JP4309999B2 - Composite member and manufacturing method thereof - Google Patents

Composite member and manufacturing method thereof Download PDF

Info

Publication number
JP4309999B2
JP4309999B2 JP18422599A JP18422599A JP4309999B2 JP 4309999 B2 JP4309999 B2 JP 4309999B2 JP 18422599 A JP18422599 A JP 18422599A JP 18422599 A JP18422599 A JP 18422599A JP 4309999 B2 JP4309999 B2 JP 4309999B2
Authority
JP
Japan
Prior art keywords
main body
plating layer
cast
chrome plating
hard chrome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18422599A
Other languages
Japanese (ja)
Other versions
JP2001009564A (en
Inventor
恒久 畑
裕介 豊田
武雄 伊藤
捷彌 長瀬
英男 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP18422599A priority Critical patent/JP4309999B2/en
Publication of JP2001009564A publication Critical patent/JP2001009564A/en
Application granted granted Critical
Publication of JP4309999B2 publication Critical patent/JP4309999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は複合部材、特に、部材本体と、その部材本体の鋳造過程で、それに接合された被鋳ぐるみ材とよりなる複合部材およびその製造方法に関する。
【0002】
【従来の技術】
従来、この種の複合部材としては、例えばディーゼルエンジン用ピストンが知られている。このピストンにおいて、部材本体としてのピストン本体はAl合金よりなり、また被鋳ぐるみ材としての第1圧縮リング溝形成用環状体はニレジスト鋳鉄よりなる環状主体と、その主体に形成されたAl系メッキ層とより構成される。このAl系メッキ層は、アルフィン法の一工程として溶融メッキ処理により形成されたものである。
【0003】
【発明が解決しようとする課題】
しかしながら前記溶融メッキ処理においては、Al系メッキ層と環状主体との間に、Al系溶湯と環状主体を構成するニレジスト鋳鉄との反応により金属間化合物が層状に形成され、この金属間化合物層はAl系メッキ層とは強く接合しているが、環状主体との接合が弱いことから、そこが破断し易く、したがってピストン本体と環状体との接合強度が低い、という問題があった。
【0004】
【課題を解決するための手段】
本発明は部材本体と被鋳ぐるみ材との接合強度を大いに向上させた前記複合部材を提供することを目的とする。
【0005】
前記目的を達成するため本発明によれば、Al合金製の部材本体と、その部材本体の鋳造過程で、該部材本体に接合された被鋳ぐるみ材とよりなる複合部材において、前記被鋳ぐるみ材がニレジスト鋳鉄製の主体と、その主体の前記部材本体側の表面に形成された硬質クロムメッキ層とよりなり、前記被鋳ぐるみ材は、底部が前記主体に達するように前記硬質クロムメッキ層を貫通していて前記部材本体との接合界面に開口する1以上の凹部を、また前記部材本体は前記凹部に嵌合する1以上の凸部をそれぞれ有していると共に、前記凹部が、前記凸部を形成するAl合金組成の溶湯と前記被鋳ぐるみ材との反応により生じたものであって、開口部分が窄まっており、前記硬質クロムメッキ層の部材本体側は、該硬質クロムメッキ層とAl合金組成の溶湯との反応で生じたCrAl系金属間化合物層に変化していて、そのCrAl系金属間化合物層の外面が前記接合界面となっており、また前記各凸部の外周部分は、Al合金組成の溶湯とニレジスト鋳鉄との反応により生じたFeAl系金属間化合物より構成されると共に、その各凸部の基端部分は、前記凹部の開口部分の窄まりに対応してくびれていることを特徴とする複合部材が提供される。
【0006】
前記のように構成すると、Al合金製の部材本体と一体の各凸部が、ニレジスト鋳鉄製の主体とその表面に形成された硬質クロムメッキ層とよりなる被鋳ぐるみ材における開口部分が窄まった各凹部に抜止め嵌合しているので、部材本体と被鋳ぐるみ材との接合強度が高められる。また各凹、凸部は前記のよう反応に伴うものであるからそれらの密着性が高く、したがって部材本体および被鋳ぐるみ材間の熱伝導性が良好である。これは複合部材がディーゼルエンジン用ピストン等の高温環境で使用される部材であって、良好な冷却性を求められる場合に有効である。
【0007】
また本発明は前記複合部材を確実に得ることができる前記製造方法を提供することを目的とする。
【0008】
前記目的を達成するため本発明によれば、Al合金製の部材本体と、その部材本体の鋳造過程で、該部材本体に接合された被鋳ぐるみ材とよりなる複合部材であって、前記被鋳ぐるみ材がニレジスト鋳鉄製の主体と、その主体の前記部材本体側の表面に形成された硬質クロムメッキ層とよりなる複合部材を製造するに当り、前記被鋳ぐるみ材の前記主体に前記硬質クロムメッキ層を形成すると共に、その硬質クロムメッキ層に、その表面から前記主体に達する1以上のクラックを層全体に亘って発生させる第1の工程と、前記メッキ層表面にAl合金組成の溶湯を付与して、前記部材本体を成形する溶湯との相溶性の良い皮膜を前記メッキ層と一体に形成し、またその溶湯の一部を前記クラックを通じて前記被鋳ぐるみ材の前記主体まで到達させることによって、前記硬質クロムメッキ層と溶湯との反応による前記クラックの拡幅および前記主体と溶湯との反応による主体の侵食をそれぞれ惹起させて、その侵食により前記主体に1以上の小凹部を形成する第2の工程と、前記被鋳ぐるみ材を鋳型内に設置して、前記皮膜を取込んだ前記部材本体を鋳造し、また前記クラックの拡幅および前記主体の侵食の進行により、前記被鋳ぐるみ材に、前記部材本体との接合界面に開口しつその開口部分が窄まっている1以上の凹部を形成すると共に前記部材本体に、前記凹部に嵌合する1以上の凸部を形成する第3の工程とを用い、前記第1の工程では、前記硬質クロムメッキ層に前記クラックが発生するように、該硬質クロムメッキ層の厚さt 1 が 1.5μm≦t 1 ≦8μmに設定されることを特徴とする複合部材の製造方法が提供される。
【0009】
前記方法によれば所期の目的を達成することができる。
【0010】
【発明の実施の形態】
図1において、複合部材1は部材本体2と、その部材本体2の鋳造過程で、それに接合された被鋳ぐるみ材3とよりなる。被鋳ぐるみ材3は部材本体2との接合界面4に開口する1以上のスロット状凹部5を、また部材本体2は凹部5に嵌合する1以上のビード状凸部6をそれぞれ有する。各凹部5は各凸部6を形成する溶湯と被鋳ぐるみ材3との反応により生じたものであって、開口部分7が窄まっている。
【0011】
部材本体2はAl合金よりなる。被鋳ぐるみ材3は、ニレジスト鋳鉄よりなる主体8と、その表面に形成されたメッキ層としての硬質クロムメッキ層9とより構成される。その硬質クロムメッキ層9の部材本体2側は、Al合金組成の溶湯との反応で生じたCrAl系金属間化合物層10に変化しており、その金属間化合物層10の外面が部材本体2との接合界面4である。各凸部6の外周部分は、Al合金組成の溶湯と、主としてニレジスト鋳鉄との反応により生じたFeAl系金属間化合物11より構成され、またその基端部分は凹部5の開口部分7の窄まりに対応してくびれている。
【0012】
前記のように構成すると、部材本体2と一体の各凸部6が、被鋳ぐるみ材3における開口部分7が窄まった各凹部5に抜止め嵌合しているので、部材本体2と被鋳ぐるみ材3との接合強度が高められる。また各凹、凸部5、6は前記のように反応に伴うものであるからそれらの密着性が高く、したがって部材本体2および被鋳ぐるみ材3間の熱伝導性が良好である。これは複合部材1がディーゼルエンジン用ピストン等の高温環境で使用される部材であって、良好な冷却性を求められる場合に有効である。
【0013】
複合部材1の製造に当っては次のような方法が採用される。
【0014】
(1) 図2(a)、図3に示すように、前処理後の被鋳ぐるみ材3の主体8に電気メッキ処理により硬質クロムメッキ層9を形成すると共にその硬質クロムメッキ層9に、その表面から主体8に達する1以上のクラック12を層全体に亘って発生させる。
【0015】
