JPH02254132A - Manufacture of iron porous body used for reinforcing metallic parts for pressure casting of aluminum or the like - Google Patents

Manufacture of iron porous body used for reinforcing metallic parts for pressure casting of aluminum or the like

Info

Publication number
JPH02254132A
JPH02254132A JP7536989A JP7536989A JPH02254132A JP H02254132 A JPH02254132 A JP H02254132A JP 7536989 A JP7536989 A JP 7536989A JP 7536989 A JP7536989 A JP 7536989A JP H02254132 A JPH02254132 A JP H02254132A
Authority
JP
Japan
Prior art keywords
iron
porous body
iron powder
vessel
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7536989A
Other languages
Japanese (ja)
Inventor
Tadayoshi Nakamura
忠義 中村
Isao Tan
功 丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP7536989A priority Critical patent/JPH02254132A/en
Publication of JPH02254132A publication Critical patent/JPH02254132A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the iron porous body used for reinforcing metallic parts for pressure casting at low cost by packing iron powder into a heat- resistant vessel at specified bulk density and sintering the powder together with the vessel at a high temp. in a low oxygen atmosphere. CONSTITUTION:Reduced iron powder 1 (having about 1 to 1000mu grain size and about 45mu average grain size) is packed into a vessel 2 made of stainless steel into a cone shape by free-falling. The vessel 2 is vibrated and leveled into a planar shape to regulate the bulk density of the packed iron powder 1 to about 1.5 to 4.3g/cm<2>, which is sintered at about 1100 to 1150 deg.C in a mixed atmosphere of H2 and N2 while it is still in the vessel 2 to form a plate-shaped iron porous body 1a. The iron porous body 1a is preliminarily heated to about 100 to 300 deg.C and is charged to a mold 3 for casting, to which Al molten metal is poured from a sprue 3a, then, pressure of about 400 to 1000kg/cm<2> is applied and solidifying is thereafter executed, so that the composite material 4 infiltrated with an aluminum material 5 perfectly into the core part of the iron porous body 1a can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関におけるビスI−ン等に使用される
アルミ、マグネシウム又は亜鉛等の加圧鋳造用金[1の
部品において、当該加圧鋳造用金属製部品における耐摩
耗、剛性及び各種の物理的な性能を強化するために使用
する鉄多孔体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to press-casting gold of aluminum, magnesium or zinc used for parts such as screws in internal combustion engines. The present invention relates to a method for producing a porous iron body used to enhance the wear resistance, rigidity, and various physical performances of metal parts for die casting.

〔従来の技術〕[Conventional technology]

最近、内燃機関におけるビス1−ン等に使用されるアル
ミ等の加圧鋳造用金属製の部品においては、当該加圧鋳
造用金属製部品における各種の機械的強度等をアンプす
るために、当該加圧鋳造用金属製部品の内部に、金属の
多孔体を埋設すること、つまり、金属の多孔体を、前記
アルミ等の加圧鋳造用金属製部品を鋳造するための鋳造
用金型内に配設したのち、前記鋳造用金型内に、アルミ
等の加圧鋳造用金属の溶融物を加圧状態(約400kg
/ cra以上の圧力)で注入することにより、前記加
圧鋳造用金属製部品を、加圧鋳造用金属と金属多孔体と
の複合材にすることが行なわれている。
Recently, in pressure casting metal parts such as aluminum used for screws in internal combustion engines, in order to amplify the various mechanical strengths of the pressure casting metal parts, Embedding a porous metal body inside a metal part for pressure casting, that is, placing the porous metal body in a casting mold for casting the metal part for pressure casting such as aluminum. After this, a molten metal for pressure casting such as aluminum is placed in a pressurized state (approximately 400 kg) in the casting mold.
The metal parts for pressure casting are made into a composite material of the metal for pressure casting and a porous metal body by injecting the pressure casting metal parts at a pressure of more than /cra.

