JPS606265A - Production of composite fiber member - Google Patents

Production of composite fiber member

Info

Publication number
JPS606265A
JPS606265A JP11293983A JP11293983A JPS606265A JP S606265 A JPS606265 A JP S606265A JP 11293983 A JP11293983 A JP 11293983A JP 11293983 A JP11293983 A JP 11293983A JP S606265 A JPS606265 A JP S606265A
Authority
JP
Japan
Prior art keywords
fiber
molten metal
molded body
composite
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11293983A
Other languages
Japanese (ja)
Inventor
Harumichi Hino
治道 樋野
Hiroe Okawa
広衛 大川
Yutaka Makuchi
裕 馬久地
Masaharu Oshima
正晴 大島
Katsuhiro Kishi
岸 克宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11293983A priority Critical patent/JPS606265A/en
Publication of JPS606265A publication Critical patent/JPS606265A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/13Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of gas pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/15Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain a composite member which is dense and has high strength by heating and holding a fiber molding to and at the temp. of a molten metal or above and penetrating the molten metal into the gaps among the fibers under the reduced pressure then solidifying the composite consisting of the fiber molding and the molten metal under a high pressure. CONSTITUTION:A fiber molding 12 of delta-alumina is placed in a graphite crucible 11 and is quickly heated to and held at about 650 deg.C by a high frequency heating furnace 13. A melt 18 of an Al alloy is poured into the crucible and at the same time a valve 16 is opened to evacuate the inside of an evacuated vessel 15 to about 10<-1>Torr and to evacuate the inside of the molding 12 through a filter 14, thereby penetrating the molten metal 18 into the gaps of the molding 12. The inside of the vessel 15 is then leaked and immediately the composite 20 consisting of the molding 12 and the molten metal 18 is charged into a metallic mold 21 and is solidified while the composite is kept pressed to about 1,500kg/cm<2> by a punch 22. The above-mentioned composite fiber member is combined with at least a part of the casting by a casting method. The deformation such as collapsion and bend of the fibers is obviated in the stage of high pressure casting and a uniform distribution is obtd.

Description

【発明の詳細な説明】 この発明は、繊維複合部材の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a fiber composite member.

繊維複合部材は、マトリックス中の一部または全部に繊
維を分散させて当該マトリックスの特性、例えば機械前
特性を改善するようにしたものであり、特性の改善が著
しい場合があることから多方面にわたってその適用が試
みられ、一部実用化されている。
Fiber composite members are made by dispersing fibers in part or all of a matrix to improve the properties of the matrix, such as pre-mechanical properties, and because the improvement in properties can be significant, it is used in many fields. Its application has been attempted and some have been put into practical use.

従来、このような繊維複合部材の製造方法としては、例
えば第1図に示すようなものがあった。
Conventionally, as a method for manufacturing such a fiber composite member, there has been a method as shown in FIG. 1, for example.

すなわち、第1図において、lは金型、2はm雌成形体
、3は金属溶湯、4はパンチであって、金型1内に繊維
成形体2を配設した後金属溶湯3を注入し、次いでパン
チ4にて加圧しつつ前記金属溶湯3を凝固させる方法で
ある(例えば、特開昭52−60222号公報参照)。
That is, in FIG. 1, l is a mold, 2 is an m female molded body, 3 is a molten metal, and 4 is a punch, and after the fiber molded body 2 is placed in the mold 1, the molten metal 3 is injected. Then, the molten metal 3 is solidified while being pressurized with a punch 4 (see, for example, Japanese Patent Laid-Open No. 52-60222).

しかしながら、このような従来の繊維複合部材の製造方
法では、金属溶湯3をパンチ4による高圧加圧によって
m雌成形体2の空隙に強制的に充填させて凝固させるよ
うにしていたため、金属溶湯3の充填前または途中で金
属溶湯3の繊維成形体2内への浸透抵抗が増大し、金属
溶7g、3の静圧が上Aしてこの圧力が繊維成形体2の
圧縮強度を越えたときに、繊維成形体2につぶれや曲が
り等の変形あるいは破断などの不具合が生じ、その結果
、複合部材中の[1の分布状7%が不均一になったり、
繊維の破断に伴って応力集中個所が発生したりして、複
合部材としての優れた特性が得難いという問題点があっ
た。
However, in such a conventional manufacturing method for fiber composite members, the molten metal 3 is forced to fill the voids of the m female molded body 2 by applying high pressure with the punch 4 and solidify. When the penetration resistance of the molten metal 3 into the fiber molded body 2 increases before or during filling, the static pressure of the metal molten metal 7g, 3 increases and this pressure exceeds the compressive strength of the fiber molded body 2. In this case, defects such as deformation or breakage occur in the fiber molded body 2, such as crushing, bending, etc., and as a result, the distribution of [1] in the composite member (7%) becomes uneven,
There is a problem in that stress concentration points occur as the fibers break, making it difficult to obtain excellent properties as a composite member.

