JPH03296500A - 高濃度有機廃液の処理方法 - Google Patents

高濃度有機廃液の処理方法

Info

Publication number
JPH03296500A
JPH03296500A JP2099925A JP9992590A JPH03296500A JP H03296500 A JPH03296500 A JP H03296500A JP 2099925 A JP2099925 A JP 2099925A JP 9992590 A JP9992590 A JP 9992590A JP H03296500 A JPH03296500 A JP H03296500A
Authority
JP
Japan
Prior art keywords
tower
biological
treatment
catalytic oxidation
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2099925A
Other languages
English (en)
Inventor
Yoshiaki Harada
原田 吉明
Susumu Matsui
進 松井
Tadashi Takadoi
忠 高土居
Noboru Yamada
登 山田
Jiro Kijima
木島 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Osaka Gas Co Ltd
Original Assignee
Kurita Water Industries Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Osaka Gas Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2099925A priority Critical patent/JPH03296500A/ja
Publication of JPH03296500A publication Critical patent/JPH03296500A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高濃度有機廃液の処理方法に係り、特にし尿等
の高濃度有機廃液を湿式触媒酸化して処理する方法にお
いて、高水質の処理水を低コストにかつ効率的に得るこ
とができる高濃度有機廃液の処理方法に関する。
[従来の技術] 従来、高濃度有機物含有廃水を処理する方法として、チ
ンマーマン法が知られている。このチンマーマン法は廃
水、を高温高圧下に維持するとともに、その廃水中に空
気(酸素)を吹き込み固形有機物を可溶化し、アンモニ
アや有機酸に変化させるものである。
また、チンマーマン法を改良して処理効率を高めたもの
として、酸化触媒の存在下に湿式酸化を行なう湿式触媒
酸化処理法が提案されている。
この湿式触媒酸化処理法に従フて、酸化触媒の存在下に
湿式酸化を行なうと、反応効率が高くNH3−N(アン
モニア態窒素)をも効率良く分解することができる。そ
して、窒素成分はN2ガスやNO3−イオンに分解され
、また、有機炭素はGO2ガスに分解される。
[発明が解決しようとする課題] しかしながら、上記湿式触媒酸化プロセスでは、次のよ
うな欠点があった。
■ 湿式触媒酸化では、効率上の問題から処理水中に窒
素成分の一部がNOs −Nとして存在する。これを生
物学的脱窒法で処理する場合には、新たに有機炭素を添
加する必要があり、経済的に好ましくない。
■ ■で過剰添加の残留有機炭素の処理が必要となる。
■ 窒素成分や残留有機炭素を生物学的な方法で処理す
る場合は、生成汚ねとの固液分層が必要である。
本発明は上記従来の問題点を解決し、高濃度有機廃液の
湿式触媒酸化プロセスにおいて、安定かつ効率的な処理
を行なうことにより、低コストにて高水質の処理水を得
ることを可能とする高濃度有機廃液の処理方法を提供す
ることを目的とする。
[課題を解決するための手段] 本発明の高濃度有機廃液の処理方法は、高濃度有機廃液
を湿式触媒酸化した後、生成した硝酸イオンを固定床式
生物脱窒塔で脱窒処理し、更に残留するCOD成分を生
物濾過により除去することを特徴とする。
[作用] 本発明においては、湿式触媒酸化処理により、高濃度有
機廃液(原液)中の固形物が可溶化すると共に窒素成分
はアンモニア態を経て大部分は窒素ガスとなり、残りの
1〜10%がN03−Nとして残留する。含有される有
機物の大部分はアルデヒド類、有機酸を経て炭酸ガスに
なるが、湿式触媒酸化塔の滞留時間を短くすることで、
更に低分子化した有機酸等の形で残留させることができ
る。残留有機物のコントロールは湿式触媒酸化塔を小型
化することにより容易に行なうことができ、更に、原液
濃度の変動に対しては原液供給量、温度、圧力、酸素吹
込量等の運転操作を調整することにより対応することが
できる。
次いで、湿式触媒酸化処理液は固定床式生物脱窒塔にて
脱窒処理される。ここで、NO3−Nの脱窒に必要な有
機物として湿式触媒酸化塔の残留有機物を有効利用する
ことができる。なお、生物学的脱窒法としては浮遊法が
代表的だが、浮遊法では本発明で対象とする液の有機物
に対してはいわゆるバルキングを起こしやすい。バルキ
ング防止のためには、窒素負荷速度を低くしなければな
らず、装置コスト面、運転管理面において好ましくない
。これに対して濾材に生物を付着させた固定床方式であ
れば、このような不具合がなく有利である。
生物脱窒処理液は、次いで、濾材を充填した生物濾過塔
に空気の吹き込み状態で入れる。ここでも、浮遊法は前
述した生物学的脱窒法の事由と同一で好ましくなく、生
物濾過法の濾過作用によれば、より清澄な処理水を効率
的に得ることがで診る。
本発明においては、効率的な湿式触媒酸化を行ない、更
に生物脱窒、生物濾過により高水質の処理水を得るため
に、湿式触媒酸化におけるC0DcR除去率は95〜9
8%とするのが好ましい 本発明の処理によれば、 BOD  :5mg/fl以下 CoDCR=50mg/l以下 COD Mn : 15 m g / 11以下SS 
  :5mg/i以下 色度  :30度以下 T−N  :5mg/j2以下 といった高水質の処理水を得ることが可能とされる。
本発明の高濃度有機廃液の処理方法によれば、■ 湿式
触媒酸化により、窒素成分をN2とN0z−Hにするこ
とができる。このため、後処理として硝酸化工程が不要
となる。
■ 生物脱窒塔における脱窒処理においては有機物の添
加が不要ないし低減される。このため薬剤コストが低減
される。
■ 生物脱窒塔、生物濾過塔においてバルキング等のト
ラブルがなく運転操作が容易である。
■ 湿式触媒酸化の反応時間を大幅に短縮することが可
能とされる。このため、湿式触媒酸化塔の小容量化及び
触媒量の低減が図れる。
■ 全体として設置面積が小さく、臭気等の発生が少な
く環境が良い。
■ T−N、C0De*及び色度が効率的に除去され、
後工程の高度処理が不要となる。
■ エネルギー効率が良い。
等の効果が奏される。更に、生物脱窒塔の前にすン酸イ
オンをヒドロキシアパタイトのようなカルシウム塩とし
て不溶化する方法の固液分離槽を設けた場合には、 ■ 易脱水性の固形物が得られ、汚泥1[容量が少ない
という効果も奏され、極めて有利である。
[実施例] 以下に図面を参照して本発明の実施例について詳細に説
明する。
第1図は本発明の高濃度有機廃液の処理方法の一実施例
を示す系統図である。
本発明においては、し尿及び/又は浄化槽汚泥等を微破
砕処理して得られる高濃度に有機物を含有する廃水を原
液として、これをまず、湿式触媒酸化処理する。
即ち、し尿及び/又は浄化槽汚泥は、配管11より破砕
工程1に送給され、微破砕処理された後、得られる高濃
度有機廃液(原液)は、配管12を経て熱交換器2に送
給され、後述の湿式触媒酸化塔処理水と熱交換して加熱
される。次いで、原液は配管13、可溶化基3、配管1
4を経て湿式触媒酸化塔4に送給される。
湿式触媒酸化塔4は、高圧容器に後述の触媒を充填して
触媒層を形成したものであフて、原液は、この触媒層に
上向流又は下向流に通液され、高温高圧下にて酸化処理
される。即ち、熱交換器2への原液導入用配管12には
、コンプレッサを備える大気等の酸素含有ガスの供給用
配管(図示せず)が接続されており、原液中に空気等の
酸素含有ガスが吹き込まれた後、熱交換器2、湿式可溶
上塔3を経て湿式触媒酸化塔4に導入され、触媒の存在
下、酸化処理される。
湿式触媒酸化塔4の処理水及び処理ガスは、配管15よ
り取り出され、熱交換器2にて常温近くまで冷却された
後、配管16により固液分離槽5に送給される。
なお、本発明において、湿式触媒酸化塔4に充填される
触媒の好適なものとしては、鉄、マンガン、コバルト、
ニッケル、ルテニウム、ロジウム、パラジウム、イリジ
ウム、白金、銅、金及びタングステン、並びにこれらの
酸化物、二塩化ルテニウム、二塩化白金等の塩化物、硫
化ルテニウム、硫化ロジウム等の硫化物など、水に対し
不溶性又は難溶性の化合物等が挙げられ、これらは1種
を単独で或いは2種以上を併用して使用することができ
る。
これら金属又は化合物よりなる触媒は、常法に従ってチ
タニア(酸化チタン)、ジルコニア(酸化ジルコニア)
、アルミナ、シリカ、シリカ−アルミナ、活性炭、或い
は、ニッケル、ニッケルークロム、ニッケルークロム−
アルミニウム、ニッケルークロム−鉄等の金属多孔体等
の担体に担持して使用するのが好ましく、その担持量と
しては、通常、担体重量に対して0.05〜25%、好
ましくは0.5〜3%とするのが適当である。
触媒形状としては、粒状、ペレット状、円柱状、破砕片
状、ハニカム状又は粉末状等の種々の形態で使用するこ
とができる。
湿式触媒酸化塔4における反応温度は、200〜370
℃、特に200〜300℃とするのが好ましく、また、
反応圧力は、このような高温下でも原液が液相を保持す
るような加圧下、例えば30〜95 k g/Cm”、
特に70〜95k g / c m”とするのが好まし
い。
また、湿式触媒酸化塔4の原液流速はその反応時間(塔
内滞留時間)が40〜90分となるように設定するのが