(2) 図2(b)、(c)に示すように、溶融メッキ処理等により硬質クロムメッキ層9表面にAl合金組成の溶湯13を付与して、部材本体2を成形する溶湯との相溶性の良い皮膜14を硬質クロムメッキ層9と一体に形成する。またその溶湯13の一部をクラック12を通じて被鋳ぐるみ材3の主体8まで到達させることによって、硬質クロムメッキ層9と溶湯13との反応によるクラック12の拡幅および主体8と溶湯13との反応によるその主体8の侵食をそれぞれ惹起させる。硬質クロムメッキ層9の表層側と溶湯13との反応によりCrAl系金属間化合物層10が形成される。また前記侵食により主体8に1以上の小凹部50 が形成されると共にFeAl系金属間化合物11が生成される。
【0016】
(3) 被鋳ぐるみ材3を鋳型内に設置して、皮膜14を取込んだ部材本体2を鋳造する。またクラック12の拡幅および主体8の侵食の進行により、図1に示したように被鋳ぐるみ材3に、部材本体2との接合界面4に開口し、且つその開口部分7が窄まっている1以上の凹部5を形成すると共に部材本体2に、凹部5に嵌合する1以上の凸部6を形成する。
【0017】
被鋳ぐるみ材3の主体8に対する前処理は、溶剤脱脂→アルカリ脱脂→水洗→酸洗→水洗の順序で行われ、水洗後の主体8はそのままメッキ浴に入れられる。また硬質クロムメッキ層9の厚さt1 は1.5μm≦t1 ≦8μmに設定される。このように設定すると、その層9にはそれを貫通するようにクラック12が自然に発生する。
【0018】
部材本体2および皮膜14をJIS AC8AといったAl合金より構成する場合、溶融メッキ処理における溶湯温度TE は695℃≦TE ≦725℃に、また浸漬時間TI は105sec ≦TI ≦180sec にそれぞれ設定される。この場合、溶湯温度TE がTE >725℃であるか、浸漬時間TI がTI >180sec である場合には硬質クロムメッキ層9の拡散が激しくなるため凹、凸部5、6を形成することができず、一方、溶湯温度TE がTE <695℃であるか、浸漬時間TI がTI <105sec である場合には溶湯13と硬質クロムメッキ層9との濡れ性が悪化して接合不良を招く。
【0019】
部材本体2の鋳造に当っては、被鋳ぐるみ材3を溶融メッキ処理後一旦冷却し、次いで予熱してから鋳型内に設置するか、または被鋳ぐるみ材3を、溶融メッキ処理における溶湯13中より取出した後直ちに鋳型内に設置する、といった方法が採用される。後者の場合、皮膜14は溶融状態にある。なお、皮膜14の厚さt2 は、50μm≦t2 ≦300μmである。
【0020】
以下、具体例について説明する。
【0021】
〔I〕 接合界面4における凹部5の占有率Aと接合強度Sとの関係
被鋳ぐるみ材3の主体8として、縦80mm、横50mm、厚さ5mmのニレジスト鋳鉄製板材を選択した。このニレジスト鋳鉄は、2.5wt%C、2wt%Si、1wt%Mn、15wt%Ni、6wt%Cu、2wt%Crおよび残部不可避不純物を含むFeよりなる。
【0022】
8枚の主体8に前処理を施した後、それらに電気メッキ処理を施して硬質クロムメッキ層9を形成し、被鋳ぐるみ材3の例1〜8を得た。例1〜8の電気メッキ処理条件は表1、2の通りである。
【0023】
【表1】

Figure 0004309999
【0024】
【表2】
Figure 0004309999
【0025】
次いで、例1〜8を、710℃のJIS AC8A組成の溶湯中に120sec 浸漬した。その後、例1〜8を溶湯中から取出して直ちに鋳型内に設置し、JIS AC8A組成の溶湯を鋳型に注入して部材本体2を鋳造すると共にそれに被鋳ぐるみ材3を鋳ぐるんで複合部材1の例1〜8を得た。これらの例1〜8は被鋳ぐるみ材3の例1〜8にそれぞれ対応する。
【0026】
複合部材1の例1〜8について、接合界面4における凹部5の占有率Aを求め、また部材本体2および被鋳ぐるみ材3間の接合強度Sを求めた。前記占有率Aは、接合界面4における任意長さをA1 とし、また図1に示すように凹部5の最大幅をaとして、前記長さA1 内に存する全凹部5の最大幅aの和をA2 としたとき、A=(A2 /A1 )×100(%)として求められた。また接合強度Sについては、図4に示すようにテストピースTpにおける被鋳ぐるみ材3の両端を2つの支持台15上に載せ、被鋳ぐるみ材3の中央に形成された孔16に加圧部材17を嵌めて部材本体2を押圧し、その部材本体2が被鋳ぐるみ材3から離脱したときの加荷重LO を求め、接合部の面積をAS (ただし、孔16の断面積は除かれる)としてS=LO /AS を算出した。
【0027】
表3は、複合部材1の例1〜8における硬質クロムメッキ層9の厚さt1 および凹部5の占有率Aと接合強度Sとの関係を示す。
【0028】
【表3】
Figure 0004309999
【0029】
図5は表3に基づいて、凹部5の占有率Aと接合強度Sとの関係をグラフ化したものである。
【0030】
表3、図5から明らかなように、例2〜7のごとく、硬質クロムメッキ層9の厚さt1 を1.5μm≦t1 ≦8μmに設定すると、凹部5の占有率Aを5%≦A≦95%にして、36MPa≦S≦56MPaといった比較的大きな接合強度Sを得ることができる。例1の場合は接合界面4の面積が過少であることに起因して接合強度Sが低く、また例8の場合は硬質クロムメッキ層9の厚さが大となって前記のような貫通クラックが存在しないことから凹部5が形成されなかったものである。
【0031】
なお、例2〜7において、凹部5の存在率B(後述)はB≧10%の範囲にあり、また凹部5の最大幅aの平均値a1 (後述)は15μm≦a1 ≦200μmの範囲にあり、さらに硬質クロムメッキ層9のクラック密度D(後述)は140クラック数/cm≦D≦750クラック数/cmの範囲にあった。
【0032】
〔II〕 凹部5の存在率Bと接合強度Sとの関係
前記同様の4枚の主体8に前処理を施した後、それらに電気メッキ処理を施して、厚さt1 が4.5μmの硬質クロムメッキ層9を形成し、被鋳ぐるみ材3の例9〜12を得た。例9〜12の電気メッキ処理条件は表4、5の通りである。
【0033】
【表4】
Figure 0004309999
【0034】
【表5】
Figure 0004309999
【0035】
次いで、例9〜12における凹部5の存在率Bを変化させるべく、それら例9〜12を、所定温度のJIS AC8A組成の溶湯中に所定時間浸漬した。その後、例9〜12を溶湯中から取出して直ちに鋳型内に設置し、JIS AC8A組成の溶湯を鋳型に注入して部材本体2を鋳造すると共にそれに被鋳ぐるみ材3を鋳ぐるんで複合部材1の例9〜12を得た。これらの例9〜12は被鋳ぐるみ材3の例9〜12にそれぞれ対応する。
【0036】
複合部材1の例9〜12について、接合界面4における凹部5の存在率Bを求め、また部材本体1および被鋳ぐるみ材3間の接合強度Sを前記同様の方法で求めた。前記存在率Bは、接合界面4の任意長さA1 内において、開口部分7が窄んでいる凹部5および開口部分が窄んでいない凹部を含む全部の凹部の数をB1 とし、また開口部分7が窄んでいる全凹部5の数をB2 としたとき、B=(B2 /B1 )×100(%)として求められた。
【0037】
表6は、複合部材1の例9〜12における溶湯への浸漬条件、凹部5の存在率Bおよび接合強度Sの関係を示す。
【0038】
【表6】
Figure 0004309999
【0039】
図6は表6に基づいて、凹部5の存在率Bと接合強度Sとの関係をグラフ化したものである。
【0040】
表6、図6から明らかなように、例10〜12のごとく、凹部5の存在率BをB≧10%に設定すると、S≧38MPaといった比較的大きな接合強度Sを得ることができる。
【0041】
なお、例10〜12において、凹部5の占有率Aは5%≦A≦95%の範囲にあり、また凹部5の最大幅aの平均値a1 (後述)は15μm≦a1 ≦200μmの範囲にあり、さらに硬質クロムメッキ層9のクラック密度D(後述)は140クラック数/cm≦D≦750クラック数/cmの範囲にあった。
【0042】
〔III 〕 凹部5の最大幅aの平均値a1 と接合強度Sとの関係
前記同様の7枚の主体8に前処理を施した後、それらに電気メッキ処理を施して厚さt1 が4.5μmの硬質クロムメッキ層9を形成し、被鋳ぐるみ材3の例13〜19を得た。例13〜19の電気メッキ処理条件は表7、8の通りである。
【0043】
【表7】
Figure 0004309999
【0044】
【表8】
Figure 0004309999
【0045】
次いで、例13〜19における凹部5の最大幅aの平均値a1 を変化させるべく、それら例13〜19を、所定温度のJIS AC8A組成の溶湯中に所定時間浸漬した。その後、例13〜19を溶湯中から取出して直ちに鋳型内に設置し、JIS AC8A組成の溶湯を鋳型に注入して部材本体2を鋳造すると共にそれに被鋳ぐるみ材3を鋳ぐるんで複合部材1の例13〜19を得た。これらの例13〜19は被鋳ぐるみ材3の例13〜19にそれぞれ対応する。
【0046】