この場合において、先行技術としての特開昭51−21
2159号公報及び特開昭60−118367号公報は
、前記アルミ鋳造部品を強化するための金属の多孔体と
して、発泡ニッケル等のニッケルの多孔体を使用するこ
とを提案している。
In this case, JP-A-51-21 as the prior art
No. 2159 and Japanese Unexamined Patent Publication No. 118367/1988 propose the use of a porous nickel material such as nickel foam as a porous metal material for reinforcing the aluminum cast parts.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この先行技術において金属の多孔体としてニケノルの多
孔体を使用するのは、ニッケルの多孔体を、発泡合成樹
脂の内部にニッケルを電気メツキし、次いで、加熱によ
って合成樹脂を焼失すると云う方法によって比較的簡単
に製造することができるからであるが、ニッケルは、そ
れ自体、相当高価であると共に、比重が大きいから、製
造コスト及び重量のアップを招来するのであり、しかも
、ニッケルの熱膨張係数は大きいので、アルミ材の熱膨
張を、このニッケルの多孔体によって抑制することの効
果が低いのであった。また、耐摩耗性、剛性及び他の物
理的性能の面でも、十分な強化を図れないのであった。
In this prior art, a Nikenol porous body is used as a porous metal body by electroplating nickel inside a foamed synthetic resin, and then burning out the synthetic resin by heating. However, nickel itself is quite expensive and has a high specific gravity, which increases the manufacturing cost and weight.Moreover, the coefficient of thermal expansion of nickel is Because of its large size, the effectiveness of suppressing the thermal expansion of the aluminum material by the porous nickel material was low. Furthermore, sufficient reinforcement cannot be achieved in terms of wear resistance, rigidity, and other physical performance.

そこで、前記アルミ等の加圧鋳造用金属製部品を強化す
るための金属の多孔体として、ニッケルよりも軽く、H
lつ、安価で、更に熱膨張係数が小さい鉄の多孔体を使
用するのが良いと考えられる。
Therefore, H
First, it is thought that it would be better to use a porous body of iron, which is inexpensive and has a small coefficient of thermal expansion.

ところが、鉄の多孔体の製造に際しては、発泡剤による
直接発泡方法では発泡することができず、また、前記公
開公+じに記載されているニケソルのように、発泡合成
樹脂の内部にニッケルを電気メツキし、次いで、加熱に
よって合成樹脂を焼失すると云う方法を採用することが
できないのである。
However, when manufacturing porous iron bodies, it is not possible to foam by direct foaming using a foaming agent, and nickel is not added inside the foamed synthetic resin, such as Nikesol described in the above-mentioned publication. It is not possible to adopt a method of electroplating and then burning out the synthetic resin by heating.

従って、鉄の多孔体の製造に際しては、従来から良く知
られているように、適宜粒度の鉄粉を、金型内において
高い圧力で加圧プレスして所定の形状に固め成形したの
ち、金型から取り出して高温で焼結しなければならない
が、この焼結法によると、鉄多孔体における圧縮破壊強
度は可成り高いので、溶融アルミ材を高い圧力で鋳造用
金型内に注入するに際して、この鉄多孔体に潰れ破壊が
発生しない利点を有する反面、鉄多孔体の嵩密度が高く
て、空孔率が低いので、当該鉄多孔体における多孔組織
内への溶融アルミ材の浸透性が著しく悪く、表面の極く
浅い部分に対して浸透するだけであると共乙こ、複合部
材の重量が大幅に増大することになる。
Therefore, when manufacturing porous iron bodies, as is well known, iron powder of an appropriate particle size is pressed under high pressure in a mold to solidify it into a predetermined shape, and then molded into a metal mold. It must be taken out of the mold and sintered at high temperature, but according to this sintering method, the compressive fracture strength of the porous iron material is quite high, so when molten aluminum material is injected into the casting mold at high pressure, Although this iron porous body has the advantage that crushing failure does not occur, the iron porous body has a high bulk density and a low porosity, so the permeability of molten aluminum material into the porous structure of the iron porous body is low. If the penetration is extremely poor and only a very shallow portion of the surface is penetrated, the weight of the composite member will increase significantly.

なお、従来、鉄の多孔体の焼結に際しては、当該鉄多孔
体における強度のアップを目的として黒鉛粉を、また、
焼結時の収縮を小さくすることを目的として銅粉を各々
混入することが一般的に行なわれている。
Conventionally, when sintering a porous iron body, graphite powder was used to increase the strength of the iron porous body, and
It is common practice to mix copper powder into each material for the purpose of reducing shrinkage during sintering.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するため本発明は、適宜粒度の鉄粉を、
耐熱性の容器内に、自由落下にて充填したのち、加圧プ
レスすることなく適宜時間にわたって振動を付与するこ
とにより、容器内に充填した鉄粉の嵩密度を約1.5〜
4 、 3 g /crAにし、次いで、前記鉄粉を、
耐熱性容器に入れた状態で、低酸素雰囲気又は還元雰囲
気中において高温で焼結することにした。
In order to achieve this objective, the present invention uses iron powder of appropriate particle size,
After filling a heat-resistant container by free-falling, the bulk density of the iron powder filled in the container is reduced to approximately 1.5 to 1.5 by applying vibration for an appropriate period of time without pressurizing.
4.3 g/crA, and then the iron powder was
It was decided to sinter the material in a heat-resistant container at a high temperature in a low oxygen atmosphere or a reducing atmosphere.

〔作  用〕[For production]

適宜粒度の鉄粉を、容器内に、自由落下にて充填しただ
Lノでは、鉄粉のブリッジ現象により空洞ができるが、
鉄粉の容器内への自由落下による充填したあとにおいて
、適宜時間にわたって振動を付与することにより、前記
ブリッジ現象を崩すことができるから、不均一で巨大な
空洞の発生がなく均一組織の多孔体を得ることができる
When iron powder of an appropriate particle size is filled into a container by free fall, a cavity is formed due to the bridging phenomenon of the iron powder, but
After the iron powder is filled into the container by free fall, the bridging phenomenon can be broken by applying vibration for an appropriate period of time, so that a porous body with a uniform structure is created without the generation of uneven and huge cavities. can be obtained.

また、鉄粉は、容器内に自由落下にて充填したのち、加
圧プレスすることなく適宜時間にわたって振動を付与し
ただけで、密に詰ることばないから、鉄多孔体における
嵩密度を小さく、延いては、空孔率を大きくすることが
でき、且つ、前記鉄粉を、耐熱性容器内に入れた状態で
高温で焼結することにより、鉄粉を、その空孔率が大き
い状態で、前記容器の形状通りの形状に固めることがで
きる。
In addition, iron powder can be filled into a container by free-falling and then vibrated for an appropriate period of time without being pressurized, so that it does not become densely packed. By sintering the iron powder at high temperature in a heat-resistant container, the porosity can be increased. It can be solidified into the shape of the container.

すなわち、嵩密度が小さくて、空孔率の高い鉄多孔体を
、所定の形状にして製造することができるから、この鉄
多孔体を、アルミ等の加圧鋳造用金属製部品に対する鋳
造用金型内に配設したのち、前記鋳造用金型内に、加圧
鋳造用金属の溶湯を高い圧力で充填した場合に、加圧鋳
造用金属の溶湯は、前記鉄多孔体における多孔組織内に
奥深くまで浸透することになる。
In other words, since a porous iron body with a low bulk density and high porosity can be manufactured in a predetermined shape, this porous iron body can be used as a casting metal for pressure casting metal parts such as aluminum. When the molten metal for pressure casting is filled into the casting mold under high pressure after being placed in the mold, the molten metal for pressure casting will enter the porous structure of the porous iron body. It will penetrate deep.