好ましい。
酸素含有ガスとしては、空気の他、酸素濃度21%以上
のガスを使用するのが好ましい。21%よりも高濃度の
酸素を含むガスの場合は吹き込みガス量の減少が図れる
。また、熱損失量が減少すると共に反応速度が高まり、
処理効率を高めることができる。酸素濃度21%以上の
ガスとしては選択性酸素透過膜法、空気に純酸素を混合
する方法、プレッシャスイングアトソープション(PS
A)法等により得られる酸素富化空気や、液体酸素を気
化させた純酸素等を用いることができる。
原液への酸素含有ガスの吹き込みは、湿式触媒酸化塔4
への原液供給用配管へ供給するほか、湿酸触媒酸化塔4
へ直接供給して行なうこともできる。
この酸素含有ガスによる供給酸素量は、湿式触媒酸化塔
4へ供給される原液中の有機物量、N量に対して必要な
酸素量よりも多い酸素量となるように設定すれば良く、
一般には、酸素含有ガスと原液との気:液流量比(常圧
における体積比)は50〜500 : 1とするのが好
ましい。
固液分離槽5においては、液中の無機性の固形物と有機
性のリン酸イオンを除去するために、リンネ溶化剤を添
加して、pH調整を行ない固液分離する。リンネ溶化剤
はカルシウム化合物、アルミニウム化合物、鉄化合物な
どがあるが、リン酸イオンをヒドロキシアパタイトのよ
うなカルシウム塩として不溶化させるとケーキの脱水性
が良く、有利である。脱水性の良いリンネ溶化物を得る
には、カルシウム化合物を添加する時のPHを6.5〜
7.0にする第一段調整とpH8,0〜8.5にする第
二段調整の二段調整とし、ここで得られる沈殿物の一部
を予め第一段調整前に添加する方法を採用するのが良い
固液分離槽5の分離液は、配管17より濾材を充填した
固定床式生物脱窒塔6に送給され、脱窒処理される。こ
こで、NO3−Nの脱窒に必要な有機物は湿式触媒酸化
塔での残留有機物を利用するが、急激な変動等で有機物
が不足するときはメタノール、エタノール、酢酸等の有
機物を補給しても良い。生物脱窒塔6の濾材は砂、砂利
、アンスラサイト、プラスチック、活性炭、天然石、人
工材等の各種濾材を用いることができる。
生物脱窒塔6の処理液は、配管18より生物濾過塔7に
送給し、ここで生物濾過することにより、残留する低分
子量有機酸類等を分解除去する。この生物濾過塔7の濾
材としても前記生物脱窒塔6の濾材と同様のものを用い
ることができる。
生物脱窒塔6の処理液(以下「生物濾過原液」と称する
。)の生物濾過は、例えば次のようにして行なうのが好
ましい。即ち、生物濾過原液の流入管及び排出管(19
)と散気管を備え、粒状媒体層及び粒状媒体層を支持す
るための支持材層を充填した生物濾過塔を用い、生物濾
過原液を流入管より生物濾過塔内に導入し、散気管から
のガス(空気)と共に好気的に維持された粒状媒体の層
内を上向流で通過させる。この際、生物濾過原液は粒状
媒体表面に付着している微生物膜により好気的微生物処
理を受けると共に濾過作用を受け、得られる高水質の処
理水は排出口より取り出される。
本発明において、このような生物濾過処理は、生物濾過
塔のC0DcR負荷xokg/ゴ・臼以下、好ましくは
2kg1d・日程度で行なうのが好ましい。
生物濾過塔7の処理水は配管19より排出され、必要に
応じて更に濾過処理した後、系外に排出される。
なお、このような生物濾過にあたり、生物濾過塔の余剰
の生物汚泥やその後の濾過器で分離された生物汚泥は、
微破砕工程に返送し、し尿等の原液と共に処理すること
ができる。
以下、具体的な実施例について説明する。
実施例1 第1図に示す方法に従って、第1表に示す水質のし尿処
理(通水量31 / h r )を行なった。湿式可溶
化塔、湿式触媒酸化処理塔、固液分離槽、生物脱窒塔及
び生物濾過塔の処理条件は下記の通りとした。
湿式可溶化処理、湿式触媒酸化処理、固液分離、生物脱
窒処理及び生物濾過処理により得られた処理水の水質を
第1表に示す。
湿式可溶化塔 空塔容量=31 圧カニ90kg/cm” 温度:270℃ 空気量:理論量の1.5倍 湿式触媒酸化塔 触媒容量:3ft 圧カニ90kg/am” 温度=285℃ 排ガス量:0.50〜0.62N−m’/hr固液分離
槽 Ca (OH)2添加量:1000mg/j!(Caと
して、T−Pの 1.5倍当量) 生物脱窒塔 濾材充填量=41 (50mmφx2000mmH) 上向流通水 生物濾過塔 濾材充填量:101 01(80φ× 液、空気上向流 OmmH) 第1表より、本発明の方法によれば著しく高水質の処理
水が得られることが明らかである。
[発明の効果] 以上詳述した通り、本発明の高濃度有機廃液の処理方法
によれば、し尿等の高濃度有機物含有廃液を高度処理を
要することなく安定に処理することができ、高水質の処
理水を低コストで効率的に得ることが可能とされる。
【図面の簡単な説明】
第1図は本発明の高濃度有機廃液の処理方法の一実施例
を示す系統図である。 1・・・破砕工程、    2・・・熱交換器、3・・
・湿式可溶上塔、  4・・・湿式触媒酸化塔、6・・
・生物脱窒塔、   フ・・・生物濾過塔。

