JPH0329499B2 - - Google Patents

Info

Publication number
JPH0329499B2
JPH0329499B2 JP57104729A JP10472982A JPH0329499B2 JP H0329499 B2 JPH0329499 B2 JP H0329499B2 JP 57104729 A JP57104729 A JP 57104729A JP 10472982 A JP10472982 A JP 10472982A JP H0329499 B2 JPH0329499 B2 JP H0329499B2
Authority
JP
Japan
Prior art keywords
composite material
fiber
metal
matrix metal
reinforcing fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57104729A
Other languages
Japanese (ja)
Other versions
JPS58221657A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10472982A priority Critical patent/JPS58221657A/en
Publication of JPS58221657A publication Critical patent/JPS58221657A/en
Publication of JPH0329499B2 publication Critical patent/JPH0329499B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、複合材料の製造方法に係り、更に詳
細には表面部の少なくとも一部が鋼材よりなり他
の部分が繊維強化金属複合材よりなる複合材料の
製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a composite material, and more particularly to a method for manufacturing a composite material in which at least a portion of the surface portion is made of steel and the other portion is made of a fiber-reinforced metal composite material. It depends.

炭素繊維の如き強化繊維を強化材としアルミニ
ウム合金の如き軽金属をマトリツクス金属とする
繊維強化金属複合材は比強度、特に引張り強さが
大きい金属材料であり、繊維強化金属複合材の航
空機や自動車などの各種部材に適用するための研
究や、繊維強化金属複合材を低廉に能率良く製造
するための製造方法に関する研究開発が種々の技
術分野に於て精力的に行なわれている。
Fiber-reinforced metal composites, in which reinforcing fibers such as carbon fibers are used as reinforcement materials and light metals such as aluminum alloys are used as matrix metals, are metal materials with high specific strength, especially tensile strength, and are used in aircraft, automobiles, etc. made of fiber-reinforced metal composites. In various technical fields, research and development are being actively conducted on the application of fiber-reinforced metal composites to various parts, and on manufacturing methods for manufacturing fiber-reinforced metal composites at low cost and efficiently.

しかしかかる繊維強化金属複合材に於ては、マ
トリツクス金属としての軽金属は耐摩耗性や耐食
性が悪く、従つて繊維強化金属複合材のみにて構
成された部材を過酷な摩擦を受けたり腐食され易
い環境に於て使用することはできないという問題
があり、、また繊維強化金属複合材の耐摩耗性を
向上させるべく、強化繊維として耐摩耗性に優れ
無作為に配向された短繊維を使用する場合には、
繊維強化金属複合材の強度を向上させることがで
きないという問題がある。
However, in such fiber-reinforced metal composites, light metals as matrix metals have poor wear resistance and corrosion resistance, and therefore members made only of fiber-reinforced metal composites are susceptible to severe friction and corrosion. There is a problem that it cannot be used in the environment, and in order to improve the abrasion resistance of fiber reinforced metal composites, randomly oriented short fibers with excellent abrasion resistance are used as reinforcing fibers. for,
There is a problem that the strength of the fiber reinforced metal composite cannot be improved.

また繊維強化金属複合材を製造するための方法
としては、ホツトプレス法、オートクレーブ法、
高圧鋳造法の如き種々の製造方法が提案されてい
る。これらのうち、鋳型内に強化繊維を充填した
後、該鋳型内にマトリツクス金属の溶湯を導入
し、該鋳型に係合するプランジヤによつてマトリ
ツクス金属の溶湯を鋳型内に加圧しつつ凝固させ
る高圧鋳造法は、他の製造方法の場合の如く大掛
りな真空創成装置を必要とすることなく繊維強化
金属複合材を能率良く製造し得る点で優れてお
り、この高圧鋳造法に於ては、本出願人と同一の
出願人の出願に係る特願昭55−107040号に於て提
案されている如く各強化繊維間にマトリツクス金
属の溶湯が確実に侵入するようにするためには、
強化繊維をマトリツクス金属の融点以上の温度に
予熱することが好ましい。かくして鋳造に先立つ
て強化繊維をマトリツクス上記の融点以上の温度
に予熱すれば、各強化繊維の間にマトリツクス金
属の溶湯が良好に浸透し、強化繊維とマトリツク
ス金属との結合性に優れた繊維強化金属複合材を
製造することができるが、鋳造に先立つて強化繊
維をマトリツクス金属の融点以上の温度に予熱し
ても繊維強化金属複合材の耐摩耗性や耐食性を向
上させることはできない。
In addition, methods for manufacturing fiber-reinforced metal composites include hot press method, autoclave method,
Various manufacturing methods have been proposed, such as high pressure casting. Among these, after filling a mold with reinforcing fibers, a molten matrix metal is introduced into the mold, and a plunger that engages the mold presses the molten matrix metal into the mold while solidifying the high pressure. The casting method is superior in that fiber-reinforced metal composites can be manufactured efficiently without the need for large-scale vacuum generation equipment unlike other manufacturing methods, and this high-pressure casting method has the following advantages: In order to ensure that the molten matrix metal penetrates between each reinforcing fiber, as proposed in Japanese Patent Application No. 55-107040 filed by the same applicant as the present applicant,
Preferably, the reinforcing fibers are preheated to a temperature above the melting point of the matrix metal. Thus, if the reinforcing fibers are preheated to a temperature higher than the above melting point of the matrix prior to casting, the molten matrix metal will penetrate well between each reinforcing fiber, resulting in fiber reinforcement with excellent bonding properties between the reinforcing fibers and the matrix metal. Although metal composites can be produced, preheating the reinforcing fibers to a temperature above the melting point of the matrix metal prior to casting does not improve the wear resistance or corrosion resistance of the fiber reinforced metal composites.

