポンプ2aを循環ポンプとして利用す
ることによりドラム4内の給水(鑵水)を循環管
路40a、主給水管路15を経て節炭器3a内で
発生した蒸気をドラム4aにパージする。この場
合、循環管路40aの下流部は主給水管路15の
ポンプ2a設置部上流側としてあるので循環管路
40aには別個にポンプを設置する必要はない。
しかし高温のボイラ水を循環させるためにはポン
プのシヤフト等の回転部の高温シーリングが必要
となるので所謂液浸型の特殊ポンプを設けこのシ
ーリングによる困難を除く必要がある。ホツトバ
ンキング中は循環水の循環量は少なくてよい故第
3図に示す如く給水ポンプを複数台(図示例20
1a,202a,203a)とし、うちの1台2
01aを液浸型にすればポンプの費用も安価にす
むこととなる。
Next, valve 36 is closed during hot banking of the boiler.
By opening the valve 37 and stopping the supply of water from the deaerator 1, and using the pump 2a as a circulation pump, the water supply (water) in the drum 4 is conserved via the circulation pipe 40a and the main water supply pipe 15. The steam generated in the coaler 3a is purged into the drum 4a. In this case, since the downstream part of the circulation pipe 40a is located upstream of the pump 2a installation part of the main water supply pipe 15, there is no need to separately install a pump in the circulation pipe 40a.
However, in order to circulate high-temperature boiler water, high-temperature sealing of rotating parts such as the pump shaft is required, so it is necessary to provide a special so-called immersion type pump to eliminate the difficulties caused by this sealing. During hot banking, the amount of circulating water may be small, so as shown in Figure 3, multiple water pumps (example 20) are used.
1a, 202a, 203a), one of which is 2
If 01a is an immersion type, the cost of the pump can be reduced.

第4図は別の実施例を示し、高圧ドラム9、低
圧ドラム4をもつ所謂混圧型ボイラに実施したも
のである。低圧ボイラの低圧節炭器3に給水を供
給する主給水管路15のポンプ2a設置部上流側
と降水管5の下端部は弁37を有する低圧循環管
路40で接続してある。低圧節炭器3の出口管路
19の弁20設置部上流側と高圧節炭器8の入口
部とは高圧給水管路41で接続してある。42は
調節弁、43は逆止弁、44はポンプである。4
5は高圧給水管路41のポンプ44設置部上流側
と降水管10の下端部とを接続する高圧循環管路
である。また符号46は同管路に設けた弁であ
る。
FIG. 4 shows another embodiment, which is implemented in a so-called mixed pressure boiler having a high pressure drum 9 and a low pressure drum 4. The upstream side of the pump 2 a installation part of the main water supply pipe 15 that supplies water to the low pressure economizer 3 of the low pressure boiler and the lower end of the downcomer pipe 5 are connected by a low pressure circulation pipe 40 having a valve 37 . The upstream side of the valve 20 installation part of the outlet conduit 19 of the low-pressure economizer 3 and the inlet of the high-pressure economizer 8 are connected by a high-pressure water supply conduit 41. 42 is a control valve, 43 is a check valve, and 44 is a pump. 4
Reference numeral 5 denotes a high-pressure circulation pipe that connects the upstream side of the pump 44 installation part of the high-pressure water supply pipe 41 and the lower end of the downcomer pipe 10. Further, reference numeral 46 is a valve provided in the same pipe.

以上の装置において、ボイラの定常運転時にあ
つては弁36,20,42,48は開、弁37、
弁46は閉としておく。これにより脱気器1内の
給水は弁36、逆止弁38、ポンプ2aを経て主
給水管路15により低圧節炭器3に流入し、さら
に所定の温度に昇温した後出口管路19、弁20
を経て低圧ドラム4に至り、降水管5、蒸発器6
を循環流動し、発生した蒸気は低圧蒸気S1として
排出される。一方低圧節炭器3を出た給水の一部
は弁20,42を調節することにより高圧給水管
路41に流入し、ポンプ44を経て高圧節炭器8
に至り、所定の温度に昇温した後出口管路47を
経て高圧ドラム9に流入する。さらに降水管1
0、蒸発器11を循環し、この間に生じた蒸気は
過熱器12を経て過熱蒸気S2となつて系外に排出
される。なお、この場合弁20,48はその開度
を調節することにより低圧節炭器3および高圧節
炭器8内の圧力を調節して給水が各節炭器3,8
内で蒸発するのを防止し、かつ低圧ドラム4、高
圧ドラム9の水位調節を行なう作用も営む。
In the above device, during steady operation of the boiler, the valves 36, 20, 42, and 48 are open, and the valves 37 and 48 are open.
Valve 46 is kept closed. As a result, the water supplied in the deaerator 1 passes through the valve 36, the check valve 38, and the pump 2a, flows into the low-pressure economizer 3 through the main water supply pipe 15, and after being further heated to a predetermined temperature, the water is fed into the outlet pipe 19. , valve 20
to the low-pressure drum 4, downcomer pipe 5, and evaporator 6.
The generated steam is discharged as low pressure steam S1 . On the other hand, a part of the water supply that has exited the low-pressure economizer 3 flows into the high-pressure water supply pipe 41 by adjusting the valves 20 and 42, passes through the pump 44, and then flows into the high-pressure economizer 8.
After reaching a predetermined temperature, it flows into the high-pressure drum 9 via the outlet pipe 47. Furthermore downcomer pipe 1
0, the steam generated during this period circulates through the evaporator 11, passes through the superheater 12, becomes superheated steam S2 , and is discharged outside the system. In this case, the valves 20 and 48 adjust the pressure inside the low-pressure economizer 3 and the high-pressure economizer 8 by adjusting their opening degrees, so that the water supply is controlled by each economizer 3 and 8.
It also functions to prevent water from evaporating within the tank and to adjust the water levels in the low-pressure drum 4 and high-pressure drum 9.

次にボイラホツトバンキング中は弁36,42
を閉、弁37,46を開とする。これにより低圧
ボイラにおいては鑵水は降水管5、低圧循環管路
40、主給水管路15、ポンプ2a、低圧節炭器
3、出口管路19、低圧ドラム4の順に循環流動
し、節炭器3内で発生した蒸気は低圧ドラム4側
にバージする。同様に高圧ボイラにおいてもボイ
ラ内鑵水は降水管10、高圧循環管路45、高圧
給水管路41、ポンプ44、高圧節炭器8、出口
管路47、高圧ドラム9の順に循環し高圧節炭器
8で発生した蒸気を高圧ドラム9側にバージす
る。
Next, during boiler hot banking, valves 36 and 42
is closed, and valves 37 and 46 are opened. As a result, in the low-pressure boiler, the iron water circulates and flows in the order of the downcomer pipe 5, the low-pressure circulation pipe 40, the main water supply pipe 15, the pump 2a, the low-pressure economizer 3, the outlet pipe 19, and the low-pressure drum 4, thereby saving energy. The steam generated in the vessel 3 is barged to the low pressure drum 4 side. Similarly, in a high-pressure boiler, the boiler internal boiler water is circulated in the order of downcomer pipe 10, high-pressure circulation pipe 45, high-pressure water supply pipe 41, pump 44, high-pressure economizer 8, outlet pipe 47, and high-pressure drum 9. The steam generated in the coalizer 8 is barged to the high pressure drum 9 side.

なお、ボイラの定常運転時にボイラ負荷が上昇
した場合には低圧ボイラにおいては脱気器1から
供給される給水に加えて、また高圧ボイラにおい
ては低圧節炭器3から供給される給水に加えて低
圧、高圧の各ドラム4および9内の鑵水を各々の
循環管路40,45を経て供給し、給水の循環量
を増大させることにより負荷上昇に対応させるこ
ともできる。なおボイラ水循環に兼用される給水
ポンプで2a,44は夫々第3図に示す複数台の
ポンプの並列運転型としそのうちの1台を液浸等
の特殊ポンプにすることにより費用の低減をはか
ることができる。
In addition, when the boiler load increases during steady operation of the boiler, in addition to the water supplied from the deaerator 1 in the case of a low-pressure boiler, and in addition to the water supplied from the low-pressure economizer 3 in the case of a high-pressure boiler, It is also possible to cope with the increase in load by supplying the iron water in the low-pressure and high-pressure drums 4 and 9 through the respective circulation pipes 40 and 45 to increase the amount of circulating water. Note that the water supply pumps 2a and 44, which are also used for boiler water circulation, are a parallel operation type of multiple pumps shown in Figure 3, and one of them is a special pump such as an immersion pump to reduce costs. I can do it.

この発明を実施することによりホツトバンキン
グ時の節炭器内蒸気の滞留を防止することがで
き、再起動時のウオータハンマなどの障害を除去
することができる。また、第2図、第3図、第4
図に示した本発明の実施例においては、循環管路
にポンプを設置する必要がないので、ボイラ1基
設置の場合はポンプは1基、混圧型のボイラの場
合でもポンプ設置は2基で十分となり、特殊ポン
プでも並列配置により小型、小容量のものとする
ことができる。
By implementing this invention, it is possible to prevent steam from accumulating in the economizer during hot banking, and it is possible to eliminate obstacles such as water hammer during restart. Also, Figures 2, 3, and 4
In the embodiment of the present invention shown in the figure, there is no need to install a pump in the circulation pipe, so if one boiler is installed, only one pump is installed, and even if a mixed pressure boiler is installed, two pumps are installed. This is sufficient, and even special pumps can be made smaller and have a smaller capacity by arranging them in parallel.