Claims (1)

    【特許請求の範囲】
  1. (1)高濃度有機廃液を湿式触媒酸化した後、生成した
    硝酸イオンを固定床式生物脱窒塔で脱窒処理し、更に残
    留するCOD成分を生物濾過により除去することを特徴
    とする高濃度有機廃液の処理方法。
JP2099925A 1990-04-16 1990-04-16 高濃度有機廃液の処理方法 Pending JPH03296500A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2099925A JPH03296500A (ja) 1990-04-16 1990-04-16 高濃度有機廃液の処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099925A JPH03296500A (ja) 1990-04-16 1990-04-16 高濃度有機廃液の処理方法

Publications (1)

Publication Number Publication Date
JPH03296500A true JPH03296500A (ja) 1991-12-27

Family

ID=14260340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099925A Pending JPH03296500A (ja) 1990-04-16 1990-04-16 高濃度有機廃液の処理方法

Country Status (1)

Country Link
JP (1) JPH03296500A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820761A (en) * 1994-01-07 1998-10-13 Bayer Aktiengesellschaft Process for the treatment of organic pollutants in wastewaters by wet oxidation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820761A (en) * 1994-01-07 1998-10-13 Bayer Aktiengesellschaft Process for the treatment of organic pollutants in wastewaters by wet oxidation

Similar Documents

Publication Publication Date Title
JP2628089B2 (ja) 廃水の処理方法
JP3358066B2 (ja) 排水処理方法およびそのプラント
US4132637A (en) Ozone disinfection in waste water treatment with recycling of ozonation off gas
JPH10500611A (ja) 特に固体残留物の内部再循環を伴う湿式酸化によって有機物を含む排水を処理する方法と設備、およびそのための浄化設備
JP2672109B2 (ja) 有機性廃水の好気性処理方法及び装置
JPH03296500A (ja) 高濃度有機廃液の処理方法
JP3528023B2 (ja) 含水廃棄物の処理方法
JP2655007B2 (ja) 廃水および汚泥の処理方法
JP2002210489A (ja) ポリエチレングリコール含有排水の処理方法およびその装置
JPH0763719B2 (ja) 廃水および汚泥の処理方法
JPH0326399A (ja) 高濃度有機廃液の処理方法
JPH0466200A (ja) 廃水および汚泥の処理方法
JPH05261394A (ja) 高濃度有機廃液の処理方法
JP2947684B2 (ja) 窒素除去装置
JP2540150B2 (ja) 生物学的脱窒装置
JP2655006B2 (ja) 廃水および汚泥の処理方法
JPH03296487A (ja) 高濃度有機性廃水の処理方法
JP2627953B2 (ja) 廃水の処理方法
JPS6048196A (ja) 有機性廃液からのリン除去法
JPS62225294A (ja) 生物学的脱窒装置
JP2000167570A (ja) 排水の処理方法
JPH05277475A (ja) 有機物含有水の処理方法
JP3528022B2 (ja) 含水廃棄物の処理方法
JP4297405B2 (ja) し尿の処理方法
JPH09108699A (ja) 有機性汚泥の処理方法