本発明は、従来の繊維強化金属複合材及び強化
繊維予熱式の高圧鋳造法に於ける上述の如き不具
合に鑑み、比強度が高くしかも耐摩耗性及び耐食
性に優れた複合材料を能率よく且低廉に製造する
ことのできる方法を提供することを目的としてい
る。
In view of the above-mentioned problems with conventional fiber-reinforced metal composite materials and reinforced fiber preheating high-pressure casting methods, the present invention aims to efficiently and inexpensively produce composite materials that have high specific strength and excellent wear resistance and corrosion resistance. The purpose is to provide a method that can be manufactured to

かかる目的は、本発明によれば、表面部の少な
くとも一部が少なくとも一部にて浸炭若しくは窒
化処理された鋼材よりなり、他の部分が強化繊維
を強化材として軽金属をマトリツクス金属とする
繊維強化金属複合材よりなる複合材料の製造方法
にして、表面部の少なくとも一部を構成する浸炭
若しくは窒化可能な鋼材と強化繊維との組合せ体
を形成し、前記マトリツクス金属の融点以上の温
度にて前記組合せ体を浸炭若しくは窒化処理し、
前記組合せ体とマトリツクス金属の溶湯とを複合
化させる複合材料の製造方法、及び表面部の少な
くとも一部が少なくとも一部にて析出硬化された
鋼材よりなり、他の部分が強化繊維を強化材とし
軽金属をマトリツクス金属とする繊維強化金属複
合材よりなる複合材料の製造方法にして、表面部
の少なくとも一部を構成する溶体化処理された析
出硬化可能なステンレス鋼材と強化繊維との組合
せ体を形成し、前記組合せ体を前記鋼材に対する
焼入れ開始温度であつて前記マトリツクス金属の
融点以上の温度に加熱し、前記組合せ体とマトリ
ツクス金属の溶湯とを鋳型内にて複合化させる複
合材料の製造方法によつて達成される。
According to the present invention, at least a portion of the surface portion is made of a steel material that has been carburized or nitrided, and the other portion is made of a fiber-reinforced steel material using reinforcing fibers as a reinforcing material and a light metal as a matrix metal. A method for manufacturing a composite material made of a metal composite material, in which a combination of a carburized or nitridable steel material constituting at least a part of the surface portion and reinforcing fibers is formed, and the above-described process is performed at a temperature equal to or higher than the melting point of the matrix metal. Carburizing or nitriding the combined body,
A method for manufacturing a composite material in which the above-mentioned combination body and a molten matrix metal are combined, and at least a part of the surface part is made of precipitation hardened steel material, and the other part is made of reinforcing fiber. A method for producing a composite material comprising a fiber-reinforced metal composite material using a light metal as a matrix metal, in which a combination of solution-treated precipitation hardenable stainless steel material constituting at least a part of the surface portion and reinforcing fibers is formed. and a method for producing a composite material, in which the combination is heated to a temperature that is the quenching start temperature for the steel material and is higher than the melting point of the matrix metal, and the combination and the molten matrix metal are composited in a mold. It is achieved by doing so.

本発明の上述の(1)の製造方法によれば、表面部
の少なくとも一部を構成する浸炭若しくは窒化可
能な鋼材と強化繊維との組合せ体がマトリツクス
金属の融点以上の温度にて浸炭若しくは窒化処理
され、これにより複合化に先立つて強化繊維がマ
トリツクス金属の融点以上の温度に予熱されると
共にこれと同時に鋼材が表面硬化される。
According to the above-mentioned manufacturing method (1) of the present invention, the combination of carburized or nitridable steel material and reinforcing fibers constituting at least a portion of the surface portion is carburized or nitrided at a temperature equal to or higher than the melting point of the matrix metal. The reinforcing fibers are preheated to a temperature above the melting point of the matrix metal prior to composite formation, and at the same time the steel material is surface hardened.

従つて表面部の少なくとも一部が浸炭若しくは
窒化処理された鋼材よりなつていることにより繊
維強化金属複合材のみよりなる複合材料よりも耐
摩耗性及び耐食性に優れ、他の部分が繊維強化金
属複合材よりなつていることにより鋼材のみより
なる金属材料よりも比強度の高い複合材料を製造
することができ、また鋼材に対する浸炭又は窒化
処理と強化繊維の予熱とを各々別に行なう場合に
比して、上述の如く優れた複合材料を遥かに能率
良く低廉に製造することができる。
Therefore, since at least a part of the surface part is made of carburized or nitrided steel material, it has better wear resistance and corrosion resistance than a composite material made only of fiber-reinforced metal composite material, and the other part is made of fiber-reinforced metal composite material. This makes it possible to manufacture composite materials with higher specific strength than metal materials made only of steel, and compared to the case where the carburizing or nitriding treatment of the steel material and the preheating of the reinforcing fibers are performed separately. As mentioned above, excellent composite materials can be produced much more efficiently and at lower cost.

また本発明の上述の(2)の製造方法によれば、表
面部の少なくとも一部を構成する溶体化処理され
た析出硬化可能なステンレス鋼材と強化繊維との
組合せ体が、鋼材に対する焼入れ開始温度であつ
てマトリツクス金属の融点以上の温度に加熱さ
れ、これにより複合化に先立つて強化繊維がマト
リツクス金属の融点以上の温度に予熱されると共
にこれと同時に鋼材の析出硬化のための加熱が行
なわれ、また複合化の過程に於て鋼材が鋳型によ
る吸熱によつて急冷される。
Further, according to the above-mentioned manufacturing method (2) of the present invention, the combination of the solution-treated precipitation hardenable stainless steel material and the reinforcing fiber, which constitutes at least a part of the surface portion, has a temperature at which the quenching start temperature for the steel material is reached. The reinforcing fibers are preheated to a temperature higher than the melting point of the matrix metal prior to compositing, and at the same time heating is performed for precipitation hardening of the steel material. In addition, during the composite process, the steel material is rapidly cooled by heat absorption by the mold.

従つて表面部の少なくとも一部がマルテンサイ
ト組織により硬化されたステンレス鋼材よりなつ
ていることにより繊維強化金属複合材のみよりな
る複合材料に比して耐摩耗性及び耐食性に優れ、
他の部分が繊維強化金属複合材よりなつているこ
とにより鋼材のみよりなる金属材料よりも比強度
の高い複合材料を製造することができ、また鋼材
に対する析出硬化のための加熱と強化繊維の予熱
とを各々別に行なう場合に比して、上述の如く優
れた複合材料を遥かに能率良く低廉に製造するこ
とができる。
Therefore, since at least a portion of the surface portion is made of stainless steel material hardened by a martensitic structure, it has superior wear resistance and corrosion resistance compared to composite materials made only of fiber reinforced metal composite materials,
Since the other parts are made of fiber-reinforced metal composite material, it is possible to manufacture a composite material with higher specific strength than a metal material made only of steel materials, and also to preheat the reinforcing fibers by heating for precipitation hardening of the steel materials. Compared to the case where these steps are carried out separately, the excellent composite material described above can be produced much more efficiently and at a lower cost.

