JPS59212159A - Production of aluminum alloy casting - Google Patents

Production of aluminum alloy casting

Info

Publication number
JPS59212159A
JPS59212159A JP8719783A JP8719783A JPS59212159A JP S59212159 A JPS59212159 A JP S59212159A JP 8719783 A JP8719783 A JP 8719783A JP 8719783 A JP8719783 A JP 8719783A JP S59212159 A JPS59212159 A JP S59212159A
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy
metal
casting
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8719783A
Other languages
Japanese (ja)
Other versions
JPH0230790B2 (en
Inventor
Shunzo Takasuka
俊蔵 高須賀
Yukihiro Sugimoto
幸弘 杉本
Keiichiro Noguchi
野口 啓一郎
Motoomi Urabe
占部 素臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP8719783A priority Critical patent/JPS59212159A/en
Priority to DE19843418405 priority patent/DE3418405A1/en
Publication of JPS59212159A publication Critical patent/JPS59212159A/en
Priority to US06/867,597 priority patent/US4966221A/en
Publication of JPH0230790B2 publication Critical patent/JPH0230790B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76213Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose
    • H01L21/76216Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose introducing electrical active impurities in the local oxidation region for the sole purpose of creating channel stoppers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/16Fibres

Abstract

PURPOSE:To obtain an Al having improved high-temp. hardness, wear resistance, etc. by charging a molten Al alloy into a metallic mold holding a porous metallic body, heating and holding the Al alloy casting material embedded by casting by a high-pressure solidification method and forming a compd. layer contg. Al at the boundary between the porous metallic body and the Al alloy. CONSTITUTION:A porous metallic body consisting of a foamed metal of Ni, Cu, etc. is held in a metallic mold. The volume rate of such porous metallic body is 3-50% and the size of holes is preferably 0.05-1mm.. The melt of an Al alloy is charged into the metallic mold in such a state and is pressurized under >=400kg/cm<2> to form the Al alloy casting material embedded with the porous metallic material by casting by a high-pressure solidification method. Such Al alloy casting material is subjected to a heat treatment for 1-10hr at 450-550 deg.C to form a compd. layer of the Al and the metal (e.g.; Ni) of the porous metallic body at the boundary between the porous metallic body and the Al alloy, by which the intended alloy casting is obtd. The volume rate of the compd. layer in the part embedded with the porous metallic material by casting is made preferably 1-80% and the thickness of the metallic compd. layer is preferably >=10mu.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アルミニウム合金角物σル一部に金属間化合
物層を生成して高温硬度、]iit 1′i’−耗匣、
耐へタリ性等を向上したアルミニ・ツノ・合金鋳物の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention produces an intermetallic compound layer on a part of an aluminum alloy square material to achieve high temperature hardness.
This invention relates to a method for producing aluminum horn alloy castings with improved wear resistance.

(従来技術) 一般に、ディーゼルエフジンのピストン等は、熱膨張が
小さく、耐摩耗性に優れる高珪宋アルミニウム合金(J
IS  AC8A等)によって製造されているが、例え
は、ビストノυヘッド部id燃料噴射ノズルから噴射さ
れた高圧燃料の侵食作用全骨け、1だ、ピスト/リング
用溝部にはガス圧に対応するピストンリングの繰返し荷
重が作用し、これらの1111分でおいては高温硬度を
向上して1llI11′1LJ・[5′1′1(I(1
]j受食性)、耐ヘタリ性金改乙−ノーることか鼎求さ
れている。
(Prior art) In general, diesel engine pistons are made of high-silicon aluminum alloy (J), which has low thermal expansion and excellent wear resistance.
IS AC8A, etc.), but for example, the entire bone is affected by the erosion of high-pressure fuel injected from the ID fuel injection nozzle on the piston head, and the piston/ring groove corresponds to the gas pressure. The repeated loading of the piston ring acts, and in these 1111 minutes, the high temperature hardness improves and becomes 1llI11'1LJ・[5'1'1(I(1
]J Corrosion Resistance), Settling Resistance Gold Reform - No, it is required.