この場合において、加圧鋳造用金属の溶湯が鉄多孔体に
おける多孔組織内に対して浸透する深さは、前記鉄粉を
容器内に充填するとぎにおける嵩密度に反比例するが、
嵩密度が4.3g/clを越えると、溶融アルミ合金の
鉄多孔体内への浸透深さが急激に低下するものであるこ
とから、前記鉄粉を容器内に充填するときにおける嵩密
度の下限値は、4.3g/C艷ずべきである。
In this case, the depth at which the molten metal for pressure casting penetrates into the porous structure of the porous iron body is inversely proportional to the bulk density when the iron powder is filled into the container;
If the bulk density exceeds 4.3 g/cl, the penetration depth of the molten aluminum alloy into the iron porous body will decrease rapidly, so the lower limit of the bulk density when filling the iron powder into a container is The value should be 4.3g/C.

方、前記鉄粉を容器内に充填するときにおける高密度を
、1 、 5 g /cn!未満にした場合、鉄多孔体
における圧縮破壊強度が著しく低下し、前記鋳造用金型
内に、加圧鋳造用金属の溶湯を高い圧力で充填するとき
における圧力によって、鉄多孔体に圧縮破壊による亀裂
が発生ずることになるから、前記鉄粉を容器内に充填す
るときにおける嵩密度の下限値は、1.5g/entに
ずべきである。
On the other hand, the high density when filling the container with the iron powder is 1.5 g/cn! If the pressure is lower than Since cracks will occur, the lower limit of the bulk density when filling the container with the iron powder should be set to 1.5 g/ent.

〔発明の効果〕〔Effect of the invention〕

従って本発明によると、アルミ等の加圧鋳造用金属製部
品を強化するだめの鉄多孔体を、前記加圧鋳造用金属製
部品における重量の大幅なアップを招来することがなく
、且つ、前記加圧鋳造用金属製部品の耐摩耗性、剛性及
び各種の物理的性質を確実にアップすることができる状
態のもとで製造することができると共に、ニッケルの多
孔体に比べて、原料コストカー°゛安い上に、前記従来
の鉄多孔体の製造方法のように、鉄粉を金型内において
所定の形状に加圧プレスする必要がないので、当該鉄多
孔体の製造に要するコトスを大幅に低減することができ
る効果を有する。
Therefore, according to the present invention, a porous iron body for reinforcing pressure casting metal parts such as aluminum can be used without causing a significant increase in weight of the pressure casting metal parts, and without causing a significant increase in the weight of the pressure casting metal parts. It can be manufactured under conditions that reliably improve the wear resistance, rigidity, and various physical properties of metal parts for pressure casting, and the raw material cost is lower than that of porous nickel bodies. °゛In addition to being cheap, there is no need to press the iron powder into a predetermined shape in a mold as in the conventional manufacturing method of iron porous bodies, which greatly reduces the cost required to manufacture the iron porous bodies. It has an effect that can be reduced to

〔実施例〕〔Example〕

以下、本発明の実施例を、加圧鋳造用金属としてアルミ
材を使用した場合について述べる。
Hereinafter, an example of the present invention will be described in which aluminum material is used as the metal for pressure casting.

先づ、鉄粉として、川崎製鉄株式会社から銘柄KIP2
55Mで販売されている還元鉄粉(粒径1〜1000ミ
クロン、平均粒径45ミクロン)を使用し、この還元鉄
粉1を、第1図に示すように、幅寸法W及び奥行き寸法
りを各々5Qimにし、深さ寸法Hを15龍にしたステ
ンレス鋼製の容器2内に、自由落下により、第2図に示
すように、山型状に充填する。
First, as iron powder, the brand name KIP2 is available from Kawasaki Steel Corporation.
Using reduced iron powder (particle size 1 to 1000 microns, average particle size 45 microns) sold as 55M, this reduced iron powder 1 was prepared with width dimension W and depth dimension as shown in Fig. 1. The mixture is filled into stainless steel containers 2 each having a depth of 5 Qim and a depth H of 15 mm in a chevron shape as shown in FIG. 2 by free falling.

次いで、容器2に、振幅0.2〜511で振動数10ヘ
ルツの振動を約2分間にわたって(4与したところ、鉄
粉1は、第3図に示すように、平面状に均らされると共
に、容器2内に充填した鉄粉の嵩密度は、2.2g/c
ポになった。
Next, the container 2 was subjected to vibrations with an amplitude of 0.2 to 511 and a frequency of 10 Hz for about 2 minutes (4 minutes), and the iron powder 1 was leveled into a flat shape as shown in FIG. At the same time, the bulk density of the iron powder filled in the container 2 is 2.2 g/c
It became Po.

そこで、前記鉄粉1を、前記容器2に入れた状態のまま
で、温度を約1100’C−1150’cテ、且つ、R
xガス(tlz : Nx : Co =30. 8 
+45.0:21.7>の雰囲気中で、約1時間にわた
って焼結することにより、第4図に示すように、幅寸法
W及び奥行き寸法りが共に591mで、且つ、厚さ■]
が15n+の板状の鉄多孔体1aを得た。
Therefore, while the iron powder 1 was kept in the container 2, the temperature was set to about 1100'C to 1150'C and R.
x gas (tlz: Nx: Co =30.8
By sintering for about 1 hour in an atmosphere of +45.0:21.7>, as shown in FIG.
A plate-like porous iron body 1a having a diameter of 15n+ was obtained.

この鉄多孔体1aを、約100℃〜300℃の温度に予
備加熱した状態で、第5図に示すように、鋳造用金型3
内に装填して、この鋳造用金型3内に、JIS規格AC
8Aのアルミ合金の溶湯を、780℃の熔融状態にして
、当該鋳造用金型3にお番ノる湯口3aから注入し、4
00〜1000 kg/ Ctaの圧力を加えたのち凝
固した。
As shown in FIG.
JIS standard AC
8A molten aluminum alloy is brought to a molten state at 780°C and poured into the casting mold 3 through the sprue 3a.
After applying a pressure of 00 to 1000 kg/Cta, it solidified.

そして、この鋳造によって得られた複合材4を、鋳造用
金型3から取り出し、この断面組織を、顕微鏡によって
観察したところ、第6図に示すように、アルミ材5が、
鉄多孔体1aの芯部にまで完全に浸透していることが認
められた。
Then, the composite material 4 obtained by this casting was taken out from the casting mold 3, and its cross-sectional structure was observed under a microscope. As shown in FIG. 6, the aluminum material 5 was
It was observed that the solution had completely penetrated into the core of the porous iron body 1a.

また、ここに得られらた複合材1bにおける耐摩耗性は
、前記、JIS規格AC8Aのアルミ材に比べて、常温
において100%に、400℃において800%も向上
できるのであり、また、前記複合材1bにおける引張強
度は、前記JIS規格AC8Aのアルミ材に比べて、常
温において約20%に、400℃において100%も向
」二できるのであった。
In addition, the wear resistance of the composite material 1b obtained here can be improved by 100% at room temperature and by 800% at 400°C, compared to the aluminum material of JIS standard AC8A. The tensile strength of material 1b was improved by about 20% at room temperature and by 100% at 400° C. compared to the JIS AC8A aluminum material.

次に、本発明者達は、前記鉄粉1を容器2内に充填する
場合における嵩密度が、前記製造方法にて得た鉄多孔体
1aにおける多孔組織内へのアルミ溶湯の浸透性に対し
て及ばず影響を知るために、容器2内に鉄粉1を充填す
る場合における嵩密度を種々変化することによって製造
した鉄多孔体について(但し、容器2に振動を付与する
ことだけでは、嵩密度を4.5g/cAより大きい値に
することができなかったので、嵩密度を4.5g/cn
1以上にするときには、振動を付与したあと加圧プレス
することにした)、前記したと同じ状態でアルミの溶湯
を加圧注入して、各鉄多孔体の多孔組織内へのアルミ溶
湯の浸透深さを測定した結果は、第7図に曲線Aで示す
通りであり、アルミ溶湯の浸透深さは、嵩密度が4.3
g/Cn!のときを境として急激に変化し、4.3g/
cJを越えたときにはきわめて小さいのに対して、嵩密
度が4.3g/ a+!以下になると急激に大きくなる
のであった。
Next, the present inventors have determined that the bulk density when the iron powder 1 is filled into the container 2 is related to the permeability of the molten aluminum into the porous structure of the iron porous body 1a obtained by the manufacturing method. In order to find out the effect of iron powder 1 in the container 2, we investigated the effect of the iron powder 1 on the iron porous bodies manufactured by varying the bulk density (however, it is not possible to increase the bulk density by just applying vibration to the container 2). Since it was not possible to make the density larger than 4.5g/cA, the bulk density was set to 4.5g/cn.
1 or higher, we decided to apply pressure and press after applying vibration), and inject molten aluminum under pressure under the same conditions as described above, allowing the molten aluminum to penetrate into the porous structure of each porous iron body. The depth measurement results are as shown by curve A in Figure 7, and the penetration depth of molten aluminum is determined by the bulk density of 4.3.
g/Cn! There was a sharp change after 4.3g/
When it exceeds cJ, it is extremely small, but the bulk density is 4.3g/a+! Below that, the size increases rapidly.