本発明による複合材料の製造方法の一つの詳細
な特徴によれば、製造されるべき複合材料の表面
部の少なくとも一部を構成する鋼材として、強化
繊維を受入れ且保持することのできる鋼管の如き
鋼材製のケースが使用され、円柱の如き柱状又は
棒状の複合材料が製造される。この場合鋼材製の
ケースは強化繊維の予熱及び鋳造に際し、強化繊
維を所定の密度及び配向状態に保持する機能、及
び本願出願人の同一の出願人の出願に係る特願昭
56−127080号に開示された複合材料の製造方法に
於せる予熱用型と同様、マトリツクス金属の融点
以上の温度にまで予熱された強化繊維の温度が低
下することを防止する保温材としての機能を果
す。
According to one detailed feature of the method for producing a composite material according to the invention, the steel material constituting at least a part of the surface of the composite material to be produced is a steel pipe capable of receiving and retaining reinforcing fibers. A case made of steel is used to produce a composite material in the form of a column or rod, such as a cylinder. In this case, the steel case has the function of maintaining the reinforcing fibers at a predetermined density and orientation during preheating and casting, and also has the function of maintaining the reinforcing fibers at a predetermined density and orientation during preheating and casting.
Similar to the preheating mold in the composite material manufacturing method disclosed in No. 56-127080, it functions as a heat insulator to prevent the temperature of reinforcing fibers that have been preheated to a temperature higher than the melting point of the matrix metal from decreasing. fulfill.

本発明による複合材料の製造方法の他の一つの
詳細な特徴によれば、予熱された組合せ体とマト
リツクス金属の溶湯との複合化は、予熱された組
合せ体を鋳型内に配置し、該鋳型内にマトリツク
ス金属の溶湯を注湯し、マトリツクス金属の溶湯
を鋳型内にて加圧しつつ凝固させる高圧鋳造法、
又は予熱された組合せ体を容器内に装填し、その
容器内を真空状態として該容器の一部をマトリツ
クス金属の溶湯中に浸漬させ、しかる後溶湯の液
面を液体圧式に加圧し、溶湯を容器内の各強化繊
維内に含浸させる所謂オートクレーブ法などによ
り行なわれる。この場合強化繊維は複合化に先立
つてマトリツクス金属の融点以上の温度に予熱さ
れるので、マトリツクス金属の溶湯は各強化繊維
間に良好に浸透し、強化繊維とマトリツクス金属
との密着性に優れた繊維強化金属複合材が形成さ
れる。
According to another detailed feature of the method for manufacturing a composite material according to the invention, the compositing of the preheated combination with the molten matrix metal comprises placing the preheated combination in a mold, A high-pressure casting method in which molten matrix metal is poured into a mold, and the molten matrix metal is solidified while being pressurized within the mold.
Alternatively, the preheated assembly is loaded into a container, the interior of the container is evacuated, a part of the container is immersed in the molten matrix metal, and then the surface of the molten metal is pressurized using hydraulic pressure to cool the molten metal. This is carried out by a so-called autoclave method in which each reinforcing fiber in the container is impregnated. In this case, the reinforcing fibers are preheated to a temperature higher than the melting point of the matrix metal prior to compositing, so the molten matrix metal penetrates well between the reinforcing fibers, resulting in excellent adhesion between the reinforcing fibers and the matrix metal. A fiber reinforced metal composite is formed.

また上述の(1)の方法により製造された複合材料
はその鋼材の表面が浸炭などによつて表面硬化処
理されているので、充分な耐摩耗性を有している
が、更に一層耐摩耗性及び強度を向上させるべ
く、以下の如き熱処理が行なわれてよい。即ち、
複合材料を500℃に加熱して水冷し、これにより
繊維強化金属複合材のマトリツクス金属を溶体化
し、複合材料の鋼材の表面に対しレーザー、高周
波などによる表面硬化焼入れを施した後、更に
160℃にて6時間加熱することにより、マトリツ
クス金属に対しT6処理を行なう(この際鋼材は
焼き戻される)。
In addition, the composite material manufactured by method (1) above has sufficient wear resistance because the surface of the steel material is hardened by carburizing, etc., but it has even more wear resistance. And in order to improve the strength, the following heat treatment may be performed. That is,
The composite material is heated to 500℃ and cooled with water, thereby making the matrix metal of the fiber-reinforced metal composite material into a solution, and the surface of the steel material of the composite material is subjected to surface hardening and quenching using laser, high frequency, etc., and then further
The matrix metal is subjected to a T6 treatment by heating at 160°C for 6 hours (the steel is tempered).

また上述の(2)の方法に於ては、製造された複合
材料に対し熱処理が施され、ステンレス鋼材は時
効処理又は焼戻しされ、繊維強化金属複合材のマ
トリツクス金属は溶体化処理及び時効処理される
ことが好ましい。
In addition, in method (2) above, the manufactured composite material is heat treated, the stainless steel material is aged or tempered, and the matrix metal of the fiber reinforced metal composite is solution treated and aged. It is preferable that

尚本発明による複合材料の製造方法に於ける強
化繊維は、脹炭素繊維、アルミナ繊維、ボロン繊
維、炭化ケイ素繊維など長繊維、チタン酸カリウ
ム、炭化ケイ素、窒化ケイ素、窒化ボロンなどの
ホイスカ、及びアルミナーシリカ系繊維、金属繊
維、ピツチカーボンなどの短繊維などであつてよ
く、繊維強化金属複合材のマトリツクス金属はア
ルミニウム、マグネシウム、銅、亜鉛、スズの如
き金属及びそれらの合金であつてよい。また鋼材
と強化繊維とよりなる組合せ体を加熱する温度
は、使用される鋼材の種類やそれに対し施される
表面硬化熱処理の種類、使用されるマトリツクス
金属の融点などに応じて適宜に設定されてよい。
The reinforcing fibers used in the method for producing a composite material according to the present invention include long fibers such as expanded carbon fibers, alumina fibers, boron fibers, and silicon carbide fibers, whiskers such as potassium titanate, silicon carbide, silicon nitride, and boron nitride, and The matrix metal of the fiber-reinforced metal composite may be a metal such as aluminum, magnesium, copper, zinc, tin, or an alloy thereof. . The temperature at which the combination of steel and reinforcing fibers is heated is appropriately set depending on the type of steel used, the type of surface hardening heat treatment applied to it, the melting point of the matrix metal used, etc. good.