複合部材1の例13〜19について、凹部5の最大幅aの平均値a1 を求め、また部材本体1および被鋳ぐるみ材3間の接合強度Sを前記同様の方法で求めた。前記平均値a1 は、接合界面4における任意長さA1 内に存する全凹部5の数をB2 とし、また全凹部5の最大幅aの和をA2 としたとき、a1 =A2 /B2 として求められた。
【0047】
表9は、複合部材1の例13〜19における溶湯への浸漬条件、凹部5の最大幅aの平均値a1 および接合強度Sの関係を示す。
【0048】
【表9】
Figure 0004309999
【0049】
図7は表9に基づいて、凹部5の最大幅aの平均値a1 と接合強度Sとの関係をグラフ化したものである。
【0050】
表9、図7から明らかなように、例14〜17のごとく、凹部5の最大幅aの平均値a1 を15μm≦a1 ≦200μmに設定すると、38MPa≦S≦52MPaといった比較的大きな接合強度Sを得ることができる。例13の場合は平均値a1 が小さ過ぎ、一方、例19の場合は平均値a1 が大き過ぎることから凹部5によるアンカ効果が減退する。
【0051】
なお、例14〜17において、凹部5の占有率Aは5%≦A≦95%の範囲にあり、また凹部5の存在率BはB≧10%の範囲にあり、さらに硬質クロムメッキ層9のクラック密度D(後述)は140クラック数/cm≦D≦750クラック数/cmの範囲にあった。
【0052】
〔IV〕 硬質クロムメッキ層9のクラック密度Dと接合強度Sの関係
前記同様の8枚の主体8に前処理を施した後、それらに電気メッキ処理を施して硬質クロムメッキ層9を形成し、被鋳ぐるみ材3の例20〜27を得た。例20〜27の電気メッキ処理条件は表10、11の通りである。
【0053】
【表10】
Figure 0004309999
【0054】
【表11】
Figure 0004309999
【0055】
電気メッキ処理後例20〜27について、硬質クロムメッキ層9の厚さt1 およびそのメッキ層9を貫通しているクラック12の密度D(クラック数/cm)を求めた。次いで、例20〜27を、710℃のJIS AC8A組成の溶湯中に120sec 浸漬した。その後、例20〜27を溶湯中から取出して直ちに鋳型内に設置し、JIS AC8A組成の溶湯を鋳型に注入して部材本体2を鋳造すると共にそれに被鋳ぐるみ材3を鋳ぐるんで複合部材1の例20〜27を得た。これらの例20〜27は被鋳ぐるみ材3の例20〜27にそれぞれ対応する。
【0056】
複合部材1の例20〜27について部材本体1および被鋳ぐるみ材3間の接合強度Sを前記同様の方法で求めた。
【0057】
表12は、複合部材1の例20〜27における硬質クロムメッキ層9の厚さt1 およびクラック密度Dと接合強度Sとの関係を示す。
【0058】
【表12】
Figure 0004309999
【0059】
図8は表12に基づいて、クラック密度Dと接合強度Sとの関係をグラフ化したものである。
【0060】
表12、図8から明らかなように、例21〜25のごとく、硬質クロムメッキ層9の厚さt1 を1.5μm≦t1 ≦8μmに設定すると、クラック密度Dを140クラック数/cm≦D≦750クラック数/cmにして、36MPa≦S≦52MPaといった比較的大きな接合強度Sを得ることができる。
【0061】
なお、例21〜25において、凹部5の占有率Aは5%≦A≦95%の範囲にあり、また凹部5の存在率BはB≧10%の範囲にあり、さらに凹部5の最大幅aの平均値a1 は15μm≦a1 ≦200μmの範囲にあった。
【0062】
鋳造において、注湯開始から凝固終了までの冷却速度CR は2.5℃/sec ≦CR ≦5℃/sec であることが望ましい。このような冷却速度CR の設定は、被鋳ぐるみ材3の接合界面4の変化を抑制して凹、凸部5、6の形状を安定化させる上で有効である。
【0063】
【発明の効果】
本発明によれば前記のように構成することによって、部材本体と被鋳ぐるみ材との接合強度を大いに向上させた複合部材を提供することができる。
【0064】
また本発明によれば前記のような手段を採用することによって、前記複合部材を確実に得ることが可能な製造方法を提供することができる。
【図面の簡単な説明】
【図1】 複合部材の要部拡大断面図である。
【図2】 複合部材の製造工程説明図である。
【図3】 硬質クロムメッキ層の平面図である。
【図4】 接合強度の測定方法説明図である。
【図5】 凹部の占有率Aと接合強度Sとの関係を示すグラフである。
【図6】 凹部の存在率Bと接合強度Sとの関係を示すグラフである。
【図7】 凹部の最大幅aの平均値a1 と接合強度Sとの関係を示すグラフである。
【図8】 クラック密度Dと接合強度Sとの関係を示すグラフである。
【符号の説明】
1 複合部材
2 部材本体
3 被鋳ぐるみ材
4 接合界面
0 小凹部
5 凹部
6 凸部
7 開口部分
8 主体
9 硬質クロムメッキ層
10 CrAl系金属間化合物層
11 FeAl系金属間化合物
12 クラック
13 溶湯
14 皮膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite member, and more particularly, to a composite member including a member main body, and a cast stuffed material joined to the member main body in a casting process of the member main body, and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, as this type of composite member, for example, a piston for a diesel engine is known. In this piston, the piston main body as a member main body is made of an Al alloy, and the first compression ring groove forming annular body as a cast fill material is an annular main body made of Ni-resist cast iron, and an Al-based plating formed on the main body. Composed of layers. This Al-based plating layer is formed by a hot dipping process as one step of the Alfin method.
[0003]
[Problems to be solved by the invention]
However, in the hot-dip plating process, an intermetallic compound is formed in layers between the Al-based plating layer and the annular main body by a reaction between the Al-based molten metal and Niresist cast iron constituting the annular main body. Although it is strongly bonded to the Al-based plating layer, since the bonding with the annular main body is weak, there is a problem that it is easy to break, and therefore the bonding strength between the piston body and the annular body is low.
[0004]
[Means for Solving the Problems]
An object of the present invention is to provide the composite member in which the joint strength between the member main body and the cast-in-place material is greatly improved.
[0005]