この発明は、このような従来の問題点に着目してなされ
たもので、繊維成形体を複合させた繊維複合部材を高圧
鋳造により製造するに際し、高圧鋳造時に前記繊維成形
体につぶれや曲がり等の変形あるいは破断などの不具合
が発生せず、製造後の繊維複合部材中における繊維の分
布状態が均一であって、応力集中個所が発生したりする
こともない繊維複合部材の製造方法を提供することを目
的としている。
This invention was made by focusing on such conventional problems, and when manufacturing a fiber composite member in which fiber molded bodies are composited by high-pressure casting, the fiber molded bodies may be crushed or bent during high-pressure casting. To provide a method for manufacturing a fiber composite member in which defects such as deformation or breakage do not occur, the fiber distribution state in the fiber composite member after manufacturing is uniform, and stress concentration areas are not generated. The purpose is to

この発明による繊維複合材料の製造方法は、繊維成形体
を部分的または全体的に複合させた繊維複合部材を高圧
鋳造により製造するに際し、前記繊維成形体を金属溶湯
複合物」二に加熱保持して当該繊維成形体内部の空隙に
減圧下で金属溶湯を浸透させた後、該繊維成形体−金属
溶湯複合物を高圧下で凝固させることを特徴とし、同一
の目的を達成する他の発明では、繊維成形体を部分的に
複合させるに際し、繊維成形体を金属溶湯温度以」二に
加熱保持して当該繊維成形体内部の空隙に減圧下で金属
溶湯を浸透させた後、該繊維成形体−金属溶湯複合物を
高圧下で凝固させて繊維複合部材を得、前記繊維複合部
材を加圧鋳造法や重力鋳造法等の適宜の鋳造法によって
鋳物中の少なくとも一部に複合させることを特徴として
いる。
The method for manufacturing a fiber composite material according to the present invention includes heating and holding the fiber molded body in a molten metal composite when manufacturing a fiber composite member in which a fiber molded body is partially or completely composited by high-pressure casting. In another invention which achieves the same object, the molten metal is infiltrated into the voids inside the fiber molded body under reduced pressure, and then the fiber molded body-metal molten composite is solidified under high pressure. When partially compositing the fibrous molded body, the fibrous molded body is heated and held at a temperature lower than the temperature of the molten metal, and the molten metal is infiltrated into the voids inside the fibrous molded body under reduced pressure. - The molten metal composite is solidified under high pressure to obtain a fiber composite member, and the fiber composite member is composited into at least a portion of the casting by an appropriate casting method such as a pressure casting method or a gravity casting method. It is said that

この発明が適用される繊維としては、炭素繊維、ボロン
繊維、アルミナ繊維、窒化けい素繊維、炭化けい素繊維
、ジルコニア繊維、ガラス繊卸、アラミド繊維、鋼繊維
、ボイスカー等々の非金属系(セラミックス、ガラス、
高分子物質等)あるいは金属系の繊維などがあり、使用
目的等に応じて適宜選定することが可能である。そして
、繊維と金属とのぬれ性を高めるため(例えば、C系繊
維とCu、A文との複合の場合など)に、繊維の表面に
適宜の表面処理を施しておくことも可能である。
The fibers to which this invention is applied include non-metallic (ceramic) fibers such as carbon fiber, boron fiber, alumina fiber, silicon nitride fiber, silicon carbide fiber, zirconia fiber, glass fiber, aramid fiber, steel fiber, and voice car. , glass,
There are polymer materials, etc.) and metal fibers, and it is possible to select an appropriate one depending on the purpose of use. In order to improve the wettability between the fibers and the metal (for example, in the case of a composite of C-based fibers, Cu, and A pattern), it is also possible to perform an appropriate surface treatment on the surface of the fibers.