この結果から、鉄粉1を容器2内に充填するときにおけ
る嵩密度の上限値は、4..3g/clにずべきである
。しかし、鉄粉1を容器2内に充填するときにおける嵩
密度が、前記4.3g/cJであっても1.5g/CI
+を未満のときには、溶融アルミ合金の鋳造用金型内へ
の加圧注入によって、鉄多孔体1aに亀裂が発生するこ
とが認められたことにより、鉄粉1を容器2内に充填す
るときにおける嵩密度の下限値は、1.5g/cdにず
べきであることか判った。
From this result, the upper limit of the bulk density when filling the container 2 with the iron powder 1 is 4. .. It should be 3g/cl. However, even if the bulk density when filling the iron powder 1 into the container 2 is 4.3 g/cJ, it is still 1.5 g/CI.
When filling the container 2 with iron powder 1, it was found that cracks were generated in the iron porous body 1a due to pressurized injection of molten aluminum alloy into the casting mold when the value was less than +. It was found that the lower limit of the bulk density should be 1.5 g/cd.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は耐熱性容器の斜
視図、第2図は容器内に鉄粉を自由落下にて充填したと
きの断面図、第3図は容器に振動を付与して鉄粉を平面
状に均らしたときの断面図、第4図は鉄多孔体の斜視図
、第5図は鋳造の状態を示す断面図、第6図は複合材の
断面図、第7図は鉄多孔体における嵩密度と、アルミ合
金の浸透深さとの関係を示す図である。 1・・・・鉄粉、1a・・・・鉄多孔体、2・・・・耐
熱性容器、3・・・・鋳造用金型、4・・・・複合材、
5・・・・アルミ材。 特許出願人  ダイハツ工業株式会社
The drawings show embodiments of the present invention; Fig. 1 is a perspective view of a heat-resistant container, Fig. 2 is a cross-sectional view when iron powder is filled into the container in free fall, and Fig. 3 is a diagram showing a case in which the container is subjected to vibrations. 4 is a perspective view of the iron porous body, FIG. 5 is a sectional view showing the state of casting, and FIG. 6 is a sectional view of the composite material. FIG. 7 is a diagram showing the relationship between the bulk density in a porous iron body and the penetration depth of an aluminum alloy. 1... Iron powder, 1a... Iron porous body, 2... Heat resistant container, 3... Casting mold, 4... Composite material,
5...Aluminum material. Patent applicant Daihatsu Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)、適宜粒度の鉄粉を、耐熱性の容器内に、自由落
下にて充填したのち、加圧プレスすることなく適宜時間
にわたって振動を付与することにより、容器内に充填し
た鉄粉の嵩密度を約1.5〜4.3g/cm^3にし、
次いで、前記鉄粉を、耐熱性容器に入れた状態で、低酸
素雰囲気又は還元雰囲気中において高温で焼結すること
を特徴とするアルミ等の加圧鋳造用金属製部品を強化す
るために使用する鉄多孔体の製造方法。
(1) After filling iron powder with an appropriate particle size into a heat-resistant container by free-falling, vibration is applied for an appropriate period of time without pressurizing the iron powder. The bulk density is approximately 1.5 to 4.3 g/cm^3,
Next, the iron powder is placed in a heat-resistant container and sintered at high temperature in a low oxygen atmosphere or a reducing atmosphere, which is used to strengthen metal parts for pressure casting such as aluminum. A method for manufacturing a porous iron body.
JP7536989A 1989-03-27 1989-03-27 Manufacture of iron porous body used for reinforcing metallic parts for pressure casting of aluminum or the like Pending JPH02254132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7536989A JPH02254132A (en) 1989-03-27 1989-03-27 Manufacture of iron porous body used for reinforcing metallic parts for pressure casting of aluminum or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7536989A JPH02254132A (en) 1989-03-27 1989-03-27 Manufacture of iron porous body used for reinforcing metallic parts for pressure casting of aluminum or the like

Publications (1)

Publication Number Publication Date
JPH02254132A true JPH02254132A (en) 1990-10-12

Family

ID=13574234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7536989A Pending JPH02254132A (en) 1989-03-27 1989-03-27 Manufacture of iron porous body used for reinforcing metallic parts for pressure casting of aluminum or the like

Country Status (1)

Country Link
JP (1) JPH02254132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215020A1 (en) * 2013-07-31 2015-02-05 Mahle International Gmbh Infiltratable insert
CN112599784A (en) * 2020-12-16 2021-04-02 南京邮电大学 Porous aluminum alloy current collector and preparation method thereof, and porous aluminum alloy composite sodium negative electrode and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212159A (en) * 1983-05-18 1984-12-01 Mazda Motor Corp Production of aluminum alloy casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212159A (en) * 1983-05-18 1984-12-01 Mazda Motor Corp Production of aluminum alloy casting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215020A1 (en) * 2013-07-31 2015-02-05 Mahle International Gmbh Infiltratable insert
US10207319B2 (en) 2013-07-31 2019-02-19 Mahle International Gmbh Insert part that can be infiltrated
CN112599784A (en) * 2020-12-16 2021-04-02 南京邮电大学 Porous aluminum alloy current collector and preparation method thereof, and porous aluminum alloy composite sodium negative electrode and preparation method thereof

Similar Documents

Publication Publication Date Title
US2893102A (en) Article fabrication from powders
US4314399A (en) Method of producing moulds
US8562904B2 (en) Method for the powder-metallurgical production of metal foamed material and of parts made of metal foamed material
CA2000802A1 (en) A method for forming metal matrix composite bodies with a dispersion casting technique and products produced thereby
JPH04319043A (en) Method of manufacturing salt core for casting
JP2008267158A (en) Piston for internal combustion engine and method for manufacturing the same
EP1440748A1 (en) Method of die casting spheroidal graphite cast iron
JPH02254132A (en) Manufacture of iron porous body used for reinforcing metallic parts for pressure casting of aluminum or the like
JP3380892B2 (en) Ti-Al alloy, method for producing the same, and method for joining the same
JPH048398B2 (en)
US3907514A (en) Aluminum carbon composite seal material
JPS6021306A (en) Manufacture of composite reinforced member
JPH0225700B2 (en)
JP2560096B2 (en) Method of manufacturing compound piston for internal combustion engine
JP3237115B2 (en) Method and product for producing foam of Ti-Al intermetallic compound
JP4205940B2 (en) Method for producing gray cast iron with excellent vibration damping capacity and strength
JPS6037260A (en) Production of composite ceramic casting material
JP3954215B2 (en) Manufacturing method of composite sintered machine parts
JPS606265A (en) Production of composite fiber member
KR102541042B1 (en) Die casting using sintered material and die casting product manufactured therefrom
WO2023136101A1 (en) Method for manufacturing metal matrix composite material
JPS62286660A (en) Composite member having excellent wear resistance and its production
JPH04337008A (en) Iron powder combined sintered member and production thereof
JPS6221456A (en) Production of hollow casting
JPH05209204A (en) Production of iron-based sintered member