以下に添付の図を参照しつつ、本発明を実施例
について詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例 1 外径23mm、内径21mm、長さ75mmの機械構造用鋼
管(JIS規格STKM15A)のパイプ1に、長さ75
mmのアルミナ繊維2(繊維径20μ、デユポン社製
FPフアイバ)を体積率が55%となるようにパイ
プ1の長手方向に配向して充填した。次いでかく
して形成されたパイプ1とアルミナ繊維2とより
なる組合せ体3を920℃にて8時間浸炭窒化処理
し、浸炭窒化処理後直ちに280℃に加熱された高
圧鋳造用の鋳型4の成形室5内に配置した。次い
で鋳型4の成形室5及び加圧室6内に750℃のア
ルミニウム合金(JIS規格AC4C)の溶湯7を素
早く注湯し、160℃のプランジヤ8により成形室
5及び加圧室6内に導入されたアルミニウム合金
の溶湯7を1200Kg/cm2の圧力に加圧した。そして
その加圧状態をアルミニウム合金の溶湯7が完全
に凝固するまで保持した。
Example 1 Pipe 1 is a mechanical structural steel pipe (JIS standard STKM15A) with an outer diameter of 23 mm, an inner diameter of 21 mm, and a length of 75 mm.
mm alumina fiber 2 (fiber diameter 20μ, manufactured by DuPont)
The pipe 1 was filled with FP fibers oriented in the longitudinal direction so that the volume ratio was 55%. Next, the thus formed combination 3 consisting of the pipe 1 and alumina fiber 2 was carbonitrided at 920°C for 8 hours, and immediately after the carbonitriding process, the molding chamber 5 of the mold 4 for high-pressure casting was heated to 280°C. placed inside. Next, 750°C molten aluminum alloy (JIS standard AC4C) is quickly poured into the molding chamber 5 and pressurizing chamber 6 of the mold 4, and introduced into the molding chamber 5 and pressurizing chamber 6 by the plunger 8 at 160°C. The molten aluminum alloy 7 was pressurized to a pressure of 1200 Kg/cm 2 . The pressurized state was maintained until the molten aluminum alloy 7 was completely solidified.

かくして鋳型4内のアルミニウム合金の溶湯7
が完全に凝固した後、その凝固体をノツクアウト
ピン9を上昇させることによつて鋳型4より取出
し、加圧室6内にて凝固した部分を切断によつて
除去し、成形室5内にて形成された鋳造粗材を切
削するこことにより外径22.5mm、長さ73mmの円柱
体を形成し、これにより第3図に示されている如
く、円筒状表面部が浸炭窒化された機械構造用鋼
管よりなり、内部がアルミナ繊維を強化材としア
ルミニウム合金をマトリツクス金属とする繊維強
化金属複合材よりなる複合材料10を製造した。
Thus, the molten aluminum alloy 7 in the mold 4
After the solidified body is completely solidified, the solidified body is taken out from the mold 4 by raising the knockout pin 9, the solidified part is removed by cutting in the pressurizing chamber 6, and the solidified body is removed into the molding chamber 5. A cylindrical body with an outer diameter of 22.5 mm and a length of 73 mm is formed by cutting the cast rough material formed by the process, and as shown in Fig. 3, the cylindrical surface part is carbonitrided. A composite material 10 was manufactured, which was made of a fiber-reinforced metal composite material made of structural steel pipes, whose interior was made of alumina fibers as a reinforcing material, and an aluminum alloy as a matrix metal.

更にかくして製造された複合材料10を500℃
に加熱した後水冷し、その円筒状外周面11をレ
ーザー光線にて焼入れし、しかる後その複合材料
10を160℃にて6時間加熱することにより、T6
処理を施した。かくして熱処理された複合材料1
0を研削することにより、図には示されていない
が外径22mm、長さ73mmのピストンピンを製造し
た。
Furthermore, the composite material 10 thus produced was heated to 500°C.
The cylindrical outer peripheral surface 11 is hardened with a laser beam, and then the composite material 10 is heated at 160° C. for 6 hours to achieve T 6
Processed. Composite material 1 thus heat treated
Although not shown in the figure, a piston pin with an outer diameter of 22 mm and a length of 73 mm was manufactured by grinding 0.

かくして製造されたピストンピンは特殊鋼など
にて形成された従来のピストンピンに比べ軽量な
ものであつた。また上述の如く製造されたピスト
ンピンを1972c.c.、4気筒の4サイクルガソリンエ
ンジンに組込み、最高回転数5200rpmにて200時
間の耐久試験を行なつたところ、特殊鋼などにて
形成され熱処理された従来のピストンピンと同等
の耐久性を有していることが認められた。
The piston pin thus manufactured was lighter than conventional piston pins made of special steel or the like. In addition, the piston pin manufactured as described above was assembled into a 1972 c.c., 4-cylinder, 4-cycle gasoline engine, and a 200-hour durability test was conducted at a maximum rotation speed of 5200 rpm. It was confirmed that the new piston pin had the same durability as the conventional piston pin.

実施例 2 上述の実施例1に於て使用された第2図に示さ
れた鋳造装置を用いて、円筒状表面部が浸炭窒化
処理された機械構造用鋼管よりなり、内部が炭素
繊維を強化材としアルミニウム合金をマトリツク
ス金属とする繊維強化金属複合材よりなる複合材
料を製造した。
Example 2 Using the casting apparatus shown in FIG. 2 used in Example 1 above, a cylindrical surface was made of carbonitrided mechanical structural steel pipe, and the inside was reinforced with carbon fiber. A composite material made of a fiber-reinforced metal composite material using an aluminum alloy as a matrix metal was manufactured.

第4図に示されている如く、高弾性タイプの炭
素繊維12(東レ社製トレカM40、繊維径7μ)
を±20゜にてフイラメントワインデイングするこ
とにより、外径21mm、内径10mm、長さ75mmの円筒
体13を形成し、該円筒体13を外径23mm、内径
21mm、長さ75mmの機械構造用鋼管(JIS規格
STKM12B)のパイプ14内に装填し、第5図
に示されている如き組合せ体15を形成した。次
いでかくして形成された炭素繊維12とパイプ1
4とよりなる組合せ体15を920℃にて8時間浸
炭窒化処理し、浸炭浸窒処理後直ちに260℃に加
熱された高圧鋳造用の鋳型4の成形室5内に配置
した。次いで鋳型4の成形室5及び加圧室6内に
750℃のアルミニウム合金(JIS規格AC8A)の溶
湯7を素早く注湯し、150℃のプラジヤ8により
成形室5及び加圧室6内に導入されたアルミニウ
ム合金の溶湯7を1400Kg/cm2の圧力に加圧した。
そしてその加圧状態をアルミニウム合金の溶湯7
が完全に凝固するまで保持した。
As shown in Figure 4, high elasticity carbon fiber 12 (Toray Card M40, fiber diameter 7μ)
By filament winding at ±20°, a cylindrical body 13 with an outer diameter of 21 mm, an inner diameter of 10 mm, and a length of 75 mm is formed.
21mm long, 75mm long mechanical structural steel pipe (JIS standard
STKM12B) was loaded into the pipe 14 to form an assembly 15 as shown in FIG. Next, the thus formed carbon fiber 12 and pipe 1
4 was carbonitrided at 920°C for 8 hours, and immediately after the carbonitriding process, it was placed in the molding chamber 5 of the mold 4 for high-pressure casting heated to 260°C. Then, into the molding chamber 5 and pressurizing chamber 6 of the mold 4.
The molten aluminum alloy 7 at 750°C (JIS standard AC8A) was quickly poured into the molding chamber 5 and the pressurizing chamber 6 by the 150°C plastic gear 8, and the molten aluminum alloy 7 was heated to a pressure of 1400 Kg/cm 2 . Pressure was applied.
Then, the pressurized state is changed to the molten aluminum alloy 7.
was held until completely solidified.

かくして鋳型4内のアルミニウム合金の溶湯7
が完全に凝固した後、その凝固体をノツクアウト
ピン9を上昇させることによつて鋳型4より取出
し、加圧室6内にて凝固した部分を切断によつて
除去し、成形室5内にて形成された鋳造粗材を切
削することにより外径22.5mm、長さ73mmの円柱体
を形成し、これにより円筒状表面部が浸炭窒化処
理された機械構造用鋼管よりなり、内部が炭素繊
維を強化材としアルミニウム合金をマトリツクス
金属とする繊維強化金属複合材よりなる複合材料
を製造した。
Thus, the molten aluminum alloy 7 in the mold 4
After the solidified body is completely solidified, the solidified body is taken out from the mold 4 by raising the knockout pin 9, the solidified part is removed by cutting in the pressurizing chamber 6, and the solidified body is removed into the molding chamber 5. A cylindrical body with an outer diameter of 22.5 mm and a length of 73 mm was formed by cutting the cast rough material.The cylindrical surface part was made of carbonitrided mechanical structural steel pipe, and the inside was made of carbon fiber. A composite material consisting of a fiber-reinforced metal composite material was manufactured using aluminum alloy as a reinforcing material and an aluminum alloy as a matrix metal.

更にかくして製造された複合材料を520℃に加
熱した後水冷し、その円筒状外周面を高周波焼入
れにより焼入れし、しかる後その複合材料を170
℃にて16時間加熱することによりT7処理を施し
た。かくして熱処理された複合材料を研削するこ
とにより、図には示されていないが外径22mm、内
径10mm、長さ73mmの中空ピストンピンを製造し
た。
Furthermore, the composite material thus produced was heated to 520°C, cooled with water, and its cylindrical outer peripheral surface was hardened by induction hardening, and then the composite material was heated to 170°C.
T7 treatment was performed by heating at ℃ for 16 hours. By grinding the heat-treated composite material, a hollow piston pin (not shown in the figure) having an outer diameter of 22 mm, an inner diameter of 10 mm, and a length of 73 mm was manufactured.

実施例 3 第6図に示されている如く、長さ119mm、繊維
径120μのボロン繊維16を一方向に配向して束
ねることにより外径6mmの棒状体を形成し、その
両端にクロム鋼(JIS規格SCr15)製のエンドキ
ヤツプ17及び18を差込むことにより、長さ
122mm、直径6mmの組合せ体19を形成した。次
いでかくして形成されたボロン繊維16とエンド
キヤツプ17及び18とよりなる組合せ体19を
920℃にて8時間浸炭窒化処理し、浸炭窒化処理
後直ちにオートクレーブにてボロン繊維16間に
アルミニウム合金(JIS規格AC4C)を含浸させ、
これによりエンドキヤツプ17及び18間の部分
をボロン繊維16を強化繊維としアルミニウム合
金をマトリツクス金属とする繊維強化金属複合材
20とした。
Example 3 As shown in FIG. 6, boron fibers 16 with a length of 119 mm and a fiber diameter of 120 μ are oriented in one direction and bundled to form a rod-shaped body with an outer diameter of 6 mm, and chromium steel ( By inserting end caps 17 and 18 made of JIS standard SCr15), the length can be adjusted.
A combination body 19 having a diameter of 122 mm and a diameter of 6 mm was formed. Next, a combination body 19 consisting of the boron fiber 16 thus formed and the end caps 17 and 18 is formed.
Carbonitriding treatment was performed at 920℃ for 8 hours, and immediately after the carbonitriding treatment, aluminum alloy (JIS standard AC4C) was impregnated between the boron fibers 16 in an autoclave.
As a result, the portion between the end caps 17 and 18 was made into a fiber-reinforced metal composite material 20 in which the boron fibers 16 were used as reinforcing fibers and the aluminum alloy was used as the matrix metal.

次いでかくして製造された複合材料を500℃に
加熱して溶体化処理した後、160℃にて6時間加
熱することによりT6処理を施した。かくして熱
処理された複合材料のエンドキヤツプ17及び1
8の先端部を半球状に研磨することにより、第7
図に示されている如きプツシユロツド21を製造
した。
The thus produced composite material was then solution treated by heating to 500°C and then subjected to T6 treatment by heating at 160°C for 6 hours. End caps 17 and 1 of the thus heat-treated composite material
By polishing the tip of No. 8 into a hemispherical shape, the seventh
A push rod 21 as shown in the figure was manufactured.

実施例 4 実施例1に於て使用された鋳造装置と同様の鋳
造装置を用いて、円筒状表面部が焼入れされたス
テンレス鋼管よりなり、内部が炭素繊維を強化繊
維としマグネシウム合金をマトリツクス金属とす
る繊維強化金属複合材よりなる複合材料を製造し
た。
Example 4 Using a casting device similar to that used in Example 1, a cylindrical surface was made of a hardened stainless steel tube, the inside was made of carbon fiber as a reinforcing fiber, and a magnesium alloy as a matrix metal. A composite material made of fiber-reinforced metal composite material was manufactured.

まず高強度タイプの炭素繊維(東レ社製T300、
繊維径7μ)を±20゜にてフイラメントワインデイ
ングすることにより、第4図に示された円筒体と
同様の外径21mm、内径12mm、長さ75mmの円筒体を
形成した。次いでその円筒体を予め溶体化処理
(1050℃に加熱した後急冷)を施された外径22.5
mm、内径21mm、長さ75mmのステンレス鋼(JIS規
格SUS631)製パイプ内に挿入することにより、
第5図に示された組合せ体と同様の組合せ体を形
成した。
First, high-strength carbon fiber (Toray T300,
A cylindrical body having an outer diameter of 21 mm, an inner diameter of 12 mm, and a length of 75 mm, similar to the cylindrical body shown in FIG. 4, was formed by filament winding the fiber diameter (7 μm) at ±20°. Next, the cylindrical body was previously subjected to solution treatment (heated to 1050°C and then rapidly cooled) with an outer diameter of 22.5 mm.
By inserting it into a stainless steel (JIS standard SUS631) pipe with an inner diameter of 21 mm and a length of 75 mm,
A combination similar to that shown in FIG. 5 was formed.