そして、この繊維を成形するに際しては、例えばスラリ
ー生民7昆在させた繊維をフィルターを通して吸引して
伺着堆積させる方法やプレスによる方法など適宜の方法
を採用することができる。
When molding these fibers, an appropriate method can be used, such as a method in which the fibers are collected in a slurry by suction through a filter and deposited, or a method using a press.

一方、マ)・リックスとしての金属には、低融点金属例
えばA4.Mg、Cuおよびこれらの合金さらにはその
他の金属および合金なども使用目的等に応じて選択する
ことか可能である。
On the other hand, low melting point metals such as A4. Mg, Cu, and alloys thereof, as well as other metals and alloys, can be selected depending on the purpose of use.

そして、上記した適宜形状の繊維成形体を前記金属の溶
湯温度以上の温度に加熱保持して当該繊維成形体内部の
空隙に減圧下で前記金属溶湯を浸透させる。したがって
、減圧下での金属溶湯の供給によって、当該金属溶湯は
繊維成形体内部のすみずみまで浸透して充填され、この
際繊維成形体につぶれや曲がり等の変形などが生じるの
を防止することが可能である。かくして繊維成形体内部
の空隙に減圧下で金属溶湯を浸透充填させた後、直ちに
前記繊維成形体−金属溶湯複合物を高圧下で凝固させて
、金属マトリックス中に繊維が均一に分散した繊維複合
部材を得る。この際、高圧下で金属溶湯を凝固させる手
段としては、機械的なプレスによって凝固させるのが簡
便であるが、そのほかガス加圧などを採用することも可
能である。
Then, the above-described appropriately shaped fiber molded body is heated and maintained at a temperature equal to or higher than the temperature of the molten metal, and the molten metal is allowed to penetrate into the voids inside the fiber molded body under reduced pressure. Therefore, by supplying the molten metal under reduced pressure, the molten metal permeates and fills every corner inside the fiber molded body, and at this time, it is necessary to prevent the fiber molded body from being deformed such as crushing or bending. is possible. After the molten metal is infiltrated into the voids inside the fiber molded body under reduced pressure, the fiber molded body-metal composite is immediately solidified under high pressure to produce a fiber composite in which the fibers are uniformly dispersed in the metal matrix. Get the parts. At this time, as a means for solidifying the molten metal under high pressure, it is convenient to solidify by mechanical pressing, but it is also possible to employ gas pressurization or the like.

このようにして得られた繊維複合部材は、金属マトリッ
クスの一部に繊維が分散された繊維複合部材にも適用可
能であり、この場合には、繊維成形体−金属溶湯複合物
を高圧下で凝固させて繊維複合金属を得たのち、この繊
維複合金属を加圧鋳造法や重力鋳造法等の適宜の鋳造法
によって鋳物中の少なくとも一部に複合させる。
The fiber composite member obtained in this way can also be applied to a fiber composite member in which fibers are dispersed in a part of the metal matrix, and in this case, the fiber molded body-molten metal composite is heated under high pressure. After solidifying to obtain a fiber composite metal, this fiber composite metal is composited into at least a portion of the casting by an appropriate casting method such as a pressure casting method or a gravity casting method.

以下、この発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

〔実施例1〕 第2図はこの実施例1において使用した装置の概略断面
図であって、図において、11は水平断面が円形をなす
坩堝、12は円柱状に成形した繊維成形体、13は坩堝
11および繊維成形体12を加熱するために設置した高
周波コイル13aおよび炉枠13bからなる高周波誘導
加熱式の加熱炉、14は坩堝11の底部に設置され且つ
空気を透過させ溶湯を透過させないフィルター、15は
−1一部開口15aを介して前記フィルタ14および坩
堝11内と連通した減圧室容器であって、この減圧室容
器15はバルブ16を介して図示しない真空タンクに連
結しである。
[Example 1] Fig. 2 is a schematic sectional view of the apparatus used in Example 1, and in the figure, 11 is a crucible whose horizontal cross section is circular, 12 is a cylindrical fiber molded body, and 13 is a crucible having a circular horizontal cross section. 14 is a high-frequency induction heating type heating furnace consisting of a high-frequency coil 13a and a furnace frame 13b installed to heat the crucible 11 and the fiber molded body 12; 14 is installed at the bottom of the crucible 11, and allows air to pass through but not the molten metal. A filter 15 is a vacuum chamber container that communicates with the filter 14 and the inside of the crucible 11 through a -1 partial opening 15a, and this vacuum chamber container 15 is connected to a vacuum tank (not shown) through a valve 16. .

そして、この実施例では、繊維として平均径3pm、長
さ1〜2mm、組成96%AM、03−4%5i02の
δアルミナ繊維を使用し、この繊維を円柱状の繊維成形
体(かさ密度1.32g/cm3 、Vf : 40%
)に成形したものを用いた。次に、この繊維成形体12
を黒鉛坩堝11内に設置し、高周波加熱炉13によって
急速に加熱した。このとき、高周波加熱炉13によって
黒鉛坩堝11が加熱されると同時に繊維成形体12が加
熱されるが、この間、坩堝11と繊維成形体12の温度
を非接触型の温度計によって測定し、それらの温度が6
50’Cの一定となるように保持した。次に、繊維成形
体12の」二部より坩堝11内に取鍋17よりJIS規
格AC8Aアルミニウム合金溶ン易(溶湯温度650°
C)18を注温し、同時にバルブ16を開放して減圧室
容器15内を10−1torrに減圧した。ここで、フ
ィルタ14として発泡石こうを用いており、空気は透過
させるが金属溶湯12は透過させないため、フィルタ1
4を介して繊維成形体12の内部が減圧されることによ
り合金溶湯18は繊維成形体12の空隙部分に緩やかに
しかもその隅々まで浸透し充填された。その後減圧室容
器15内をリークし、直ちに第3図に示すように前記合
金溶湯12を充填させた繊維成形体−金属溶湯複合物2
0を金型21内に装入し、パンチ22により1500 
kg/ Cm2の圧力で加圧してこの加圧下で凝固させ
て、第4図に示す繊維複合部材25を得た。
In this example, δ alumina fibers with an average diameter of 3 pm, a length of 1 to 2 mm, and a composition of 96% AM and 03-4% 5i02 are used as fibers, and these fibers are formed into a cylindrical fiber molded body (bulk density 1 .32g/cm3, Vf: 40%
) was used. Next, this fiber molded body 12
was placed in a graphite crucible 11 and rapidly heated in a high frequency heating furnace 13. At this time, the graphite crucible 11 is heated by the high-frequency heating furnace 13 and the fiber molded body 12 is heated at the same time. During this time, the temperatures of the crucible 11 and the fiber molded body 12 are measured with a non-contact thermometer, and temperature is 6
It was maintained at a constant temperature of 50'C. Next, from the second part of the fiber molded body 12 into the crucible 11, a JIS standard AC8A aluminum alloy (molten metal temperature 650°
C) 18 was injected, and at the same time, the valve 16 was opened to reduce the pressure inside the vacuum chamber container 15 to 10 −1 torr. Here, foamed gypsum is used as the filter 14, which allows air to pass through but not the molten metal 12, so the filter 14
By reducing the pressure inside the fiber molded body 12 through the fiber molded body 12, the molten alloy metal 18 penetrated gently into the voids of the fiber molded body 12 and filled every corner thereof. Thereafter, the inside of the vacuum chamber container 15 leaks, and the fiber molded body-molten metal composite 2 is immediately filled with the molten alloy 12 as shown in FIG.
0 into the mold 21 and punched 1500 by the punch 22.
The fiber composite member 25 shown in FIG. 4 was obtained by applying pressure at a pressure of kg/cm2 and coagulating under this pressure.

」1記の方法により製造した繊維複合部材25において
は、繊維成形体(■2)のつぶれ9曲がり等の変形や破
断等の不具合が無く、繊維の分散が均一でかつ緻密なも
のとなっており、非常に良好な繊維複合金属部材を得る
ことができた。
In the fiber composite member 25 manufactured by the method described in ``1'', there were no defects such as deformation or breakage such as crushing and bending of the fiber molded product (■2), and the fibers were uniformly and densely dispersed. As a result, a very good fiber composite metal member could be obtained.