アルミニウム合金鋳物の表面強化方法の1鋳造、タイカ
スト鋳造によって藺ぐるみが行われている。しかるに、
重力鋳造の場合、鋳ぐるみ体が連続気孔を有する金属多
孔体や金属繊i、tt成形体によるときには、アルミニ
ウム合金溶湯をこの金属多孔体の内部気孔に1で充填す
ることはできず、鋳ぐるみ体表面とアルミニウム合金と
の密着か不十分であり、両者の接合強度が不足し、熱負
荷が作用したときなどにクラック、剥離等が発生する恐
れがある9、一方、ダイカスト鋳造の場合は、密着性、
充填性は向上するが、製品へのエアーの巻き込みが避け
られず、その鋳ぐるみ品は加熱時にエアーが膨張するこ
とによるブリスター発生のため、熱処理が困難であり、
アルミニウム合金の強度向上、金属間化合物(固相拡散
層)の生成による耐摩耗性、耐−\タリ性の向上ケ図る
ことはできない。
One of the methods for strengthening the surface of aluminum alloy castings is tie casting. However,
In the case of gravity casting, when the cast body is a metal porous body having continuous pores or a metal fiber I, TT molded body, it is not possible to fill the internal pores of the metal porous body with molten aluminum alloy, and the cast body is The adhesion between the body surface and the aluminum alloy is insufficient, and the joint strength between the two is insufficient, leading to cracks and peeling when heat load is applied9.On the other hand, in the case of die-casting, Adhesion,
Although the filling properties are improved, air entrainment into the product is unavoidable, and it is difficult to heat treat the cast product because blisters occur due to air expansion during heating.
It is not possible to improve the strength of the aluminum alloy, or to improve the wear resistance or tarnishing resistance due to the formation of intermetallic compounds (solid phase diffusion layer).

1だ、特開昭53−3]、014号公報に示されるよう
に、Ni−Cr系焼結材料などの耐熱性多孔体全高圧凝
固鋳造法でアルミニウム合金に鋳ぐるみ、多孔体の気孔
内に寸でアルミニウム合金を充填するようにしだものが
ある。しかし、このものでは、アルミニウム合金と多孔
体との接合強度は1だ不十分であり、しかも、金属間化
合物が殆ど生成されていないことから、焼結材料だけで
は高温硬度が低く、耐摩耗性、耐ベタリ件の向上効果は
小さいものである。
1, JP-A-53-3], No. 014, a heat-resistant porous material such as a Ni-Cr based sintered material is cast into an aluminum alloy using a full high-pressure solidification casting method, and the inside of the pores of the porous material is There are some products that are filled with aluminum alloy. However, with this material, the bonding strength between the aluminum alloy and the porous body is only 1 insufficient, and since almost no intermetallic compounds are formed, the sintered material alone has low high-temperature hardness and poor wear resistance. , the effect of improving stickiness resistance is small.

さらに、特開昭54−1.51715号公報に示される
技術は、アルミニウム溶湯にニッケル等の金属多孔体を
浸漬して表面を封孔し、熱処理によって表面にニッケル
とアルミニウム・の化合物層を形成し、その後この金属
多孔体をアルミニウム合金で鋳ぐるみ、化合物層で耐熱
性、耐食性を向上したものがある・しかし、このもので
は、金属多孔体は単にアルミニウム合金で鋳ぐる捷れて
いるだけで上記化合物層とアルミニウム合金との接合強
度が不十分であり、しかも、化合物層の形成は金属多孔
体の表面たけてあり、耐熱性(高61M硬度)、耐侵食
性の向上効果は不十分である。
Furthermore, the technology disclosed in JP-A-54-1.51715 immerses a porous metal such as nickel in molten aluminum, seals the surface, and forms a compound layer of nickel and aluminum on the surface through heat treatment. However, this metal porous body is then cast in an aluminum alloy, and a compound layer improves heat resistance and corrosion resistance. However, in this case, the metal porous body is simply cast in an aluminum alloy and twisted. The bonding strength between the above compound layer and the aluminum alloy is insufficient, and the compound layer is formed deep into the surface of the porous metal body, so the effect of improving heat resistance (high 61M hardness) and corrosion resistance is insufficient. be.

(発明の1」的) 不発りjは上記事情に鑑み、金属多孔体とアルミニラl
、合金との接合強度を高めつつ金属間化合物層を生成し
て高温硬度を高め、耐摩耗1〈[,11ijへタリ性全
向上したアルミニウム合金鋳物合待る/こめの製造方法
全提供せんとするものである。
(Objective of Invention 1) In view of the above circumstances, the non-explosion
We would like to provide a complete manufacturing method for aluminum alloy castings with improved high-temperature hardness by generating an intermetallic compound layer while increasing the bonding strength with the alloy, and completely improving the wear resistance. It is something to do.

(発明の構成) 本発明のアルミニウム合金鋳物の製造方法に1、金型内
に金属多孔体全保持して該金型内に1′ルミニウム合金
の溶湯全注入し、その後、加圧力’ OOkg / o
r:以上の高圧凝固鋳造法で金属多孔体knぐるんだア
ルミニウム合金鋳物素4Jを成形し、次に、該アルミニ
ウム合金坊物素利を/150〜550℃の温度で1〜1
0時間加熱[呆持して金属多孔体とアルミニウム合金と
の境界にアルミニウムと金属多孔体の金属との化合物層
を生成する金属間化合物生成処理を施すことを特徴とす
るものである7上記金属多孔体はニッケル、銅もしく(
l−L、〕、系金属等による発泡σ属−t/こは金属繊
組′成形体によりなり、高圧凝固、切造法によってその
気孔にアルミニウム合金全充填したi)S態で、Iリノ
ぐるんでアルミニウム合金素利を・成形−4′る高圧凝
固鋳造法は、金属多孔体を装入保1、rシた金型内にア
ルミニウム合金の溶7)A 27.11人し、これを加
圧力400 kid / c!?デ以上(例えば600
kg/ cniもしくは1000 kid / c# 
)で力1団、−シた状態で凝固させるものである。この
加圧力は400 ky / art未満ではアルミニ−
ラム合金鋳物自体の凝固組織および機械的1’l:、 
+p↓に及多:1す加圧の効果が小さくてその品質が保
証さt+、 ’j:V <、また、金属多孔体とアルミ
ニウム合金との密着性が十分でなく、金属間化合物生成
処理において、金属多孔体とアルミニウム合金との境界
に良好なアルミニウムと金属多孔体の金属との化合物層
全生成することが困ケ11である。
(Structure of the Invention) In the method for manufacturing an aluminum alloy casting of the present invention, 1. The entire metal porous body is held in a mold, 1' the entire molten aluminum alloy is injected into the mold, and then a pressurizing force of 'OOkg/ o
r: An aluminum alloy casting element 4J surrounded by a metal porous body is formed by the above-described high-pressure solidification casting method, and then the aluminum alloy casting material is heated to 1 to 1 at a temperature of /150 to 550°C.
7. The above-mentioned metals are heated for 0 hours and subjected to an intermetallic compound generation treatment that generates a compound layer of aluminum and the metal of the porous metal body at the boundary between the porous metal body and the aluminum alloy. The porous body is made of nickel, copper or (
l-L, ], foamed σ group-t/this is made of a metal fiber molded body made of metals, etc., and the pores are completely filled with aluminum alloy by high-pressure solidification and cutting in the i) S state. The high-pressure solidification casting method of forming and molding an aluminum alloy material all around it involves charging a porous metal body, melting the aluminum alloy in a mold, and then melting the aluminum alloy into a mold. Pressure force 400 kid/c! ? 600 or more (e.g. 600
kg/cni or 1000 kid/c#
) to solidify the liquid in a state where the force is -. If this pressure is less than 400 ky/art, aluminum
Solidification structure and mechanical properties of the ram alloy casting itself:
+p↓: 1s The effect of pressurization is small and its quality is guaranteed t+, 'j:V <, also, the adhesion between the porous metal body and the aluminum alloy is insufficient, resulting in intermetallic compound generation treatment. However, it is difficult to form a complete layer of a good compound of aluminum and the metal of the porous metal body at the boundary between the porous metal body and the aluminum alloy.

捷だ、上記高圧凝固鋳造法において、アルミニウム合金
溶湯の充填性を向上するため、金属多孔体を予備加熱し
てから注湯加圧を行うようにしてもよい。
However, in the above-mentioned high-pressure solidification casting method, in order to improve the filling properties of the molten aluminum alloy, the porous metal body may be preheated before pouring and pressurizing.

上記金属多孔体は、その形状、体積率は任意であるが、
体積率Vfが3〜50%のもの、すなわち気孔率が50
〜97%のものが好適であり、特に体積率Vfが5〜4
. O%のものが最適である。上記金属多孔体の体積率
Vfは化合物層の生成に伴って減少するものであり、3
%未満では表層および内部に形成される金属間化合物層
の密度が低下し、また、体積率Vfが50係を越えると
金属間化合物層が体積率80%以上となって好ましくな
いものである。また、金属多孔体の気孔の孔径は0.0
5〜J龍が好ましく、この孔径が0.05 am未満で
は気孔にアルミニウム合金が充填し難く、1m1i越え
ると金属間化合物層の密度が低下−し好1しくない。
The shape and volume ratio of the metal porous body are arbitrary, but
The volume fraction Vf is 3 to 50%, that is, the porosity is 50
~97% is preferable, especially a volume fraction Vf of 5 to 4.
.. 0% is optimal. The volume fraction Vf of the metal porous body decreases with the formation of the compound layer, and is 3
If it is less than %, the density of the intermetallic compound layer formed on the surface layer and inside will decrease, and if the volume fraction Vf exceeds 50, the volume fraction of the intermetallic compound layer will be 80% or more, which is undesirable. In addition, the pore diameter of the metal porous body is 0.0
5 to J dragon is preferred; if the pore diameter is less than 0.05 am, it is difficult to fill the pores with aluminum alloy, and if it exceeds 1 m1i, the density of the intermetallic compound layer decreases, which is not desirable.