In order to achieve the above object, according to the present invention, in a composite member comprising an Al alloy member main body and a cast fill material joined to the member main body in the casting process of the member main body, the cast fill The material consists of a main body made of Ni-resist cast iron and a hard chrome plating layer formed on the surface of the main body of the main body, and the cast stuffed material has the hard chrome plating layer so that the bottom reaches the main body. the extend through openings in the joint interface between the member body 1 or more recesses, also together with the member body has one or more protrusions to be fitted into the recess, respectively, the recess, the It is generated by a reaction between the molten Al alloy composition forming the convex portion and the cast material, the opening portion is narrowed, and the member main body side of the hard chrome plating layer is the hard chrome plating. Layer and Al It has changed to a CrAl-based intermetallic compound layer generated by the reaction with the molten metal of the gold composition, the outer surface of the CrAl-based intermetallic compound layer is the bonding interface, and the outer peripheral portion of each convex portion, It is composed of an FeAl-based intermetallic compound produced by the reaction between the molten Al alloy composition and Ni-resist cast iron, and the base end portion of each convex portion is constricted to correspond to the constriction of the opening portion of the concave portion. A composite member is provided.
[0006]
When configured as described above, each convex portion integrated with the Al alloy member main body is narrowed in the opening portion of the cast swallow material made up of the main body made of Ni-resist cast iron and the hard chromium plating layer formed on the surface thereof. In addition, since it is fitted in each recess, the bonding strength between the member main body and the cast-out material is increased. The respective concave and convex portion and the high adhesion them from those associated with the reaction, such as, hence the heat conductivity between the member body and the insert casting material is good. This is effective when the composite member is a member used in a high-temperature environment such as a piston for a diesel engine and a good cooling property is required.
[0007]
Moreover, this invention aims at providing the said manufacturing method which can obtain the said composite member reliably.
[0008]
In order to achieve the above object, according to the present invention, there is provided a composite member comprising an Al alloy member main body and a to-be-casting material joined to the member main body in a casting process of the member main body. In producing a composite member comprising a main body made of Ni-resist cast iron and a hard chrome plating layer formed on the surface of the main body of the main body, the main body of the to- be-cast base material is the hard body. and forming a chromium plating layer, its hard chrome plating layer, a first step of generating over one or more cracks from the surface reaches the main throughout the layer, the Al alloy composition on the plating layer surface melt Is formed integrally with the plating layer, and a part of the molten metal reaches the main body of the cast blanket through the crack. By, said hard chromium plating layer and the melt and the reaction each was induced erosion of the principal by reaction with widening and the metallic and the melt of the cracks due to the, one or more small recesses in the main by the erosion The second step to be formed , the cast body material is placed in a mold, the member body incorporating the coating is cast, and the crack is widened and the main body is eroded. the casting-material, and forming one or more recesses opened one the opening portion at the bonding interface between said member main body is narrowed, the member main body, one or more protrusions to be fitted into the recess using a third step of forming a, in the first step, the so cracks in the hard chrome plating layer, the thickness t 1 of the hard chromium plating layer is 1.5 [mu] m ≦ t 1 ≦ Set to 8μm A method for manufacturing a composite member is provided.