次いでかくして形成された炭素繊維とステンレ
ス鋼管とよりなる組合せ体をアルゴンガス雰囲気
中にて760℃に90分間加熱し、しかる後直ちに280
℃に加熱された高圧鋳造用の鋳型4の成形室5内
に配置した。次いで鋳型4の成形室5及び加圧室
6内に680℃のマグネシウム合金(JIS規格MC7)
の溶湯7を素早く注湯し、160℃のプランジヤ8
により成形室5及び加圧室6内に導入されたマグ
ネシウム合金の溶湯7を1500Kg/cm2の圧力に加圧
した。そしてその加圧状態をマグネシウム合金の
溶湯7が完全に凝固するまで保持した。
Next, the thus formed combination of carbon fiber and stainless steel tube was heated to 760°C for 90 minutes in an argon gas atmosphere, and then immediately heated to 280°C.
It was placed in a molding chamber 5 of a mold 4 for high-pressure casting heated to .degree. Next, magnesium alloy (JIS standard MC7) at 680°C is placed in the molding chamber 5 and pressurizing chamber 6 of the mold 4.
Quickly pour the molten metal 7 into the plunger 8 at 160℃.
The molten magnesium alloy 7 introduced into the molding chamber 5 and pressurizing chamber 6 was pressurized to a pressure of 1500 kg/cm 2 . The pressurized state was maintained until the molten magnesium alloy 7 was completely solidified.

かくして鋳型4内のマグネシウム合金の溶湯7
が完全に凝固した後、その凝固体をノツクアウト
ピン9を上昇させることによつて鋳型4より取出
し、加圧室6内にて凝固した部分を切断によつて
除去し、これにより円筒状表面部が焼入れされた
ステンレス鋼管よりなり、内部が炭素繊維を強化
繊維としマグネシウム合金をマトリツクス金属と
する繊維強化金属複合材よりなる複合材料を製造
した。
Thus, the molten magnesium alloy 7 in the mold 4
After the solidified body is completely solidified, the solidified body is taken out from the mold 4 by raising the knockout pin 9, and the solidified part is removed by cutting in the pressurizing chamber 6, thereby forming a cylindrical surface. A composite material was manufactured in which the inner part was made of a hardened stainless steel tube and the inner part was a fiber-reinforced metal composite material with carbon fiber as the reinforcing fiber and magnesium alloy as the matrix metal.

更にかくして製造された複合材料を540℃にて
2時間加熱した後強制空冷し、しかる後130℃に
て48時間加熱することにより人工時効処理した。
この場合ステンレス鋼管の円筒状外周面の表面よ
り約0.5mmの範囲の部分は、760℃に90分間加熱保
持された後高圧鋳造の過程に於て鋳型による吸熱
によつて急冷されることにより、マルテンサイト
組織となり、更に540℃にて2時間加熱される熱
処理過程に於て析出硬化した。また繊維強化金属
複合材のマトリツクス金属は540℃にて2時間加
熱される過程に於て溶体化され、130℃にて48時
間加熱される過程に於て時効硬化した。
Furthermore, the thus produced composite material was heated at 540°C for 2 hours, forced air cooled, and then artificially aged by heating at 130°C for 48 hours.
In this case, the area approximately 0.5 mm from the surface of the cylindrical outer circumferential surface of the stainless steel pipe is heated and held at 760°C for 90 minutes, and then rapidly cooled by heat absorption by the mold during the high-pressure casting process. It became a martensitic structure and was further hardened by precipitation during the heat treatment process of heating at 540°C for 2 hours. The matrix metal of the fiber-reinforced metal composite material was solutionized during heating at 540°C for 2 hours, and age-hardened during heating at 130°C for 48 hours.

更にかくして製造され熱処理された複合材料よ
り研削によつて外径22mm、内径12mm、長さ75mmの
中空ピストンピンを製造した。かくして製造され
た中空ピストンピンは、特殊鋼などにて形成され
た従来のピストンピンに比べはるかに軽量なもの
であつた。また上述の如く製造された中空ピスト
ンピンを上述の実施例1の場合と同様の耐久試験
に供したところ、特殊鋼などにて形成され熱処理
された従来のピストンピンと同等の耐久性を有し
ていることが認められた。
Furthermore, a hollow piston pin having an outer diameter of 22 mm, an inner diameter of 12 mm, and a length of 75 mm was manufactured by grinding the composite material thus manufactured and heat treated. The hollow piston pin manufactured in this manner was much lighter than conventional piston pins made of special steel or the like. Furthermore, when the hollow piston pin manufactured as described above was subjected to the same durability test as in Example 1, it was found to have the same durability as a conventional piston pin made of special steel and heat treated. It was recognized that there was.

実施例 5 実施例1に於て使用された鋳造装置と同様の鋳
造装置を用いて、円筒状表面部が焼入れされたス
テンレス鋼管よりなり、内部が炭素繊維を強化繊
維としアルミニウム合金をマトリツクス金属とす
る繊維強化金属複合材よりなる複合材料を製造し
た。
Example 5 Using a casting device similar to that used in Example 1, a cylindrical surface was made of a hardened stainless steel tube, the inside was made of carbon fiber as a reinforcing fiber, and an aluminum alloy as a matrix metal. A composite material made of fiber-reinforced metal composite material was manufactured.

まず高弾性タイプの炭素繊維(東レ社製M40、
繊維径7μ)を±25゜にてフイラメントワインデイ
ングすることにより、第4図に示された円筒体と
同様の外径21mm、内径10mm、長さ75mmの円筒体を
形成した。次いでその円筒体を予め溶体化処理
(950℃に加熱した後油冷)を施された外径22.5
mm、内径21mm、長さ75mmのステンレス鋼(JIS規
格SUS420J2)製のパイプ内に挿入することによ
り、第5図に示された組合せ体と同様の組合せ体
を形成した。
First, high elasticity carbon fiber (Toray M40,
A cylindrical body having an outer diameter of 21 mm, an inner diameter of 10 mm, and a length of 75 mm, similar to the cylindrical body shown in FIG. 4, was formed by filament winding a fiber (fiber diameter: 7 μm) at an angle of ±25°. The cylindrical body was then pre-solution-treated (heated to 950°C and then oil-cooled) with an outer diameter of 22.5 mm.
A combination body similar to the combination body shown in FIG. 5 was formed by inserting it into a stainless steel (JIS standard SUS420J2) pipe with a diameter of 21 mm and a length of 75 mm.

次いでかくして形成された炭素繊維とステンレ
ス鋼管とよりなる組合せ体をアルゴンガス雰囲気
中にて950℃に90分間加熱し、しかる後直ちに270
℃に加熱された高圧鋳造用の鋳型4の成形室5内
に配置した。次いで鋳型4の成形室5及び加圧室
6内に680℃のアルミニウム合金(JIS規格
AC4C)の溶湯7を素早く注湯し、150℃のプラ
ンジヤ8により成形室5及び加圧室6内に導入さ
れたアルミニウム合金の溶湯7を1500Kg/cm2の圧
力に加圧した。そしてその加圧状態をマグネシウ
ム合金の溶湯7が完全に凝固するまで保持した。
Next, the thus formed combination of carbon fiber and stainless steel tube was heated to 950°C for 90 minutes in an argon gas atmosphere, and then immediately heated to 270°C.
It was placed in a molding chamber 5 of a mold 4 for high-pressure casting heated to .degree. Next, the molding chamber 5 and pressurizing chamber 6 of the mold 4 are filled with aluminum alloy (JIS standard
A molten metal 7 of AC4C) was quickly poured into the mold, and the molten aluminum alloy 7 introduced into the molding chamber 5 and pressurizing chamber 6 by a plunger 8 at 150° C. was pressurized to a pressure of 1500 Kg/cm 2 . The pressurized state was maintained until the molten magnesium alloy 7 was completely solidified.

かくして鋳型4内のアルミニウム合金の溶湯7
が完全に凝固した後、その凝固体をノツクアウト
ピン9を上昇させることによつて鋳型4より取出
し、加圧室6内にて凝固した部分を切断によつて
除去し、これにより円筒状表面部が焼入れされた
ステンレス鋼管よりなり、内部が炭素繊維を強化
繊維としアルミニウム合金をマトリツクス金属と
する繊維強化金属複合材よりなる複合材料を製造
した。
Thus, the molten aluminum alloy 7 in the mold 4
After the solidified body is completely solidified, the solidified body is taken out from the mold 4 by raising the knockout pin 9, and the solidified part is removed by cutting in the pressurizing chamber 6, thereby forming a cylindrical surface. A composite material was manufactured in which the inner part was made of a hardened stainless steel tube and the inner part was a fiber-reinforced metal composite material with carbon fiber as the reinforcing fiber and aluminum alloy as the matrix metal.

更にかくして製造された複合材料を600℃にて
2時間加熱したのち水冷し、しかる後160℃にて
6時間加熱することにより人工時効処理した。こ
の場合ステンレス鋼管の円筒状外周面の表面より
約0.5mmの範囲の部分は、950℃に90分間加熱保持
されたのち高圧鋳造の過程に於て鋳型による吸熱
によつて急冷されることにより、マルテンサイト
組織となり、更に600℃にて2時間加熱される熱
処理過程に於て焼戻されて、硬度Hv=200となつ
た。また繊維強化金属複合材のマトリツクス金属
は600℃にて2時間加熱される過程に於て溶体化
され、160℃にて6時間加熱される過程に於て時
効硬化した。
Furthermore, the composite material thus produced was heated at 600°C for 2 hours, cooled with water, and then heated at 160°C for 6 hours to undergo artificial aging treatment. In this case, the area approximately 0.5 mm from the surface of the cylindrical outer peripheral surface of the stainless steel pipe is heated and held at 950°C for 90 minutes, and then rapidly cooled by heat absorption by the mold during the high-pressure casting process. It became a martensitic structure and was further tempered in a heat treatment process of heating at 600°C for 2 hours, resulting in a hardness of Hv=200. The matrix metal of the fiber-reinforced metal composite material was solutionized during heating at 600°C for 2 hours, and age-hardened during heating at 160°C for 6 hours.

更にかくして製造され熱処理された複合材料よ
り研削によつて外径22mm、内径11mm、長さ75mmの
中空ピストンピンを製造した。かくして製造され
た中空ピストンピンは、特殊鋼などにて形成され
た従来のピストンピンに比べはるかに軽量なもの
であつた。また上述の如く製造された中空ピスト
ンピンを上述の実施例1の場合と同様の耐久試験
に供したところ、特殊鋼などにて形成され熱処理
された従来のピストンピンと同等の耐久性を有し
ていることが認められた。
Furthermore, a hollow piston pin having an outer diameter of 22 mm, an inner diameter of 11 mm, and a length of 75 mm was manufactured by grinding the thus manufactured and heat-treated composite material. The hollow piston pin manufactured in this manner was much lighter than conventional piston pins made of special steel or the like. Furthermore, when the hollow piston pin manufactured as described above was subjected to the same durability test as in Example 1, it was found to have the same durability as a conventional piston pin made of special steel and heat treated. It was recognized that there was.

以上に於ては本発明を幾つかの実施例について
詳細に説明したが、本発明はこれらの実施例に限
定されるものではなく、本発明の範囲内にて種々
の実施例が可能であることは当業者にとつて明ら
かであろう。例えば上述の実施例に於ては鋼材に
対する表面硬化処理は浸炭窒化であるが、鋼材に
対し浸炭又は窒化のみが行われてもよい。
Although the present invention has been described above in detail with reference to several embodiments, the present invention is not limited to these embodiments, and various embodiments are possible within the scope of the present invention. This will be clear to those skilled in the art. For example, in the above-described embodiments, the surface hardening treatment for the steel material is carbonitriding, but the steel material may be subjected to only carburizing or nitriding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による複合材料の製造方法に於
ける実施例1に於て形成された組合せ体を示す断
面図、第2図は本発明による複合材料の製造方法
に於て使用された高圧鋳造装置を特に実施例1に
於ける鋳造工程にて示す断面図、第3図は実施例
1に於て製造された複合材料を示す斜視図、第4
図は実施例2に於て形成された強化繊維の円筒体
を示す斜視図、第5図は実施例2に於て形成され
た組合せ体を示す第1図と同様の断面図、第6図
は実施例3に於て形成された組合せ体を示す断面
図、第7図は実施例3に於て製造されたプツシユ
ロツドを示す正面図である。 1……パイプ、2……強化繊維、3……組合せ
体、4……鋳型、5……成形室、6……加圧室、
7……溶湯、8……プランジヤ、9……ノツクア
ウトピン、10……複合材料、11……円筒状外
周面、12……炭素繊維、13……円筒体、14
……パイプ、15……組合せ体、16……ボロン
繊維、17,18……エンドキヤツプ、19……
組合せ体、20……繊維強化金属複合材、21…
…プツシユロツド。
FIG. 1 is a sectional view showing an assembly formed in Example 1 of the method for manufacturing a composite material according to the present invention, and FIG. 2 is a cross-sectional view showing the high pressure used in the method for manufacturing a composite material according to the present invention. FIG. 3 is a cross-sectional view showing the casting apparatus particularly during the casting process in Example 1, FIG. 3 is a perspective view showing the composite material manufactured in Example 1, and FIG.
The figure is a perspective view showing a cylindrical body of reinforcing fibers formed in Example 2, FIG. 5 is a sectional view similar to FIG. 1 showing a combination body formed in Example 2, and FIG. 7 is a cross-sectional view showing the assembly formed in Example 3, and FIG. 7 is a front view showing the push rod manufactured in Example 3. DESCRIPTION OF SYMBOLS 1... Pipe, 2... Reinforced fiber, 3... Combination body, 4... Mold, 5... Molding chamber, 6... Pressurizing chamber,
7... Molten metal, 8... Plunger, 9... Knockout pin, 10... Composite material, 11... Cylindrical outer peripheral surface, 12... Carbon fiber, 13... Cylindrical body, 14
... Pipe, 15 ... Combination body, 16 ... Boron fiber, 17, 18 ... End cap, 19 ...
Combination body, 20...Fiber-reinforced metal composite material, 21...
...Putshurotsudo.

Claims (1)

【特許請求の範囲】 1 表面部の少なくとも一部が少なくとも一部に
て浸炭若しくは窒化処理された鋼材よりなり、他
の部分が強化繊維を強化材とし軽金属をマトリツ
クス金属とする繊維強化金属複合材よりなる複合
材料の製造方法にして、表面部の少なくとも一部
を構成する浸炭若しくは窒化可能な鋼材と強化繊
維との組合せ体を形成し、前記マトリツクス金属
の融点以上の温度にて前記組合せ体を浸炭若しく
は窒化処理し、前記組合せ体とマトリツクス金属
の溶湯とを複合化させる複合材料の製造方法。 2 表面部の少なくとも一部が少なくとも一部に
て析出硬化された鋼材よりなり、他の部分が強化
繊維を強化材とし軽金属をマトリツクス金属とす
る繊維強化金属複合材よりなる複合材料の製造方
法にして、表面部の少なくとも一部を構成する溶
体化処理された析出硬化可能なステンレス鋼材と
強化繊維との組合せ体を形成し、前記組合せ体を
前記鋼材に対する焼入れ開始温度であつて前記マ
トリツクス金属の融点以上の温度に加熱し、前記
組合せ体とマトリツクス金属の溶湯とを鋳型内に
て複合化させる複合材料の製造方法。
[Scope of Claims] 1. A fiber-reinforced metal composite material in which at least a portion of the surface portion is made of a steel material that has been carburized or nitrided, and the other portion is made of reinforcing fibers and a light metal as a matrix metal. A method for producing a composite material comprising: forming a combination of a carburized or nitridable steel material constituting at least a part of the surface portion and reinforcing fibers, and heating the combination at a temperature equal to or higher than the melting point of the matrix metal. A method for manufacturing a composite material, which comprises carburizing or nitriding the composite material and molten matrix metal to form a composite material. 2. A method for producing a composite material in which at least a part of the surface part is made of precipitation-hardened steel, and the other part is a fiber-reinforced metal composite material in which reinforcing fibers are used as reinforcement materials and light metals are used as matrix metals. forming a combination of a solution-treated precipitation hardenable stainless steel material constituting at least a portion of the surface portion and reinforcing fibers, and heating the combination at a quenching start temperature of the steel material and a temperature of the matrix metal. A method for manufacturing a composite material, which comprises heating the composite material to a temperature higher than its melting point and combining the composite material with a molten matrix metal in a mold.
JP10472982A 1982-06-18 1982-06-18 Composite material and its production Granted JPS58221657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10472982A JPS58221657A (en) 1982-06-18 1982-06-18 Composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10472982A JPS58221657A (en) 1982-06-18 1982-06-18 Composite material and its production

Publications (2)

Publication Number Publication Date
JPS58221657A JPS58221657A (en) 1983-12-23
JPH0329499B2 true JPH0329499B2 (en) 1991-04-24

Family

ID=14388581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10472982A Granted JPS58221657A (en) 1982-06-18 1982-06-18 Composite material and its production

Country Status (1)

Country Link
JP (1) JPS58221657A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112339306B (en) * 2020-10-13 2022-06-07 武汉理工大学 Necking processing preparation method of fiber-metal tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731467A (en) * 1980-08-04 1982-02-19 Toyota Motor Corp Manufacture of composite material
JPS5732345A (en) * 1981-03-06 1982-02-22 Toyota Motor Corp Manufacture of composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731467A (en) * 1980-08-04 1982-02-19 Toyota Motor Corp Manufacture of composite material
JPS5732345A (en) * 1981-03-06 1982-02-22 Toyota Motor Corp Manufacture of composite material

Also Published As

Publication number Publication date
JPS58221657A (en) 1983-12-23

Similar Documents

Publication Publication Date Title
US5385195A (en) Nickel coated carbon preforms
JPS6239067B2 (en)
JP3212245B2 (en) Casting method, casting apparatus and casting
US5469821A (en) Cylinder block and method of making the same
US4966221A (en) Method of producing aluminum alloy castings and piston made of aluminum alloy
JPH0329499B2 (en)
US5295528A (en) Centrifugal casting of reinforced articles
JP3681354B2 (en) Metal matrix composite and piston using the same
JPS63126661A (en) Production of piston
CA2138592C (en) Reinforcing material of connecting rod for automobile
JPH0230790B2 (en)
GB2151514A (en) Fibre-reinforced composite material and method of producing the material
JPH024935A (en) Manufacture of metal matrix composite
JPS642471B2 (en)
JP2976448B2 (en) Reinforced piston
JP2000158119A (en) Preliminary formed element to be compounded, and compounded light metal member
JP4310716B2 (en) Method for manufacturing composite light metal member
JPS606265A (en) Production of composite fiber member
KR100513584B1 (en) High Strength Magnesium Composite Materials with Excellent Ductility and Manufacturing Process for Them
JPS63153232A (en) Meal fiber-reinforced metallic composite material and its production
JPH1137192A (en) Manufacture of brake disc
JPS62278239A (en) Manufacture of composite material
JPS61132262A (en) Manufacture of composite member
JPS62199739A (en) Production of fibrous formed body for fiber reinforced composite material
RU2205970C2 (en) Piston of internal combustion engine and method of its manufacture