一方、上記アルミニウム合金鋳物素材に金属間化合物生
成処理全施して得た化合物層は、アルミニウム合金にお
けるアルミニウムと金属多孔体の金属との金属間化合物
であり、すなわちニッケル系金属多孔体の場合にはアル
ミニウムとニッケルの化合物層であり、銅系金属多孔体
の場合には銅とアルミニウムの化合物層であり、鉄系金
属多孔体の場合には鉄とアルミニウムの化合物層を生成
するものであシ、金属多孔体の金属がアルミニウム合金
に拡散して得られるものである・ この金属間化合物生成処理は、450〜550℃の温度
で、1〜10時間加熱保持するものであり、上記加熱温
度は、450 ’C;未満では金属間化合物層全形成す
るのに長時間ヲ渋し経済的でなく、550℃を越えると
アルミニウム合金鋳物自身の強度が低下する。寸だ、加
熱時間は、1時間未満では十分な金属間化合物層を形成
することができず、10時間を越えると金属間化合物層
の生成かほぼ飽和し経済的でないものである。
On the other hand, the compound layer obtained by subjecting the aluminum alloy casting material to the intermetallic compound generation treatment is an intermetallic compound of aluminum in the aluminum alloy and the metal of the metal porous body, that is, in the case of a nickel-based metal porous body, It is a compound layer of aluminum and nickel, in the case of a copper-based metal porous body, it is a compound layer of copper and aluminum, and in the case of an iron-based metal porous body, it is a compound layer of iron and aluminum, The metal of the porous metal body is obtained by diffusing into an aluminum alloy. This intermetallic compound generation treatment involves heating and holding at a temperature of 450 to 550°C for 1 to 10 hours, and the heating temperature is: If it is less than 450'C, it takes a long time to form the entire intermetallic compound layer and is not economical, and if it exceeds 550C, the strength of the aluminum alloy casting itself decreases. Indeed, if the heating time is less than 1 hour, it is not possible to form a sufficient intermetallic compound layer, and if it exceeds 10 hours, the formation of the intermetallic compound layer is almost saturated, which is not economical.

この金属間化合物生成処理には、アルミニウム合金の溶
体化処理を兼ねるために、上記加熱の後に水焼入れを行
い、さらに、焼もどし処理(T 6処理等)を行うよう
にしてもよい。
In this intermetallic compound generation treatment, water quenching may be performed after the heating, and further tempering treatment (T6 treatment, etc.) may be performed in order to also serve as solution treatment of the aluminum alloy.

上記金属多孔体を鋳ぐるんだ部分における化合物層の体
積率Vfは1〜80%とするのが好筐しい。この体M率
Vfが1係未満の場合には高温強度、耐摩耗性、酬へタ
リ性に対して十分な効果が得られず、また、80弼を越
えるとアルミニウム合金の介在量が少ないため、熱応力
等が作用したときのアルミニウム合金(3J 4珂との
密着強度(接合強度)が低下するとともに、硬さが増加
するため機械加工全行うときの加工性が劣る。さらに、
上記金属間化合物層の厚さは10μ以上ある方が高温強
度、耐摩耗性、酬へタリ性を高める上で好ましい・一方
、金属多孔体を鋳ぐるんでなる厚さはQ、 1 m+1
1以上ある方が好ましく、01關未満であると特に耐摩
耗性、耐ヘタリ性に対して長時間良好に保つことができ
ないものである。
The volume fraction Vf of the compound layer in the part where the metal porous body is cast is preferably 1 to 80%. If the body M ratio Vf is less than 1 factor, sufficient effects on high temperature strength, wear resistance, and retardation properties cannot be obtained, and if it exceeds 80, the amount of aluminum alloy intervening is small. , the adhesion strength (joining strength) with the aluminum alloy (3J4) when subjected to thermal stress etc. decreases, and the hardness increases, resulting in poor workability during full machining.Furthermore,
The thickness of the above-mentioned intermetallic compound layer is preferably 10μ or more in order to improve high-temperature strength, wear resistance, and retardation properties.On the other hand, the thickness of the intermetallic compound layer cast through the porous metal body is Q, 1 m + 1
It is preferable that the number is 1 or more, and if it is less than 0.01, it will not be possible to maintain good wear resistance and set resistance for a long time.