[0009]
According to the method, the intended purpose can be achieved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In FIG. 1, the composite member 1 includes a member main body 2 and a cast-up material 3 joined to the member main body 2 during the casting process of the member main body 2. The to-be-cast material 3 has one or more slot-like recesses 5 that open to the joint interface 4 with the member body 2, and the member body 2 has one or more bead-like projections 6 that fit into the recesses 5. Each concave portion 5 is generated by a reaction between the molten metal forming each convex portion 6 and the cast fill material 3, and the opening portion 7 is narrowed.
[0011]
The member body 2 is made of an Al alloy. The to-be-cast material 3 is composed of a main body 8 made of Ni-resist cast iron and a hard chromium plating layer 9 as a plating layer formed on the surface thereof. The member main body 2 side of the hard chrome plating layer 9 is changed to a CrAl-based intermetallic compound layer 10 generated by a reaction with a molten metal having an Al alloy composition, and the outer surface of the intermetallic compound layer 10 is connected to the member main body 2. This is the bonding interface 4. The outer peripheral portion of each convex portion 6 is composed of a FeAl-based intermetallic compound 11 produced mainly by the reaction between the molten Al alloy composition and Ni-resist cast iron, and its base end portion is a constriction of the opening portion 7 of the concave portion 5. Corresponding to.
[0012]
With the above-described configuration, each convex portion 6 integral with the member main body 2 is fitted to each concave portion 5 in which the opening portion 7 in the casted swallow material 3 is narrowed. The joining strength with the cast-in material 3 is increased. Moreover, since each concave and convex part 5 and 6 accompany reaction as mentioned above, those adhesiveness is high, Therefore, the thermal conductivity between the member main body 2 and the to-be-casting material 3 is favorable. This is effective when the composite member 1 is a member used in a high temperature environment such as a piston for a diesel engine, and good cooling performance is required.
[0013]
In manufacturing the composite member 1, the following method is employed.
[0014]
(1) As shown in FIG. 2 (a) and FIG. 3, a hard chrome plating layer 9 is formed by electroplating on the main body 8 of the to-be-cast material 3 after the pretreatment, and the hard chrome plating layer 9 is One or more cracks 12 reaching the main body 8 from the surface are generated over the entire layer.
[0015]
(2) As shown in FIGS. 2 (b) and 2 (c), a phase with the molten metal for forming the member main body 2 by applying a molten alloy 13 of Al alloy composition to the surface of the hard chrome plated layer 9 by a hot dipping process or the like. A film 14 having good solubility is formed integrally with the hard chrome plating layer 9. Further, by causing a part of the molten metal 13 to reach the main body 8 of the cast blank 3 through the crack 12, the crack 12 is widened by the reaction between the hard chromium plating layer 9 and the molten metal 13 and the reaction between the main body 8 and the molten metal 13. Cause erosion of the subject 8 by. A CrAl-based intermetallic compound layer 10 is formed by a reaction between the surface layer side of the hard chromium plating layer 9 and the molten metal 13. The FeAl intermetallic compound 11 is produced with one or more small recesses 5 0 mainly 8 is formed by the erosion.
[0016]
(3) The cast body 3 is placed in the mold, and the member body 2 incorporating the coating 14 is cast. Further, due to the widening of the crack 12 and the progress of the erosion of the main body 8, as shown in FIG. One or more concave portions 5 are formed, and one or more convex portions 6 that fit into the concave portions 5 are formed in the member main body 2.
[0017]
The pretreatment for the main body 8 of the cast-in-place material 3 is performed in the order of solvent degreasing → alkali degreasing → water washing → acid washing → water washing, and the main body 8 after water washing is put in a plating bath as it is. The thickness t 1 of the hard chrome plating layer 9 is set to 1.5 μm ≦ t 1 ≦ 8 μm. If it sets in this way, the crack 12 will generate | occur | produce naturally in the layer 9 so that it may penetrate.
[0018]
When the member main body 2 and the coating 14 are made of an Al alloy such as JIS AC8A, the molten metal temperature T E in the hot dipping process is 695 ° C. ≦ T E ≦ 725 ° C., and the immersion time T I is 105 sec ≦ T I ≦ 180 sec. Is set. In this case, when the molten metal temperature T E is T E > 725 ° C. or the immersion time T I is T I > 180 sec, the diffusion of the hard chrome plating layer 9 becomes intense, so that the concave and convex portions 5 and 6 are formed. On the other hand, when the molten metal temperature T E is T E <695 ° C. or the immersion time T I is T I <105 sec, the wettability between the molten metal 13 and the hard chromium plating layer 9 is high. It deteriorates and causes poor bonding.
[0019]
In casting the member body 2, the to-be-casting material 3 is once cooled after the hot dipping treatment and then preheated and then placed in the mold, or the to-be-casting material 3 is melted in the hot dipping process 13. A method is adopted in which it is placed in the mold immediately after taking out from the inside. In the latter case, the coating 14 is in a molten state. The thickness t 2 of the film 14 is 50 μm ≦ t 2 ≦ 300 μm.
[0020]
Hereinafter, specific examples will be described.
[0021]
[I] Relationship between Occupancy A of Recess 5 at Joining Interface 4 and Joining Strength S As a main body 8 of the cast-in waist material 3, a Niresist cast iron plate material having a length of 80 mm, a width of 50 mm, and a thickness of 5 mm was selected. This Ni-resist cast iron is made of Fe containing 2.5 wt% C, 2 wt% Si, 1 wt% Mn, 15 wt% Ni, 6 wt% Cu, 2 wt% Cr and the balance unavoidable impurities.
[0022]
After subjecting the eight main bodies 8 to pretreatment, they were subjected to electroplating treatment to form a hard chrome plating layer 9, and Examples 1 to 8 of the cast material 3 were obtained. The electroplating process conditions of Examples 1-8 are as Tables 1 and 2.
[0023]
[Table 1]
Figure 0004309999
[0024]
[Table 2]
Figure 0004309999
[0025]
Next, Examples 1 to 8 were immersed in a molten metal having a JIS AC8A composition at 710 ° C. for 120 seconds. Thereafter, Examples 1 to 8 were taken out from the molten metal and immediately installed in the mold, and the molten metal having the composition of JIS AC8A was poured into the mold to cast the member main body 2 and cast the blank 3 to the composite member 1. Examples 1 to 8 were obtained. These Examples 1 to 8 correspond to Examples 1 to 8 of the cast material 3, respectively.