またボイラ負荷を上昇させたい場合には循環管
路を給水の供給管路としても使用できるのでボイ
ラの負荷応答範囲を広くすることもできる。
Further, when it is desired to increase the boiler load, the circulation pipe can also be used as a water supply pipe, so the boiler's load response range can be widened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す低圧、高
圧のドラムをもつ廃熱回収ボイラの系統図、第2
図はこの発明の第2の実施例を示す廃熱回収ボイ
ラの系統図、第3図は並列接続の給水ポンプの管
系統図、第4図はこの発明に係る廃熱回収ボイラ
の系統図である。 2a,44…ポンプ、3…低圧節炭器、3a…
節炭器、4…低圧ドラム、5,5a,10…降水
管、8…高圧節炭器、9…高圧ドラム、15…給
水管路、19…低圧節炭器出口管路、20,3
6,37,46,48…弁、40…低圧循環管
路、41…高圧給水管路、45…高圧循環管路。
Fig. 1 is a system diagram of a waste heat recovery boiler with low-pressure and high-pressure drums showing the first embodiment of the present invention;
Fig. 3 is a system diagram of a waste heat recovery boiler showing a second embodiment of the present invention, Fig. 3 is a pipe system diagram of a water pump connected in parallel, and Fig. 4 is a system diagram of a waste heat recovery boiler according to the invention. be. 2a, 44...Pump, 3...Low pressure economizer, 3a...
Economizer, 4...Low pressure drum, 5, 5a, 10...Down pipe, 8...High pressure economizer, 9...High pressure drum, 15...Water supply pipe line, 19...Low pressure economizer outlet pipe, 20,3
6, 37, 46, 48...Valve, 40...Low pressure circulation pipe, 41...High pressure water supply pipe, 45...High pressure circulation pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 節炭器にポンプを介して給水を供給して加熱
し、加熱された上記給水を、蒸発管と降水管を有
しそれぞれと連通するボイラドラムに供給する如
くなしたボイラのホツトバンキングに際し、前記
ボイラドラムの罐水を、循環管路を通じて前記節
炭器入口に供給しボイラドラムに循環せしめる如
くなしたことを特徴とする、ボイラのホツトバン
キングにおける運転方法。
1. When hotbanking a boiler in which feed water is supplied to the economizer via a pump and heated, and the heated feed water is supplied to a boiler drum that has an evaporator pipe and a downcomer pipe and communicates with each, An operating method for hot banking of a boiler, characterized in that canned water from the boiler drum is supplied to the inlet of the economizer through a circulation pipe and circulated to the boiler drum.
JP18692181A 1981-11-24 1981-11-24 Waste-heat recovery boiler device Granted JPS5888501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18692181A JPS5888501A (en) 1981-11-24 1981-11-24 Waste-heat recovery boiler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18692181A JPS5888501A (en) 1981-11-24 1981-11-24 Waste-heat recovery boiler device

Publications (2)

Publication Number Publication Date
JPS5888501A JPS5888501A (en) 1983-05-26
JPS6116881B2 true JPS6116881B2 (en) 1986-05-02

Family

ID=16197027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18692181A Granted JPS5888501A (en) 1981-11-24 1981-11-24 Waste-heat recovery boiler device

Country Status (1)

Country Link
JP (1) JPS5888501A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842609B1 (en) 2005-01-26 2016-03-09 Sumitomo Electric Hardmetal Corp. Indexable insert and method of manufacturing the same
CN103411203B (en) * 2013-05-24 2015-03-04 山东英电节能科技有限公司 Method and device for carrying out gradient utilization on boiler flue gas waste heat to improve efficiency of thermal power unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495804A (en) * 1978-01-12 1979-07-28 Babcock Hitachi Kk Cold corrosion preventing method of forced circulating boiler equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495804A (en) * 1978-01-12 1979-07-28 Babcock Hitachi Kk Cold corrosion preventing method of forced circulating boiler equipment

Also Published As

Publication number Publication date
JPS5888501A (en) 1983-05-26

Similar Documents

Publication Publication Date Title
JP3784413B2 (en) Waste heat boiler operation method and waste heat boiler operated by this method
EP0281151B1 (en) Waste heat recovery system
US4674285A (en) Start-up control system and vessel for LMFBR
JP4191894B2 (en) Method of operating gas / steam combined turbine facility and gas / steam combined turbine facility for implementing the method
US6237542B1 (en) Heat recovery boiler and hot banking releasing method thereof
US4745757A (en) Combined heat recovery and make-up water heating system
CN113404556B (en) Steam turbine low pressure bearing seal cooling system
JPS6116881B2 (en)
JP3222035B2 (en) Double pressure type waste heat recovery boiler feeder
JPH1182916A (en) Exhaust heat recovery boiler
JPH07217803A (en) Method and equipment for starting waste heat boiler with at least two separating pressure device
JPH0384301A (en) Naturally circulating waste heat recovery boiler
JPS61213401A (en) Waste-heat recovery boiler
JP2637194B2 (en) Combined plant startup bypass system and its operation method
JPH10176804A (en) Vertical waste heat recovery boiler and operating method thereof
CN216384146U (en) High-pressure water supply system for gas generator set
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP2971629B2 (en) Waste heat recovery boiler
JPH11304102A (en) Natural circulation system vertical gas flow exhaust gas boiler
JPS60261908A (en) Waste heat recovery device for internal-combustion engine
JP2000220412A (en) Repowering system of steam power generating equipment
JP2000097404A (en) Once-through boiler and method for operating the same
JPH05240402A (en) Method of operating waste heat recovery boiler
JPH03253707A (en) Combined cycle electric power generating plant
JPH0330762B2 (en)