(発明の効果) 高圧凝固鋳造法により金属多孔体の気孔にアルミニウム
合金を充填して鋳ぐるみ金属多孔体とアルミニウム合金
と全十分に密着さぜ、かつ金属間化合物生成処理により
金属多孔体とアルミニウム合金との境界にアルミニウム
と金属多孔体の金属との化合物層全形成することにより
、金属多孔体とアルミニウム合金との接合強度が高く、
しかも金属多孔体の内部においてもその金属と気孔内に
充填されたアルミニウム合金とのノ境界に1liJ熱性
および高温硬度に優れた化合物層を形成しており、耐摩
耗性、耐ヘタリ件のいずれも十分に召することができ、
耐久性全向上することができる・(実施例) 次に本発明によるディーゼルエンジン用ピストンの製造
についての実施例ケ示す。
(Effect of the invention) The pores of the metal porous body are filled with aluminum alloy by high-pressure solidification casting method, and the cast metal porous body and the aluminum alloy are fully adhered to each other, and the metal porous body and aluminum are bonded by intermetallic compound generation treatment. By forming the entire compound layer of aluminum and the metal of the metal porous body at the boundary with the alloy, the bonding strength between the metal porous body and the aluminum alloy is high.
Moreover, inside the metal porous body, a compound layer with excellent thermal properties and high temperature hardness is formed at the boundary between the metal and the aluminum alloy filled in the pores, resulting in excellent wear resistance and fatigue resistance. You can have enough,
Durability can be completely improved (Example) Next, an example of manufacturing a piston for a diesel engine according to the present invention will be shown.

第1図は本発明方法によるアルミニウム合金製ピストン
lを示し、ピストン本体2の外周部には、トップリング
を嵌装するトップリング溝3と、セカンダリリングを嵌
装するセカッグリリング溝4と、オイルリングを嵌装す
るオイルリング溝5とがそれぞれ形成されている。
Fig. 1 shows an aluminum alloy piston l made by the method of the present invention, in which the outer circumference of the piston body 2 has a top ring groove 3 in which a top ring is fitted, a secondary ring groove 4 in which a secondary ring is fitted, and an oil ring. An oil ring groove 5 into which the oil ring is fitted is formed respectively.

」二l己ピスト/1のトップリング溝3は、リング支持
部月6によって設けられ、該リング支持部制6以外のピ
ストン本体2はアルミニウム合金によって構成されてい
る。
The top ring groove 3 of the piston 1 is provided by a ring support part 6, and the piston body 2 other than the ring support part 6 is made of aluminum alloy.

上記ピストン1の製造は、まず、第2図に示すように、
金属条乳体によってリング支持部材6全成形する。この
場合、トップリング溝3は後加工で切削して形成するの
で、単なるリング状に成形する。
The production of the piston 1 begins with the steps shown in FIG.
The ring support member 6 is entirely molded by a metal strip body. In this case, since the top ring groove 3 is formed by cutting in post-processing, it is formed into a simple ring shape.

このリング支持部材6を、第3図に示°すように、上型
7a、下型7b、中間型7Cよシなる金型7内に装入保
持し、この金型7内のキャビティ8に下型7bに開設さ
れた注湯ロアdからアルミニウム合金溶湯を注入し、こ
の溶湯に400 kg7C,4以上の加圧力を加えて、
溶湯が凝固するまで高い加圧力を保持して高圧凝固鋳造
法を行う。
As shown in FIG. 3, this ring support member 6 is charged and held in a mold 7 consisting of an upper mold 7a, a lower mold 7b, and an intermediate mold 7C, and is placed in a cavity 8 in this mold 7. The aluminum alloy molten metal is poured from the pouring lower d opened in the lower mold 7b, and a pressing force of 400 kg 7C, 4 or more is applied to this molten metal.
High-pressure solidification casting is performed by maintaining high pressure until the molten metal solidifies.

これにより、第4図に示すよう(1(、ピストン本体2
の一部に金属多孔体によるリング支持部材6を鋳ぐるん
でなるアノしミニウド合金鋳物素材9を成形する。この
り/グ支持部月6は、その金属多孔体の気孔内にアルミ
ニ・ンム合金が充填されている。
As a result, as shown in FIG.
A miniature alloy casting material 9 is formed by casting a ring support member 6 made of a metal porous body into a part of the metal porous body. The pores of the glue/glue support part 6 are filled with aluminum alloy in the pores of its metal porous body.

次に、このアルミニウム合金υ、5物素イA9’tr:
加熱炉に装入し熱処理による金属間化合物生成処理を行
ってリング支持部44’ ににおける金属多孔体とアル
ミニウム合金との境界に金属間化合物層を生成するとと
もに、アルミニウム合金母材の溶体化処理合流した後、
機械切削加工を行って、第1 [aの如きリング支J乃
部材6にトップリング溝3金形成するとともに、セカン
ダリリング溝4およびオイルリング溝5全形成してなる
Next, this aluminum alloy υ, 5 elements iA9'tr:
It is charged into a heating furnace and subjected to intermetallic compound generation treatment by heat treatment to generate an intermetallic compound layer at the boundary between the porous metal body and the aluminum alloy in the ring support portion 44', and at the same time, the aluminum alloy base material is subjected to solution treatment. After joining,
Machine cutting is performed to form the top ring groove 3 in the first ring support member 6 such as a, and to form the entire secondary ring groove 4 and oil ring groove 5.

第5図ないし第9図は、下記表に示す各種条件において
製造したアルミニウム合金鋳物の光学顕微鏡による金属
組織写真を示すもσ〕である、 使用したアルミニウム合金(J Is  AC8A 、
1の組成のM量弼は、次の通りである1゜A(+  C
u   Si   Mg   l’(・Ni残部 10
  11909 0.22  1+また、第9図におけ
るニッケル多孔体−\の銅メッキの厚さは5〜10 t
zである、第5図ないし第8図において、斑点を有する
多面積のマトリックスがアルミニウム合金、灰色層で縁
取された中間の白色層が残留したニッケル金属多孔体、
このニッケル金ス・ハ多孔体の外周に膜状に形成されて
いる灰色層(Niリンチ)および白色層(Alリッチ)
が化合物層である。捷だ、第9図において、廁点全イj
する多面積のマトリックスがアルミニウム・合金、白色
層がニツク−ル金属多孔体、この外周に境界線状に灰色
に残留しているのが銅メッキ層で、これの外周に形成さ
ノ]2ている11、qい灰色層(Cuリッチ)およびさ
らに汚い灰色層(Alリッチ)が化合物層である。。
Figures 5 to 9 show photos of the metallographic structures of aluminum alloy castings produced under various conditions shown in the table below, taken with an optical microscope.
The amount of M in composition 1 is as follows: 1゜A(+C
u Si Mg l'(・Ni remainder 10
11909 0.22 1+ Also, the thickness of the copper plating of the nickel porous body -\ in Fig. 9 is 5 to 10 t.
z, in FIGS. 5 to 8, the multi-area matrix with spots is an aluminum alloy, a nickel metal porous body with a remaining intermediate white layer bordered by a gray layer,
A gray layer (Ni-rich) and a white layer (Al-rich) are formed in the form of a film on the outer periphery of this nickel-gold porous body.
is the compound layer. In Figure 9, all the points are
The multi-area matrix is aluminum alloy, the white layer is a nickel metal porous material, and the gray remaining border line on the outer periphery is the copper plating layer, which is formed on the outer periphery of this layer. The dark gray layer (Cu-rich) and the even dirtier gray layer (Al-rich) are compound layers. .

なお、第6図ないし第9図において、ニノケル多孔体の
内部の一部が黒色になっている部分は、ニッケル多孔体
の製造過程でニッケル多孔体に付着していた黒鉛が現わ
れているものである、」たこの第6図では、他の写真に
比べて残留ニッケル多孔体(灰色層の間の白色層)が少
ないのは、ニッケル多孔体自身の1Mの厚さが薄いので
、1時間の加熱でも残留ニッケル多孔体が少なくなった
ものである。
In addition, in Figures 6 to 9, the part of the inside of the Ninokel porous body that is black is the appearance of graphite that was attached to the nickel porous body during the manufacturing process of the nickel porous body. In Figure 6 of the octopus, there is less residual nickel porous material (white layer between gray layers) than in the other photographs because the 1M thickness of the nickel porous material itself is thin. Even after heating, the residual nickel porous material was reduced.