[0026]
For Examples 1 to 8 of the composite member 1, the occupation ratio A of the concave portion 5 at the bonding interface 4 was determined, and the bonding strength S between the member main body 2 and the cast blank 3 was determined. The occupancy A is any length as A 1 in the bonding interface 4, and as a maximum width of the recess 5, as shown in Figure 1, the maximum width a of the total recess 5 existing in the length A 1 When the sum was A 2 , it was calculated as A = (A 2 / A 1 ) × 100 (%). In addition, as shown in FIG. 4, the bonding strength S is placed on the two support bases 15 at both ends of the cast ball material 3 in the test piece Tp, and pressed into the hole 16 formed in the center of the cast ball material 3. The member 17 is fitted and the member main body 2 is pressed, and the applied load L O is obtained when the member main body 2 is detached from the cast material 3, and the area of the joint is A S (however, the cross-sectional area of the hole 16 is S = L O / A S was calculated.
[0027]
Table 3 shows the relationship between the thickness t 1 of the hard chromium plating layer 9 and the occupation ratio A of the recess 5 and the bonding strength S in Examples 1 to 8 of the composite member 1.
[0028]
[Table 3]
Figure 0004309999
[0029]
FIG. 5 is a graph showing the relationship between the occupation ratio A of the recesses 5 and the bonding strength S based on Table 3.
[0030]
As apparent from Table 3 and FIG. 5, when the thickness t 1 of the hard chrome plating layer 9 is set to 1.5 μm ≦ t 1 ≦ 8 μm as in Examples 2 to 7, the occupation ratio A of the recess 5 is 5%. By setting ≦ A ≦ 95%, a relatively large bonding strength S such as 36 MPa ≦ S ≦ 56 MPa can be obtained. In the case of Example 1, the bonding strength S is low due to the area of the bonding interface 4 being too small, and in the case of Example 8, the thickness of the hard chrome plating layer 9 is increased, resulting in the above-described penetration crack. The recess 5 is not formed because of the absence of.
[0031]
In Examples 2 to 7, the abundance ratio B (described later) of the recess 5 is in the range of B ≧ 10%, and the average value a 1 (described later) of the maximum width a of the recess 5 is 15 μm ≦ a 1 ≦ 200 μm. Further, the crack density D (described later) of the hard chromium plating layer 9 was in the range of 140 crack number / cm ≦ D ≦ 750 crack number / cm.
[0032]
[II] Relationship between the abundance ratio B of the recesses 5 and the bonding strength S After the pretreatment is performed on the four main bodies 8 similar to the above, they are subjected to electroplating, and the thickness t 1 is 4.5 μm. The hard chrome plating layer 9 was formed and Examples 9-12 of the to-be-casting material 3 were obtained. The electroplating process conditions of Examples 9-12 are as Tables 4 and 5.
[0033]
[Table 4]
Figure 0004309999
[0034]
[Table 5]
Figure 0004309999
[0035]
Next, in order to change the abundance ratio B of the recesses 5 in Examples 9 to 12, the Examples 9 to 12 were immersed in a molten metal having a JIS AC8A composition at a predetermined temperature for a predetermined time. Thereafter, Examples 9 to 12 were taken out from the molten metal and immediately placed in the mold, and the molten metal having the composition of JIS AC8A was poured into the mold to cast the member main body 2 and cast the fill material 3 to the composite member 1. Examples 9 to 12 were obtained. These Examples 9 to 12 correspond to Examples 9 to 12 of the to-be-cast material 3, respectively.
[0036]
With respect to Examples 9 to 12 of the composite member 1, the abundance B of the recesses 5 at the bonding interface 4 was determined, and the bonding strength S between the member main body 1 and the cast blank 3 was determined by the same method as described above. The existence ratio B is optional in the length A 1, and the number of all the recesses including recess recess 5 and the opening portions opening portion 7 is in Lisbon is no Lisbon and B 1, also the opening portion of the bonding interface 4 When the number of all concave portions 5 in which 7 is constricted is B 2 , B = (B 2 / B 1 ) × 100 (%).
[0037]
Table 6 shows the relationship between the immersion conditions in the molten metal, the abundance B of the recesses 5 and the bonding strength S in Examples 9 to 12 of the composite member 1.
[0038]
[Table 6]
Figure 0004309999
[0039]
FIG. 6 is a graph showing the relationship between the abundance B of the recesses 5 and the bonding strength S based on Table 6.
[0040]
As is clear from Table 6 and FIG. 6, when the abundance ratio B of the recesses 5 is set to B ≧ 10% as in Examples 10 to 12, a relatively large bonding strength S such as S ≧ 38 MPa can be obtained.
[0041]
In Examples 10 to 12, the occupation ratio A of the recess 5 is in the range of 5% ≦ A ≦ 95%, and the average value a 1 (described later) of the maximum width a of the recess 5 is 15 μm ≦ a 1 ≦ 200 μm. Further, the crack density D (described later) of the hard chromium plating layer 9 was in the range of 140 crack number / cm ≦ D ≦ 750 crack number / cm.
[0042]
[III] Relationship between Average Value a 1 of Maximum Width a of Recess 5 and Bonding Strength S After subjecting the same seven main bodies 8 to pretreatment, they are subjected to electroplating to obtain a thickness t 1 A hard chromium plating layer 9 having a thickness of 4.5 μm was formed, and Examples 13 to 19 of the cast material 3 were obtained. The electroplating treatment conditions of Examples 13 to 19 are as shown in Tables 7 and 8.
[0043]
[Table 7]
Figure 0004309999
[0044]
[Table 8]
Figure 0004309999
[0045]
Next, in order to change the average value a 1 of the maximum width a of the recess 5 in Examples 13 to 19, the Examples 13 to 19 were immersed in a molten metal having a JIS AC8A composition at a predetermined temperature for a predetermined time. Thereafter, Examples 13 to 19 were taken out from the molten metal and immediately installed in the mold, and the molten metal having the composition of JIS AC8A was poured into the mold to cast the member main body 2 and cast the fill material 3 to the composite member 1. Examples 13 to 19 were obtained. These Examples 13 to 19 correspond to Examples 13 to 19 of the to-be-cast material 3, respectively.
[0046]
For example 13 to 19 of the composite member 1, the average value a 1 of the maximum width a of the recess 5, was also determined the bonding strength S between member main body 1 and the insert casting material 3 in the same manner. Said average value a 1 is the number of all recesses 5 existing in any length A 1 and B 2 at a joint interface 4, also when the sum of the maximum width a of all recesses 5 was A 2, a 1 = A It obtained as 2 / B 2.
[0047]
Table 9 shows the relationship between the immersion conditions in the molten metal in Examples 13 to 19 of the composite member 1, the average value a 1 of the maximum width a of the recess 5, and the bonding strength S.
[0048]
[Table 9]
Figure 0004309999
[0049]
FIG. 7 is a graph showing the relationship between the average value a 1 of the maximum width a of the recess 5 and the bonding strength S based on Table 9.