〔実施例2〕 実施例1と同様の装置を使用し、繊維として平均径5p
Lm、長さ3mmのW繊維を使用し、このW繊維成形体
(V f = 30%)を坩堝11内に設置して加熱炉
13に通電することにより坩堝11および繊維成形体1
2を1100’Oに加熱保持し。
[Example 2] Using the same apparatus as in Example 1, fibers with an average diameter of 5p were
Using a W fiber with a length of 3 mm and placing this W fiber molded body (V f = 30%) in the crucible 11 and energizing the heating furnace 13, the crucible 11 and the fiber molded body 1 are heated.
2 was heated and maintained at 1100'O.

次いで1100°Cの電解銅溶湯18を坩堝11内に供
給してこの金属溶湯18を繊維成形体12内に浸透充填
させたのち、得られた繊維成形体−金属溶湯複合物を第
3図に示す金型21内に設置し、パンチ22を降下させ
て1500 kg/ Cm2の圧力で前記複合物20を
加圧し、この加圧下で凝固させることによって、繊維の
分散が均一でしかも緻雀な繊維複合部材25を得た。
Next, an electrolytic copper molten metal 18 at 1100°C is supplied into the crucible 11 to infiltrate and fill the fiber molded body 12 with this molten metal 18. The resulting fiber molded body-metal molten composite is shown in FIG. The composite material 20 is placed in a mold 21 shown in the figure, and the punch 22 is lowered to apply pressure to the composite material 20 at a pressure of 1500 kg/cm2, and the composite material 20 is solidified under this pressure, thereby uniformly dispersing the fibers and forming dense fibers. A composite member 25 was obtained.

〔実施例3〕 実施例1において、繊維成形体12を内燃機関用ピスト
ンのヘッド部分を考慮した形状に成形し、その他は実施
例1と同じにしてピストンのヘッド部分に対応した形状
の燃焼室形成用空間25aを有する繊維複合部材25を
製作した。次いで、このth!t%を複合部材25を第
5図に示す内燃機関用ピストン成形金型31(31aは
下型、31bは」−型、31cはサイドコアである)内
に設置し、JIS規格AC8Aアルミニウム合金溶湯3
2を金型31内に供給し、ピストンヘッド部に繊維複合
部材25を複合させた。
[Example 3] In Example 1, the fiber molded body 12 was molded into a shape that took into account the head part of a piston for an internal combustion engine, and the other parts were the same as in Example 1, and a combustion chamber with a shape corresponding to the head part of the piston was formed. A fiber composite member 25 having a forming space 25a was manufactured. Next, this th! t%, the composite member 25 was placed in a piston forming mold 31 for an internal combustion engine (31a is a lower mold, 31b is a "-mold, 31c is a side core) shown in FIG. 5, and JIS standard AC8A molten aluminum alloy 3
2 was supplied into the mold 31, and the fiber composite member 25 was composited onto the piston head portion.

このようにして得られたピストンの特性評価試験を行っ
た結果、繊維複合金属部分の熱伝導率は0 、10ca
l 1cmΦsec * 00と、A1合金の1/2以
下に低減されることにより、内燃機関としての熱効率が
向上し、燃費を向」−さぜることができ、マタ、HIC
,Co等のエミッションを低減させることができるもの
、であった。
As a result of the characteristic evaluation test of the piston obtained in this way, the thermal conductivity of the fiber composite metal part was 0.10ca.
l 1cmΦsec * 00, which is less than 1/2 that of A1 alloy, improves thermal efficiency as an internal combustion engine and improves fuel consumption.
, Co, etc. can be reduced.

〔実施例4〕 実施例1において、繊維成形体12を内燃機関用動弁機
構部品であるカムシャフトのカム部分を考慮した形状に
成形し、その他は実施例1と同じにしてカムシャフトの
カム部分に対応した形状の繊維複合部材25を製作した
。次いで、この繊維複合部材25を第6図に示す内燃機
関用力ムシャフト成形型35(35aは湯口、35bは
湯道。
[Example 4] In Example 1, the fiber molded body 12 was molded into a shape that took into account the cam part of a camshaft, which is a valve mechanism component for an internal combustion engine, and the other parts were the same as in Example 1, and the cam part of the camshaft was molded. A fiber composite member 25 having a shape corresponding to the part was manufactured. Next, this fiber composite member 25 is molded into an internal combustion engine shaft forming mold 35 (35a is a sprue, 35b is a runner) as shown in FIG.

35cは鋳造空間である。)内に配置し、JIS規格A
C4Bアルミニウム合金溶湯な成形型35内に供給し、
カム部を繊維複合部材25で構成しカムシャフトを得た
35c is a casting space. ), JIS standard A
Supplying molten C4B aluminum alloy into a mold 35,
A cam shaft was obtained by constructing a cam portion with a fiber composite member 25.

このようにして得られたカムシャフトを耐久試験に供し
た結果、カム部を構成する繊維複合部材の耐摩耗性9強
度に何ら問題はなく、特性の優れたカム部を備えたカム
シャフトであると同時に、カムシャフトの軽量化により
内燃機関の動力性能は大幅に向上することが確かめられ
た。
As a result of subjecting the thus obtained camshaft to a durability test, there were no problems with the abrasion resistance9 strength of the fiber composite material that constitutes the cam part, and the camshaft was equipped with a cam part with excellent characteristics. At the same time, it was confirmed that reducing the weight of the camshaft significantly improves the power performance of the internal combustion engine.

以上説明してきたように、この発明によれば、繊維成形
体を部分的あるいは全体的に複合させた繊維複合部材を
高圧鋳造により製造するに際し、前記繊維成形体を金属
溶湯温度以上に加熱保持して当該#1!維成形体内部の
空隙に減圧下で金属溶湯を浸透させた後、該繊維成形体
−金属溶湯複合物を高圧下で凝固させて繊維複合部材を
得るようにし、繊維成形体を部分的に複合させるに際し
ては、前記繊維複合部材を鋳造法によって鋳物中の少な
くとも一部に複合させるようにしたから、従来技術のよ
うに、金属溶湯の繊維成形体内への浸透抵抗増加に伴う
溶湯圧力の増加による繊a成形体のつぶれ9曲がり、破
断などの不具合が生じていたのを解消することができる
と同時に分散の不均一をも解消することができ、緻密で
かつ高強度の繊維複合部材を得ることができるという非
常に優れた効果が得られる。
As explained above, according to the present invention, when manufacturing a fiber composite member in which a fiber molded body is partially or completely composited by high-pressure casting, the fiber molded body is heated and held at a temperature higher than the temperature of the molten metal. That #1! After infiltrating the molten metal into the voids inside the fiber molded body under reduced pressure, the fiber molded body-molten metal composite is solidified under high pressure to obtain a fiber composite member, and the fiber molded body is partially composited. In this case, since the fiber composite member is composited into at least a part of the casting by a casting method, unlike the conventional technology, the molten metal pressure increases due to the increased resistance to penetration of the molten metal into the fiber molded body. To obtain a dense and high-strength fiber composite member by being able to eliminate defects such as crushing, bending, and breakage of a fiber a molded product, and at the same time eliminating non-uniformity of dispersion. A very good effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高圧凝固鋳造装置の一例を示す縦断面図
、第2図および第3図はこの発明の実施例において使用
した金属溶湯充填装置の縦断面図および高圧凝固充填装
置の縦断面図、第4図は第3図の装置によって得た繊維
複合部材の斜視図、第5図および第6図はこの発明の実
施例において使用した内燃機関用ピストン成形金型およ
びカムシャフト成形型の各々縦断面図、第7図は第6図
のX−X線断面図である。 12・・・繊維成形体、18,23.36・・・金属溶
湯、25・・・繊維複合部材。 区 ト n τ−で−
FIG. 1 is a longitudinal sectional view showing an example of a conventional high-pressure solidification and casting apparatus, and FIGS. 2 and 3 are longitudinal sectional views of a molten metal filling apparatus and a longitudinal cross-section of the high-pressure solidification and filling apparatus used in an embodiment of the present invention. 4 is a perspective view of a fiber composite member obtained by the apparatus shown in FIG. 3, and FIGS. 5 and 6 show a piston mold for an internal combustion engine and a camshaft mold used in an embodiment of the present invention. 7 is a longitudinal sectional view, and FIG. 7 is a sectional view taken along the line X--X in FIG. 6. 12... Fiber molded body, 18, 23.36... Molten metal, 25... Fiber composite member. kuto n τ-de-

Claims (2)

【特許請求の範囲】[Claims] (1)繊維成形体を金属溶湯温度以」二に加熱保持して
当該繊維成形体内部の空隙に減圧下で金属溶湯を浸透さ
せた後、該繊維成形体−金属溶湯複合物を高圧下で凝固
させることを特徴とする繊維複合部材の製造方法。
(1) After heating and maintaining the fiber molded body at a temperature below the temperature of the molten metal and infiltrating the molten metal into the voids inside the fiber molded body under reduced pressure, the fiber molded body-molten metal composite is heated under high pressure. A method for manufacturing a fiber composite member, characterized by solidifying it.
(2)繊維成形体を金属溶湯温度以上に加熱保持して当
該繊維成形体内部の空隙に減圧下で金属溶湯を浸透させ
た後、該繊維成形体−金属溶湯複合物を高圧下で凝固さ
せて繊維複合部材を得、前記繊維複合部材を鋳造法によ
って鋳物中の少なくとも一部に複合させることを特徴と
する繊維複合部材の製造方法。
(2) After heating and maintaining the fiber molded body above the temperature of the molten metal to infiltrate the molten metal into the voids inside the fiber molded body under reduced pressure, the fiber molded body-molten metal composite is solidified under high pressure. A method for producing a fiber composite member, comprising: obtaining a fiber composite member using a casting method, and incorporating the fiber composite member into at least a portion of a casting by a casting method.
JP11293983A 1983-06-24 1983-06-24 Production of composite fiber member Pending JPS606265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11293983A JPS606265A (en) 1983-06-24 1983-06-24 Production of composite fiber member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11293983A JPS606265A (en) 1983-06-24 1983-06-24 Production of composite fiber member

Publications (1)

Publication Number Publication Date
JPS606265A true JPS606265A (en) 1985-01-12

Family

ID=14599276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11293983A Pending JPS606265A (en) 1983-06-24 1983-06-24 Production of composite fiber member

Country Status (1)

Country Link
JP (1) JPS606265A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149831A (en) * 1985-12-24 1987-07-03 Nippon Carbon Co Ltd Manufacture of fiber-reinforced metallic composite material
US5167920A (en) * 1986-05-01 1992-12-01 Dural Aluminum Composites Corp. Cast composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149831A (en) * 1985-12-24 1987-07-03 Nippon Carbon Co Ltd Manufacture of fiber-reinforced metallic composite material
US5167920A (en) * 1986-05-01 1992-12-01 Dural Aluminum Composites Corp. Cast composite material

Similar Documents

Publication Publication Date Title
JP3212245B2 (en) Casting method, casting apparatus and casting
US5385195A (en) Nickel coated carbon preforms
JP2002542035A (en) Dies and methods for manufacturing parts
JPS6239067B2 (en)
JP2001276961A (en) Preformed porous metal product and production process of composite metallic parts using the same
US4588551A (en) Article having cast metal portion and sintered metallic portion and method of producing same
US6432557B2 (en) Metal matrix composite and piston using the same
JP2000225457A (en) Ceramic reinforced metallic compound material, and its manufacture
JPS606265A (en) Production of composite fiber member
JPH033539B2 (en)
JP3126704B2 (en) Casting method for castings with composite materials cast
JPS63126661A (en) Production of piston
US20070035066A1 (en) Casting process
JPH0225700B2 (en)
JPS58215263A (en) Production of composite material
JP3758114B2 (en) Aluminum alloy member and manufacturing method thereof
KR100513584B1 (en) High Strength Magnesium Composite Materials with Excellent Ductility and Manufacturing Process for Them
JPH02254132A (en) Manufacture of iron porous body used for reinforcing metallic parts for pressure casting of aluminum or the like
JP3214657B2 (en) Piston for internal combustion engine and method of manufacturing the same
JP2811452B2 (en) Method for producing fiber-reinforced composite material
JPS6221456A (en) Production of hollow casting
JPS62238039A (en) Manufacture of fiber reinforced composite member
JPS6029433A (en) Production of fiber-reinforced metallic composite material
JPH02303672A (en) Production of casting of metallic composite material
JPS642471B2 (en)