一方、特に第8図にみられるようにニッケル多孔体の内
部の全体が黒色になっている部分は、閉じられた空間で
、アルミニウム合金が充愼されていない、 1だ、形成される金属間化合物の高温硬度上記事5究か
ら明らかなように、本発明に、」5るアルミニウム合金
鋳物は、その+ffiff外もしくは荷重を受ける部分
に金属多孔体うS高圧凝固鋳造法により宴11ぐるむと
ともに、金属間化合物生成処理により、高温硬度、耐熱
性に優れた金属間化合物層をアルミニ9l−含令鋳物の
表層に高密度に形成する結果、酬熱1′1のある化合物
がその・)1格全形成しているため、7トリツクスのア
ルミニウム合金の融点t +lly:えてもアルミニウ
ム合金が局部的に浴融飛1i−Qすることが防止される
一方、繰返し荷jliに対する耐摩耗性および1耐へク
リ性は高温硬度が向上したことにより改善されている。
On the other hand, as shown in Figure 8, the entire interior of the nickel porous body is black, which is a closed space and is not filled with aluminum alloy. High-temperature hardness of compounds As is clear from the above-mentioned 5 studies, in the present invention, aluminum alloy castings according to the present invention are coated with a metal porous material on the outside or in the load-receiving part by high-pressure solidification casting method, and Through intermetallic compound generation treatment, an intermetallic compound layer with excellent high-temperature hardness and heat resistance is formed at high density on the surface layer of the aluminum 9L-containing casting, resulting in a compound with a heat exchange rate of 1'1. Because of the complete formation, the melting point of the aluminum alloy with 7 trix is prevented, even though the aluminum alloy is prevented from locally melting in the bath. Cretability is improved due to improved high-temperature hardness.

なお、本発明のアルミニウム、合金鋳物(・:1−上記
実施例のようにディーセルエフツノ′用ビー4トンに限
られるもので1御ない、。
It should be noted that the aluminum and alloy castings of the present invention are not limited to the 4-ton bee for Diesel FTSNO's as in the above embodiment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法によりgtH1造1〜/こアルミニ
ウム合金製ピストンの一部孕断面にして示す正面図、 第2図はリング支持部材の斜視図、 第3図は高圧凝固鋳造法における金型の断面図、 第4図はアルミニウム合金lj物素材の要部断面は]、 第5図ないし第9図はアルミニウム合金鋳物の金属組織
の一例を示す光学顕微鏡写真である・ () ・・金属多孔体(リング支持部材)7・・・・・
金  型 り一 ・・アルミニウム合金鋳物素拐 81 図 第5図 第8図
Fig. 1 is a partially cross-sectional front view of an aluminum alloy piston manufactured by the method of the present invention; Fig. 2 is a perspective view of a ring support member; Figure 4 is a cross-sectional view of the main part of the aluminum alloy material; Figures 5 to 9 are optical micrographs showing examples of the metal structure of aluminum alloy castings. Porous body (ring support member) 7...
Mold mold...Aluminum alloy casting 81 Figure 5 Figure 8

Claims (1)

【特許請求の範囲】[Claims] (])  金4;ν内に金属多孔体全保持して該金型内
にアルミニウム合金の溶湯全注入し、その後、加圧力/
100kg/crI以上の高圧凝固鋳造法で金属多孔体
を鋳ぐるんだアルミニウム合金鋳物素材を成形し、次に
、該アルミ   1ニウム合金鋳物素材全450〜55
0°Cのnl、1度で]〜10時間加熱保持して金属多
孔体とアルミニウム合金との境界にアルミニウムと金属
多孔体の金属との化合物層を生成−「る金属間化合物生
成処理を施すことを特徴とするアルミニウム合金鋳物の
製造方法・                    
(]) Gold 4: The entire porous metal body is held in ν, and the entire molten aluminum alloy is injected into the mold, and then the pressing force/
An aluminum alloy casting material in which a metal porous body is cast is formed by a high-pressure solidification casting method of 100 kg/crI or more, and then the aluminum alloy casting material is 450 to 55
0°C nl, 1 degree] to 10 hours to form a compound layer of aluminum and the metal of the porous metal body at the boundary between the porous metal body and the aluminum alloy. A method for manufacturing aluminum alloy castings characterized by
(
JP8719783A 1983-05-18 1983-05-18 Production of aluminum alloy casting Granted JPS59212159A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8719783A JPS59212159A (en) 1983-05-18 1983-05-18 Production of aluminum alloy casting
DE19843418405 DE3418405A1 (en) 1983-05-18 1984-05-17 Method for the production of castings from aluminium alloy and of pistons composed of an aluminium alloy
US06/867,597 US4966221A (en) 1983-05-18 1986-05-27 Method of producing aluminum alloy castings and piston made of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8719783A JPS59212159A (en) 1983-05-18 1983-05-18 Production of aluminum alloy casting

Publications (2)

Publication Number Publication Date
JPS59212159A true JPS59212159A (en) 1984-12-01
JPH0230790B2 JPH0230790B2 (en) 1990-07-09

Family

ID=13908248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8719783A Granted JPS59212159A (en) 1983-05-18 1983-05-18 Production of aluminum alloy casting

Country Status (1)

Country Link
JP (1) JPS59212159A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286660A (en) * 1986-06-03 1987-12-12 Mazda Motor Corp Composite member having excellent wear resistance and its production
JPS63255379A (en) * 1987-04-13 1988-10-21 Mazda Motor Corp Manufacture of sliding member
JPS63191201U (en) * 1987-05-29 1988-12-09
JPH02254132A (en) * 1989-03-27 1990-10-12 Daihatsu Motor Co Ltd Manufacture of iron porous body used for reinforcing metallic parts for pressure casting of aluminum or the like
JPH02264142A (en) * 1988-09-07 1990-10-26 Izumi Ind Ltd Piston for internal combustion engine
US6402488B2 (en) * 2000-01-31 2002-06-11 Sumitomo Electric Industries, Ltd. Oil pump
US6553892B1 (en) 1999-10-18 2003-04-29 Smc Kabushiki Kaisha Mounting structure for piston packing
JP2008520880A (en) * 2004-11-24 2008-06-19 マーレ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method of making a piston for an internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542906A (en) * 1978-09-18 1980-03-26 Takechi Koumushiyo:Kk Concrete pile for constructing footing and production method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542906A (en) * 1978-09-18 1980-03-26 Takechi Koumushiyo:Kk Concrete pile for constructing footing and production method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286660A (en) * 1986-06-03 1987-12-12 Mazda Motor Corp Composite member having excellent wear resistance and its production
JPS63255379A (en) * 1987-04-13 1988-10-21 Mazda Motor Corp Manufacture of sliding member
JPS63191201U (en) * 1987-05-29 1988-12-09
JPH02264142A (en) * 1988-09-07 1990-10-26 Izumi Ind Ltd Piston for internal combustion engine
JPH02254132A (en) * 1989-03-27 1990-10-12 Daihatsu Motor Co Ltd Manufacture of iron porous body used for reinforcing metallic parts for pressure casting of aluminum or the like
US6553892B1 (en) 1999-10-18 2003-04-29 Smc Kabushiki Kaisha Mounting structure for piston packing
US6402488B2 (en) * 2000-01-31 2002-06-11 Sumitomo Electric Industries, Ltd. Oil pump
JP2008520880A (en) * 2004-11-24 2008-06-19 マーレ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method of making a piston for an internal combustion engine

Also Published As

Publication number Publication date
JPH0230790B2 (en) 1990-07-09

Similar Documents

Publication Publication Date Title
US4966221A (en) Method of producing aluminum alloy castings and piston made of aluminum alloy
JPS59212159A (en) Production of aluminum alloy casting
US4588551A (en) Article having cast metal portion and sintered metallic portion and method of producing same
JPH04231163A (en) Manufacture for bimaterial parts by molding
US5097887A (en) Process of making a pressure-diecast, fiber-reinforced part
JPS5838654A (en) Casting method for composite member
JPS63126661A (en) Production of piston
JPH0330709B2 (en)
JP3864176B1 (en) Casting apparatus, method for producing mold periphery member, and mold periphery member
JPH09155523A (en) Sleeve of die casting machine and production thereof
JPS60191654A (en) Piston for internal-combustion engine and production thereof
JP4608622B2 (en) Mold and manufacturing method thereof
JP3758114B2 (en) Aluminum alloy member and manufacturing method thereof
JP4309999B2 (en) Composite member and manufacturing method thereof
JP3167854B2 (en) Pressure casting method and pressure casting apparatus for aluminum alloy
JPS6221456A (en) Production of hollow casting
JPS59218341A (en) Aluminium alloy-made piston
JP3214657B2 (en) Piston for internal combustion engine and method of manufacturing the same
JPH0432527A (en) Manufacture of foamed body of ti-al series intermetallic compound and product thereby
Zhao et al. Impacts of zinc layer and pouring method on interface performance for Al-22Si/ZL104 bi-metal
JPS6411384B2 (en)
JPS6018261A (en) Manufacture of two-layered cylinder liner
JP2007216294A (en) Method for manufacturing casting apparatus and mold-surrounding member, and mold-surrounding member
JP2000271728A (en) Production of composite stock with non-pressurize impregnating permeation method
JP4371379B2 (en) Aluminum composite for tableware exhibiting jet black and method for producing the same