[0050]
As can be seen from Table 9 and FIG. 7, when the average value a 1 of the maximum width a of the recess 5 is set to 15 μm ≦ a 1 ≦ 200 μm as in Examples 14 to 17, a relatively large joint such as 38 MPa ≦ S ≦ 52 MPa. The strength S can be obtained. In the case of Example 13, the average value a 1 is too small, whereas in Example 19, the average value a 1 is too large, so that the anchor effect by the recess 5 is reduced.
[0051]
In Examples 14 to 17, the occupation ratio A of the recesses 5 is in the range of 5% ≦ A ≦ 95%, the existence ratio B of the recesses 5 is in the range of B ≧ 10%, and the hard chromium plating layer 9 The crack density D (described later) was in the range of 140 crack number / cm ≦ D ≦ 750 crack number / cm.
[0052]
[IV] Relationship between Crack Density D and Bond Strength S of Hard Chrome Plating Layer 9 After pre-processing the same eight main bodies 8 as described above, they are electroplated to form a hard chromium plated layer 9 Then, Examples 20 to 27 of the cast material 3 were obtained. The electroplating treatment conditions of Examples 20 to 27 are as shown in Tables 10 and 11.
[0053]
[Table 10]
Figure 0004309999
[0054]
[Table 11]
Figure 0004309999
[0055]
With respect to Examples 20 to 27 after the electroplating treatment, the thickness t 1 of the hard chrome plating layer 9 and the density D (number of cracks / cm) of the cracks 12 penetrating the plating layer 9 were determined. Next, Examples 20 to 27 were immersed in a molten metal having a JIS AC8A composition at 710 ° C. for 120 seconds. Thereafter, Examples 20 to 27 are taken out from the molten metal and immediately installed in the mold, and the molten metal having the composition of JIS AC8A is poured into the mold to cast the member main body 2 and cast the fill material 3 to the composite member 1. Examples 20 to 27 were obtained. These examples 20 to 27 correspond to the examples 20 to 27 of the cast material 3, respectively.
[0056]
For Examples 20 to 27 of the composite member 1, the bonding strength S between the member main body 1 and the casted ball material 3 was determined by the same method as described above.
[0057]
Table 12 shows the relationship between the thickness t 1 and crack density D of the hard chromium plating layer 9 and the bonding strength S in Examples 20 to 27 of the composite member 1.
[0058]
[Table 12]
Figure 0004309999
[0059]
FIG. 8 is a graph showing the relationship between the crack density D and the bonding strength S based on Table 12.
[0060]
As apparent from Table 12 and FIG. 8, as in Examples 21 to 25, when the thickness t 1 of the hard chrome plating layer 9 is set to 1.5 μm ≦ t 1 ≦ 8 μm, the crack density D is 140 cracks / cm. By setting ≦ D ≦ 750 cracks / cm, a relatively large bonding strength S such as 36 MPa ≦ S ≦ 52 MPa can be obtained.
[0061]
In Examples 21 to 25, the occupation ratio A of the recesses 5 is in the range of 5% ≦ A ≦ 95%, the existence ratio B of the recesses 5 is in the range of B ≧ 10%, and the maximum width of the recesses 5 The average value a 1 of a was in the range of 15 μm ≦ a 1 ≦ 200 μm.
[0062]
In casting, the cooling rate C R from the start of pouring to the end of solidification is preferably 2.5 ° C./sec≦C R ≦ 5 ° C./sec. Setting of such a cooling rate C R is effective in stabilizing concave, the shape of the convex portion 5, 6 to suppress the change in the bonding interface 4 of the insert casting material 3.
[0063]
【The invention's effect】
According to the present invention, by configuring as described above, it is possible to provide a composite member that greatly improves the bonding strength between the member main body and the cast-in-place material.
[0064]
In addition, according to the present invention, it is possible to provide a manufacturing method capable of reliably obtaining the composite member by employing the above-described means.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view of a main part of a composite member.
FIG. 2 is an explanatory diagram of a manufacturing process of a composite member.
FIG. 3 is a plan view of a hard chrome plating layer.
FIG. 4 is an explanatory diagram of a bonding strength measurement method.
FIG. 5 is a graph showing the relationship between the recess occupancy ratio A and the bonding strength S;
6 is a graph showing the relationship between the abundance ratio B and the bonding strength S. FIG.
7 is a graph showing the relationship between the average value a 1 of the maximum width a of the recess and the bonding strength S. FIG.
FIG. 8 is a graph showing the relationship between crack density D and bonding strength S.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Composite member 2 Member main body 3 Casting material 4 Joining interface
5 0 Small recessed portion 5 Recessed portion 6 Convex portion 7 Opening portion 8 Main body 9 Hard chrome plating layer
10 CrAl intermetallic compound layer
11 FeAl intermetallic compound 12 Crack 13 Molten metal 14 Film

Claims (2)

Al合金製の部材本体(2)と、その部材本体(2)の鋳造過程で、該部材本体(2)に接合された被鋳ぐるみ材(3)とよりなる複合部材において、
前記被鋳ぐるみ材(3)がニレジスト鋳鉄製の主体(8)と、その主体(8)の前記部材本体(2)側の表面に形成された硬質クロムメッキ層(9)とよりなり、
前記被鋳ぐるみ材(3)は、底部が前記主体(8)に達するように前記硬質クロムメッキ層(9)を貫通していて前記部材本体(2)との接合界面(4)に開口する1以上の凹部(5)を、また前記部材本体(2)は前記凹部(5)に嵌合する1以上の凸部(6)をそれぞれ有していると共に、前記凹部(5)が、前記凸部(6)を形成するAl合金組成の溶湯(13)と前記被鋳ぐるみ材(3)との反応により生じたものであって、開口部分(7)が窄まっており、
前記硬質クロムメッキ層(9)の部材本体(2)側は、該硬質クロムメッキ層(9)とAl合金組成の溶湯(13)との反応で生じたCrAl系金属間化合物層(10)に変化していて、そのCrAl系金属間化合物層(10)の外面が前記接合界面(4)となっており、
また前記各凸部(6)の外周部分は、Al合金組成の溶湯(13)とニレジスト鋳鉄との反応により生じたFeAl系金属間化合物(11)より構成されると共に、その各凸部(6)の基端部分は、前記凹部(5)の開口部分(7)の窄まりに対応してくびれていることを特徴とする複合部材。
In a composite member consisting of an Al alloy member main body (2) and a to-be-casting material (3) joined to the member main body (2) in the casting process of the member main body (2) ,
The cast stuffed material (3) consists of a main body (8) made of Ni-resist cast iron and a hard chrome plating layer (9) formed on the surface of the main body (8) on the member main body (2) side,
The to-be-cast material (3) passes through the hard chrome plating layer (9) so that the bottom reaches the main body (8 ) and opens at the joint interface (4) with the member body (2). 1 or more recesses (5), also together with the member body (2) has one or more protrusions to be fitted into the recess (5) and (6) respectively, the recess (5) comprises It was generated by the reaction between the molten Al alloy composition (13) forming the convex portion (6) and the cast fill material (3), and the opening portion (7) is narrowed ,
The member main body (2) side of the hard chromium plating layer (9) is formed on the CrAl-based intermetallic compound layer (10) generated by the reaction between the hard chromium plating layer (9) and the molten alloy (13) of the Al alloy composition. The outer surface of the CrAl-based intermetallic compound layer (10) is the bonding interface (4),
The outer peripheral portion of each convex portion (6) is made of FeAl-based intermetallic compound (11) generated by the reaction between the molten Al alloy composition (13) and Ni-resist cast iron, and each convex portion (6 ) Is a base member corresponding to the constriction of the opening (7) of the recess (5) .
Al合金製の部材本体(2)と、その部材本体(2)の鋳造過程で、該部材本体(2)に接合された被鋳ぐるみ材(3)とよりなる複合部材(1)であって、前記被鋳ぐるみ材(3)がニレジスト鋳鉄製の主体(8)と、その主体(8)の前記部材本体(2)側の表面に形成された硬質クロムメッキ層(9)とよりなる複合部材(1)を製造するに当り、
前記被鋳ぐるみ材(3)の前記主体(8)に前記硬質クロムメッキ層(9)を形成すると共に、その硬質クロムメッキ層(9)に、その表面から前記主体(8)に達する1以上のクラック(12)を層全体に亘って発生させる第1の工程と、
前記メッキ層(9)表面にAl合金組成の溶湯(13)を付与して、前記部材本体(2)を成形する溶湯との相溶性の良い皮膜(14)を前記メッキ層(9)と一体に形成し、またその溶湯(13)の一部を前記クラック(12)を通じて前記被鋳ぐるみ材(3)の前記主体(8)まで到達させることによって、前記硬質クロムメッキ層(9)と溶湯(13)との反応による前記クラック(12)の拡幅および前記主体(8)と溶湯(13)との反応による主体(8)の侵食をそれぞれ惹起させて、その侵食により前記主体(8)に1以上の小凹部(5 0 )を形成する第2の工程と、
前記被鋳ぐるみ材(3)を鋳型内に設置して、前記皮膜(14)を取込んだ前記部材本体(2)を鋳造し、また前記クラック(12)の拡幅および前記主体(8)の侵食の進行により、前記被鋳ぐるみ材(3)に、前記部材本体(2)との接合界面(4)に開口しつその開口部分(7)が窄まっている1以上の凹部(5)を形成すると共に前記部材本体(2)に、前記凹部(5)に嵌合する1以上の凸部(6)を形成する第3の工程とを用い
前記第1の工程では、前記硬質クロムメッキ層(9)に前記クラック(12)が発生するように、該硬質クロムメッキ層(9)の厚さt 1 が 1.5μm≦t 1 ≦8μmに設定されることを特徴とする、複合部材の製造方法。
The Al alloy member main body (2), in the casting process of the member main body (2), an object to be insert casting material which is joined to the member main body (2) (3) become more complex material (1) The composite material is composed of a main body (8) made of Ni-resist cast iron and a hard chromium plating layer (9) formed on the surface of the main body (8) on the member main body (2) side. In manufacturing the member (1) ,
The hard chrome plating layer (9) is formed on the main body (8) of the cast material (3) , and at least one of the hard chrome plating layer (9) reaches the main body (8) from the surface thereof. A first step of generating a crack (12) of the entire layer;
An aluminum alloy composition molten metal (13) is applied to the surface of the plated layer (9), and a film (14) having good compatibility with the molten metal forming the member body (2) is integrated with the plated layer (9). And the hard chrome plating layer (9) and the molten metal are made to reach the main body (8) of the to-be-cast material (3) through the crack (12). widening and the subject of the cracks due to reaction with (13) (12) (8) and melt the principal by reaction with (13) the erosion of (8) by induced respectively, the main by its erosion (8) A second step of forming one or more small recesses (5 0 ) in
The cast body (3) is placed in a mold to cast the member body (2) incorporating the coating (14), and the crack (12) is widened and the main body (8) the progress of erosion, the to be insert casting material (3), said member main body (2) with one or more recesses bonding interface (4) with opened one the opening portion (7) is narrowed (5 ) to form the said members body (2), using a third step of forming one or more protrusions to be fitted into the recess (5) (6),
In the first step, the thickness t 1 of the hard chrome plating layer (9) is 1.5 μm ≦ t 1 ≦ 8 μm so that the crack (12) occurs in the hard chrome plating layer (9). A method for producing a composite member, wherein the composite member is set .
JP18422599A 1999-06-29 1999-06-29 Composite member and manufacturing method thereof Expired - Fee Related JP4309999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18422599A JP4309999B2 (en) 1999-06-29 1999-06-29 Composite member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18422599A JP4309999B2 (en) 1999-06-29 1999-06-29 Composite member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001009564A JP2001009564A (en) 2001-01-16
JP4309999B2 true JP4309999B2 (en) 2009-08-05

Family

ID=16149570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18422599A Expired - Fee Related JP4309999B2 (en) 1999-06-29 1999-06-29 Composite member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4309999B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6256524B2 (en) * 2016-05-17 2018-01-10 スズキ株式会社 Cast-in member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001009564A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
KR0174729B1 (en) Bonding a component in a piston
EP0203198B1 (en) Method of reinforcing a metallic article
JPS60121237A (en) Composite metallic body
CN107052306A (en) A kind of hypereutectic and hypoeutectic al-si alloy solid-liquid bimetal composite casting method
US20140102659A1 (en) Method for making an arrangement consisting of a cast part and a cast-in component
JP4309999B2 (en) Composite member and manufacturing method thereof
HUT60946A (en) Method for producing bimaterial parts by casting
JPH11515055A (en) Reinforcing member whose base material is austenitic cast iron
JPH0230790B2 (en)
JPH09500831A (en) Casting technical method for producing structural parts, especially pistons, made of two different materials
JPS5930465A (en) Method for embedding ferrous material by casting with aluminum alloy
JP3283442B2 (en) Cast-in structure of dissimilar metal
JPH02233858A (en) Manufacture of aluminum alloy forged piston
JPS58112649A (en) Casting method for composite member
JPH0330709B2 (en)
JPH0250982B2 (en)
Zhao et al. Impacts of zinc layer and pouring method on interface performance for Al-22Si/ZL104 bi-metal
JPS60141362A (en) Formation of reinforcing layer of base metal
JP2000202612A (en) Aluminum alloy-made piston
JPS59218341A (en) Aluminium alloy-made piston
JPH09155523A (en) Sleeve of die casting machine and production thereof
JPH0531567A (en) Aluminum alloy-made casting and this manufacture
JP4318797B2 (en) Manufacturing method of composite member
JPH01130865A (en) Heat resistant piston
JPH0469226B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees