JPS62149831A - Manufacture of fiber-reinforced metallic composite material - Google Patents

Manufacture of fiber-reinforced metallic composite material

Info

Publication number
JPS62149831A
JPS62149831A JP28938785A JP28938785A JPS62149831A JP S62149831 A JPS62149831 A JP S62149831A JP 28938785 A JP28938785 A JP 28938785A JP 28938785 A JP28938785 A JP 28938785A JP S62149831 A JPS62149831 A JP S62149831A
Authority
JP
Japan
Prior art keywords
fiber
mold
metal
composite material
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28938785A
Other languages
Japanese (ja)
Inventor
Toshiisa Ishikawa
石川 敏功
Haruo Teranishi
寺西 春夫
Giichi Imai
今井 義一
Yoichi Nagata
陽一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP28938785A priority Critical patent/JPS62149831A/en
Publication of JPS62149831A publication Critical patent/JPS62149831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture a fiber-reinforced metallic composite material free from internal blowholes, by pouring a molten matrix metal into a metal mold, by placing a preheated fibrous reinforcement into the above, by applying gas pressure to the melt with evacuating the inside of the metal mold prior to the pressurization, and by cooling the metal mold from the outside so as to solidify the melt. CONSTITUTION:The mold of Al, Al alloy Pb, Zn, Sn, Cu, Mg, and alloys thereof to be a matrix is poured into the cylindrical metal mold 1, and the matrix metal is kept in a molten state. Then as a reinforcement, a bundle or preformed wires composed of carbon fiber, boron fiber, silicon carbide fiber, alumina fiber, metal fiber such as the one of stainless steel, Mo, Ta, etc., or matrix metal and fiber is stuffed into the melt. Subsequently, a cover 5 is attached to the mold 1, which is evacuated via a vacuum system and then pressurized by N2, Ar, etc., introduced via a pressurization system. Then water is poured into an outside a vessel 8 and the metal mold 1 is cooled gradually from the lower part toward the upper part to undergo solidification, so that fiber-reinforced metallic composite material free from blowholes and having various shapes such as round bar, square bar, etc., can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は繊維強化金属複合材料の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a fiber-reinforced metal composite material.

(従来の方法) 従来から炭化ケイ素等の繊維材料を強化材とするアルミ
ニウム等の金属との複合材料、特に軽量複合材料は、車
輌、航空機、ロケット、宇宙船等の各種材料として好適
である点から種々検討がなされており、その製造方法も
種々提案されている。
(Conventional method) Composite materials made of fiber materials such as silicon carbide and metals such as aluminum as reinforcement materials, especially lightweight composite materials, have traditionally been suitable as materials for various materials such as vehicles, aircraft, rockets, and spacecraft. Various studies have been made since then, and various manufacturing methods have been proposed.

例えば固相拡散接合法(ホットプレス法)、高圧凝固鋳
造法、ロール成形法等が知られている。
For example, solid phase diffusion bonding method (hot press method), high pressure solidification casting method, roll forming method, etc. are known.

(発明が解決しようとする問題点) しかしながら、かかる繊維強化金属複合材料(FRM)
には、次のような問題点がある。即ち固相拡散接合法に
よるとFRMを製造するために約360 kgAm”以
上の高圧力を用いる必要があり、このため大形のFRM
を製造するのが困難であり、又設備費が高く、成形時間
が長い。また高圧凝固鋳造法では金型の熱容量が大きい
ため、凝固速度が遅く、複合化時に強化材の繊維の劣化
が生じ、得られたFRMの強度が低い。そして成形圧力
として100 PC9/c、2〜1トン/C−のような
高圧を必要とするため、設備費が高い。さらにロール成
形法によると、シートの様な薄いFRMの製造は可能で
あるが、丸棒、角材等の厚いFRMを製造するのが困難
であり、設備費が高価であるという問題点があった。一
方かかる問題点の内強化材繊維の劣化を防止し、またF
R)l[の強度を向上させる方法として超音波を用いる
方法が特開昭56−9256号、同56−11376号
公報に開示されている。
(Problems to be solved by the invention) However, such fiber reinforced metal composite materials (FRM)
has the following problems: That is, according to the solid-phase diffusion bonding method, it is necessary to use high pressure of about 360 kgAm or more to manufacture FRMs, and for this reason, large-sized FRMs
It is difficult to manufacture, the equipment cost is high, and the molding time is long. In addition, in the high-pressure solidification casting method, the heat capacity of the mold is large, so the solidification rate is slow, and the fibers of the reinforcing material deteriorate during composite formation, resulting in low strength of the obtained FRM. Since a high molding pressure of 100 PC9/c or 2 to 1 ton/C is required, equipment costs are high. Furthermore, according to the roll forming method, it is possible to manufacture thin FRMs such as sheets, but it is difficult to manufacture thick FRMs such as round bars and square materials, and there are problems in that the equipment cost is high. . On the other hand, among these problems, it is possible to prevent the deterioration of reinforcing material fibers, and
JP-A-56-9256 and JP-A-56-11376 disclose a method of using ultrasonic waves to improve the intensity of R)l[.

(問題点を解決するための手段) 本発明は、上記公開公報に記載されているような超音波
を用いることなく、前記従来法に付随する問題点を解決
したもので、マトリックス金属溶湯の入った金型に予め
予熱した強化材のワイヤまたは繊維の束を入れ、金型内
を真空にした後、ガス圧力を溶湯内に加えてワイヤ若し
くは繊維の間隙に溶湯金属を浸透させ、次いで金型を外
部から冷却し、凝固させることを特徴とする繊維強化金
属複合材料の製造方法に関するものである。
(Means for Solving the Problems) The present invention solves the problems associated with the conventional method without using ultrasonic waves as described in the above-mentioned publication. A bundle of preheated reinforcing wires or fibers is placed in a preheated mold, the inside of the mold is evacuated, gas pressure is applied to the molten metal to infiltrate the molten metal into the gaps between the wires or fibers, and the molten metal is then removed from the mold. The present invention relates to a method for producing a fiber-reinforced metal composite material, which is characterized by cooling and solidifying the material from the outside.

以下図面により本発明を説明する。The present invention will be explained below with reference to the drawings.

本発明により繊維強化金属複合材料を製造するに当って
は、マトリックス金属としてアルミニウム(Aj)、ア
ルミニウム合金、鉛(Pb)、亜鉛(Zn)、錫(Sn
)、銅(Ou)、マグネシウム<Mg>等、強化材とし
て炭素繊維、硼素繊維、炭化ケイ素(Sin)繊維、ア
ルミナ(ht2o、) lli維、金属繊維(ステンレ
ス、モリブデン(MO)、タンタル(Ta )等の繊維
)等およびそのプリフォーム体、例、tハ炭化ケイ素/
 ht * O/At + ”goa/Aノ等ノワイヤ
等色ワイヤックス金属および強化材を選定する。以下マ
トリックス金属としてAj、強化材としてニカロン(日
本カーボン(株)製、炭化ケイ素連続繊維、商品名) 
/ Alプリ7オームワイヤを用いて説明する。金型内
に予め所定量のAjを入れ、例えば炉内で750°Cに
保持しておく。別の炉で直径0.5111の上記プリフ
ォームワイヤの束を800〜850’Cに予熱しておく
。強化繊維の場合は通常450℃に予熱する。但しマト
リックス金属の温度および強化材の予熱温度は金型の大
きさにより適宜選定される。尚ワイヤまたは繊維の予熱
温度は高いと繊維劣化を起こし、低いと未含浸部が発生
するため巣が発生しない最低温度を採用する。次いで金
型を炉から取出した後、予熱されたプリ7オームワイヤ
2を金型1内に入れる。この際ワイヤをAl内にそのま
ま入れるとワイヤが浮力で溶湯上に浮くので、第1図a
に示すように例えば加熱した鉄の錘8をワイヤの上に置
くのが好ましい。
In producing the fiber-reinforced metal composite material according to the present invention, aluminum (Aj), aluminum alloy, lead (Pb), zinc (Zn), tin (Sn) is used as the matrix metal.
), copper (Ou), magnesium <Mg>, etc., carbon fiber, boron fiber, silicon carbide (Sin) fiber, alumina (ht2o, )lli fiber, metal fiber (stainless steel, molybdenum (MO), tantalum (Ta) as reinforcing materials) ) etc. and their preforms, e.g. silicon carbide/
ht * O/At + "Select wirex metals such as goa/A and reinforcing materials. Hereinafter, Aj will be used as the matrix metal, and Nicalon (silicon carbide continuous fiber, trade name, manufactured by Nippon Carbon Co., Ltd.) will be used as the reinforcing material.
/ An explanation will be given using an Al pre-7 ohm wire. A predetermined amount of Aj is placed in advance in a mold and maintained at, for example, 750° C. in a furnace. A bundle of preform wires having a diameter of 0.5111 is preheated to 800-850'C in a separate furnace. In the case of reinforcing fibers, it is usually preheated to 450°C. However, the temperature of the matrix metal and the preheating temperature of the reinforcing material are appropriately selected depending on the size of the mold. Note that if the preheating temperature of the wire or fiber is high, fiber deterioration will occur, and if it is low, unimpregnated areas will occur, so the lowest temperature at which no cavities are generated is adopted. The preheated pre-7 ohm wire 2 is then placed into the mold 1 after the mold is removed from the furnace. At this time, if the wire is directly inserted into the Al, the wire will float on top of the molten metal due to buoyancy, so see Figure 1a.
Preferably, a heated iron weight 8, for example, is placed on top of the wire as shown in FIG.

を一方向 また強化材ワイヤまたは繊維(7) W@定するため束
を第1図aに示すようにマトリックス金属の線4で束ね
るか或いは網で包むのが好ましい。次いで第1図すに示
す真空系(図示せず)に連通ずる入口6および加圧系(
図示せず)に連通ずる入ロアを備えた蓋5を金型上部に
おき、図示する例ではプレス10にて蓋5を金型1に密
着させ、入口6を介して金型1内を真空、好ましくは真
空度31IIHり以下、通常2〜8 m Hgとする。
In order to ensure that the reinforcing wires or fibers (7) are unidirectional and the reinforcing wires or fibers (7) W@, the bundle is preferably bundled with matrix metal wire 4 or wrapped in netting as shown in FIG. 1a. Next, an inlet 6 and a pressurization system (not shown) communicating with a vacuum system (not shown) shown in FIG.
(not shown) is placed on the top of the mold, and in the illustrated example, the lid 5 is brought into close contact with the mold 1 using a press 10, and the inside of the mold 1 is vacuumed through the inlet 6. The degree of vacuum is preferably 31 II H or less, usually 2 to 8 m Hg.

次いで真空を止めて入ロアより加圧ガス、好ましくは5
に9Am”〜15に9Am2の圧力の窒素(N、)ガス
、アルゴン(Ar)ガスまたは空気を金型1内に導入し
て溶湯内に圧力を加える。このようにするとワイヤ束の
各ワイヤ間に溶湯金属が十分浸透し、各ワイヤが溶湯に
より完全に被覆される。次いで金型1を外部から冷却し
、凝固させた後、形成されたFRMを金型から取出す。
Next, stop the vacuum and apply pressurized gas from the inlet lower, preferably 5
Nitrogen (N, ) gas, argon (Ar) gas, or air at a pressure of 9 Am" to 9 Am2 is introduced into the mold 1 to apply pressure within the molten metal. In this way, the pressure between each wire of the wire bundle is The molten metal penetrates sufficiently and each wire is completely covered with the molten metal.The mold 1 is then externally cooled and solidified, after which the formed FRM is taken out from the mold.

尚上記冷却は下部から冷却するのが好ましく、第1図(
b)に示すように金型を置いた容器8内に水9を注入し
下部から冷却しFRMを凝固させると、FRMの部分に
は引巣が形成されず上方のワイヤで強化されていないマ
トリックス金属、Atだけの部分に引巣が形成される。
In addition, it is preferable to perform the above cooling from the bottom, as shown in Figure 1 (
As shown in b), when water 9 is injected into the container 8 in which the mold is placed and cooled from the bottom to solidify the FRM, no cavities are formed in the FRM part and the matrix is not reinforced by the wires above. Cavities are formed in areas where there is only metal or At.

上記方法によって製造された第1図(C)に示すFRM
llは直径20n、長さ1000で、引張強さ70 k
g/cm”、曲げ強さ100も−、繊維体積含有率(v
f) + 20%であった。また軟X線透過法、超音波
探偏法にてFRMの内部を検査した結果、欠陥は全く認
められなかった。
FRM shown in FIG. 1(C) manufactured by the above method
ll has a diameter of 20n, a length of 1000mm, and a tensile strength of 70k.
g/cm”, bending strength 100-, fiber volume content (v
f) + 20%. Further, as a result of inspecting the inside of the FRM using soft X-ray transmission method and ultrasonic probe method, no defects were found at all.

同様の方法でマトリックス金属としてA1合金(AO8
A、JIS規格鋳物用合金)、強化材としてSin/純
Alプリフォームワイヤを用いFRM(Vf=20%)
ヲツくり、CI7) F RM (!: 、A CI 
A(鋳物用ht金合金、99.9%Aノの種々の温度(
C)における曲げ強さく van” )を測定し、その
結果を第2図に示す。
A1 alloy (AO8) was used as the matrix metal in a similar manner.
A, JIS standard casting alloy), FRM using Sin/pure Al preform wire as reinforcing material (Vf = 20%)
Wotsukuri, CI7) F RM (!: , A CI
A (HT gold alloy for casting, 99.9% A) at various temperatures (
The bending strength (van'') in C) was measured and the results are shown in FIG.

またマトリックス金属としてA1合金(AC3(3゜J
工S規格鋳物用合金)、強化材としてSi、0/純Aノ
ブレフオームワイヤを用いて前記と同様にしてFRMを
つくり、このFRMとAC4Cの種々の温度(C)にお
ける引張り強さくkg//I−)を第3図に示す0更に
このFRMと、AC8A−FとAO8A−T6の回転曲
げ疲労特性を第4図に、このFRMとAC40−T6の
回転曲げ疲労特性を第5図に示す。
In addition, A1 alloy (AC3 (3°J) is used as a matrix metal.
An FRM was made in the same manner as above using Si and 0/pure A knoble ohm wire as a reinforcing material, and the tensile strength of this FRM and AC4C at various temperatures (C) was kg// I-) is shown in Fig. 3.Furthermore, Fig. 4 shows the rotating bending fatigue characteristics of this FRM, AC8A-F, and AO8A-T6, and Fig. 5 shows the rotating bending fatigue characteristics of this FRM and AC40-T6. .

(実施例) 次に本発明を実施例につき説明する。(Example) Next, the invention will be explained with reference to examples.

実施例1 外径48.6絹、内径88.4朋、長さ500Rmlの
炭素1ili鋼管製金型に、A1合金(AC40)を入
れ、750℃に加熱保持した。直径Q、51m+のニカ
ロン/純Alプリフォーム・ワイヤを350″Cに予熱
し、金型に入れた後、蓋をして真空度2關H9に60秒
間保持した後、窒素ガス圧力15 vcm”で70秒間
保持した後、下部より水冷し、FRMを製造した。生成
したFRMは引張強さ70 vCm”、曲げ強さ100
ψ−1Vf=20%であった。尚FRHの内部には引巣
、ボイド等の欠陥は認められなかった。
Example 1 A1 alloy (AC40) was placed in a carbon steel pipe mold having an outer diameter of 48.6 mm, an inner diameter of 88.4 mm, and a length of 500 Rml, and the mold was heated and maintained at 750°C. A Nicalon/pure Al preform wire with a diameter of Q and 51 m+ was preheated to 350"C, put into a mold, then covered with a lid and held at a vacuum level of 2 degrees H9 for 60 seconds, and then a nitrogen gas pressure of 15 vcm" After holding it for 70 seconds, it was cooled with water from the bottom to produce an FRM. The produced FRM has a tensile strength of 70 vCm” and a bending strength of 100
ψ-1Vf=20%. No defects such as cavities or voids were observed inside the FRH.

実施例2 実施例1で用いたと同様の金型を用い、ニカロン繊維(
直径15μm)の束を一方向に固定するためアルミニウ
ムの網で繊維を包み、これを500°Cに予熱し、金型
内に純Al(99,991を入れ750°Cに加熱保持
し、上記二カロレ繊維を金型に入れた。次いで金型内を
2 tm Hgに60秒保持した後、窒素ガス圧力15
 kgAm!’で30秒保持した後下部より水冷し、F
RMを製造した。生成したF RMハ引’J’) 強す
110 vlIK” 、曲ケ強す140唱−1Vf=5
0チであった。
Example 2 Using a mold similar to that used in Example 1, Nicalon fiber (
In order to fix the bundle (diameter 15 μm) in one direction, the fibers were wrapped in an aluminum net, which was preheated to 500°C, and pure Al (99,991) was placed in the mold and heated and held at 750°C. The bicalole fiber was placed in a mold.Then, the inside of the mold was maintained at 2 tm Hg for 60 seconds, and then a nitrogen gas pressure of 15
kgAm! ' After holding for 30 seconds, cool with water from the bottom, and
RM was manufactured. Generated F RM ``J'') Strong 110 vlIK'', song strong 140 chant - 1Vf = 5
It was 0chi.

(発明の効果) 以上説明してきたように、本発明の繊維強化金属複合材
料の製造方法は、マ) IJソックス属溶湯の入った金
型内に、予熱した強化材を入れた後、金型内で真空にし
た後、ガス圧力を溶湯内に加えてワイヤ若しくは繊維の
間隙に溶湯金属を浸透させ、次゛いて金型を外部から冷
却し、凝固させるという構成にしたことにより、次に示
す効果が得られる。
(Effects of the Invention) As explained above, the method for producing a fiber-reinforced metal composite material of the present invention is as follows: (1) After placing a preheated reinforcing material into a mold containing molten IJ sock metal, After creating a vacuum inside the molten metal, gas pressure is applied to the molten metal to allow the molten metal to penetrate into the gaps between the wires or fibers, and then the mold is cooled from the outside to solidify. Effects can be obtained.

(イ)成形時間が短いため、複合化時における繊維とマ
トリックスの反応が生じない。
(a) Because the molding time is short, there is no reaction between the fibers and the matrix during compositing.

(ロ)FRMの内部に巣、ボイドがなく、ち密であり強
度も高い。
(b) There are no nests or voids inside the FRM, it is dense and has high strength.

(ハ)丸棒、角材をはじめH型、1型等の異型FRMの
製造が可能であり、部分強化も可能である。
(c) It is possible to manufacture irregularly shaped FRM such as round bars, square bars, H-type, 1-type, etc., and partial reinforcement is also possible.

自動車用、航空機、ロケット、宇宙船等の部品、例えば
ピストンピン、コンロッド、ピストンヘッド等、また軽
量、高強度を要求される分野に用いることができる。
It can be used in parts for automobiles, aircraft, rockets, spacecraft, etc., such as piston pins, connecting rods, piston heads, etc., and in fields that require light weight and high strength.

に)設備費が比較的安価である。b) Equipment costs are relatively low.

(ホ)比較的生産性が高い。(e) Relatively high productivity.

(へ)含浸金属種はプリ7オームワイヤのマトリックス
と同種類でもよく、或いは別種類の所望性能を有する金
属、合金種を選択することができる。
(f) The impregnating metal type may be the same type as the matrix of the pre-7 ohm wire, or a different type of metal or alloy type having the desired performance can be selected.

(ト)vfのフントロールが可能である。(g) It is possible to perform a VF hunt roll.

(力上記FRMを押出し圧延加工用のビレットとしても
使用できる。
(The above FRM can also be used as a billet for extrusion rolling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(〜は予熱したプリフォームワイヤを加熱した金
型内のマ) IJツクス金属溶湯内に入る前のプリ7オ
ームワイヤと金型の斜視図、 第1図中)はプリ7オームワイヤを金型に入れた後の操
作を示すための蓋をした金型の断面図、第1図(C)は
形成されたFRMの斜視図、第2図はマトリックス金属
としてA7合金(A18A)強化材としてSin/[1
プリフオームワイヤを用いて形成したFRM、A(31
A、99.9チパノの温度と曲げ強さの関係を示す曲m
図、 第8図はマトリックス金属として1合金(AC40)、
強化材としてS io/純1プリフォームワイヤt−用
いて形成したFRM、AC4cの温度と引張強さの関係
を示す曲線図、 第4図は第8図ニオけるFRMSAC8A−FおよびA
O8Aの回転曲げ疲労特性を示す曲線図、第5図は第4
図と同様(7)FRMとAC40−T6の回転曲げ疲労
特性を示す曲線図である。 1・・・金型       2・・・プリフォームワイ
ヤ3・・・錘       5・・・金型の蓋8・・・
容器      9・・・水 10・・・プレス    11・・・FRM第1図 (a)(b) (C) 第2図 刃孔 ノ%(°C゛) 逼、7!(°C) 第4図 第5図 +仮しli’N(Cyde) 手  続  補  正  書 昭和61年2月10日 特許庁長官  宇  賀  道  部  殿1、事件の
表示 昭和60年特許願第280387号 2、発明の名称 繊維強化金属複合材料の製造方法 3、 ?ffl正をする者 事件との関係  特許出願人 日本カーボン株式会社 4、代理人 5、補正の対象 明細書の「特許請求の範囲」 「発明
の詳細な説明」1、明細書第1頁第4〜11行の特許請
求の範囲を下記の如く補正する。 「2、特許請求の範囲 1 マトリックス金属溶湯の入った金型内に、予め予熱
した強化材のワイヤ若しくは繊維の束を入れ、金型内を
減圧にした後、ガス圧力を溶湯内に加えてワイヤ若しく
は繊維の間隙に溶湯金属を浸透させ、次いで金型を外部
から冷却し、凝固させることを特徴とする繊維強化金属
複合材料の製造方法。」2、明細書第8頁第1行「特開
昭」を「特公昭」に補正し、 同頁第17〜18行「マグネシウム(Mり)等」を「マ
グネシウム(Mg)等およびその合金」に補正する。 3、同第5頁第8〜11行を下記の如く補正する。 [口6を介して金型1内を減圧、好ましくは真空度20
11mH9以下とする。次いで真空ポンプを止めて入ロ
アより加圧ガス、好ましくは1 kgAm”G〜80 
kg/C,2Gの圧力の窒素(N2)ガス、ア ″。 ルゴン(Arン」 4同第10頁第5行「A)合金(A18A)Jを1−A
1合金(A(38A)jに補正する。 5、図面中筒1図(b)、第3図、第4図および第5図
を添加する訂正図の通り補正する。 第4図        (訂正図) 第5図
Figure 1 (~ shows the inside of the mold where the preheated preform wire is heated) A perspective view of the pre-7 ohm wire and the mold before it enters the molten metal, Figure 1) shows the pre-7 ohm wire Figure 1 (C) is a perspective view of the formed FRM, Figure 2 is a reinforced A7 alloy (A18A) as the matrix metal. Sin/[1
FRM, A (31
A. Song m showing the relationship between temperature and bending strength of 99.9 tipano
Figure 8 shows alloy 1 (AC40) as the matrix metal,
A curve diagram showing the relationship between temperature and tensile strength of FRM AC4c formed using Sio/Pure 1 preform wire T- as a reinforcing material.
A curve diagram showing the rotating bending fatigue characteristics of O8A, Fig. 4
It is a curve diagram showing the rotating bending fatigue characteristics of (7) FRM and AC40-T6 as in the figure. 1... Mold 2... Preform wire 3... Weight 5... Mold lid 8...
Container 9...Water 10...Press 11...FRM Figure 1 (a) (b) (C) Figure 2 Blade hole % (°C゛) 〼, 7! (°C) Figure 4 Figure 5 + Tentative li'N (Cyde) Procedure Amendment Written February 10, 1985 Director General of the Patent Office Mr. Michibu Uga 1, Indication of Case Patent Application No. 1985 No. 280387 2, Title of invention Method for producing fiber-reinforced metal composite material 3, ? ffl Relationship with the person making the correction Patent applicant Nippon Carbon Co., Ltd. 4, Agent 5, Subject of amendment "Claims" in the specification "Detailed description of the invention" 1, Specification page 1, No. 4 The claims in lines 11 to 11 are amended as follows. ``2. Claim 1: A preheated reinforcing wire or fiber bundle is placed in a mold containing molten matrix metal, the pressure inside the mold is reduced, and then gas pressure is applied to the molten metal. A method for manufacturing a fiber-reinforced metal composite material, characterized by infiltrating molten metal into the gaps between wires or fibers, and then cooling a mold from the outside to solidify it.'' 2, page 8, line 1 of the specification, ``Special ``Kaisho'' has been amended to ``Tokukosho,'' and in lines 17-18 of the same page, ``Magnesium (Mri), etc.'' has been amended to ``Magnesium (Mg), etc. and its alloys.'' 3. Correct page 5, lines 8 to 11 as follows. [Reducing the pressure inside the mold 1 through the port 6, preferably with a degree of vacuum of 20
11mH9 or less. Next, stop the vacuum pump and apply pressurized gas from the inlet lower, preferably 1 kgAm"G~80
Nitrogen (N2) gas at a pressure of kg/C, 2G, A''.
1 Alloy (A (38A) ) Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、マトリックス金属溶湯の入つた金型内に、予め予熱
した強化材のワイヤ若しくは繊維の束を入れ、金型内を
真空にした後、ガス圧力を溶湯内に加えてワイヤ若しく
は繊維の間隙に溶湯金属を浸透させ、次いで金型を外部
から冷却し、凝固させることを特徴とする繊維強化金属
複合材料の製造方法。
1. Place a bundle of preheated reinforcing wires or fibers into a mold containing molten matrix metal, create a vacuum inside the mold, and then apply gas pressure to the molten metal to fill the gaps between the wires or fibers. A method for manufacturing a fiber-reinforced metal composite material, characterized by infiltrating molten metal, then cooling a mold from the outside, and solidifying it.
JP28938785A 1985-12-24 1985-12-24 Manufacture of fiber-reinforced metallic composite material Pending JPS62149831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28938785A JPS62149831A (en) 1985-12-24 1985-12-24 Manufacture of fiber-reinforced metallic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28938785A JPS62149831A (en) 1985-12-24 1985-12-24 Manufacture of fiber-reinforced metallic composite material

Publications (1)

Publication Number Publication Date
JPS62149831A true JPS62149831A (en) 1987-07-03

Family

ID=17742557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28938785A Pending JPS62149831A (en) 1985-12-24 1985-12-24 Manufacture of fiber-reinforced metallic composite material

Country Status (1)

Country Link
JP (1) JPS62149831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119318U (en) * 1990-03-17 1991-12-09

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606265A (en) * 1983-06-24 1985-01-12 Nissan Motor Co Ltd Production of composite fiber member
JPS60111757A (en) * 1983-11-21 1985-06-18 Honda Motor Co Ltd Production of fiber reinforced composite member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606265A (en) * 1983-06-24 1985-01-12 Nissan Motor Co Ltd Production of composite fiber member
JPS60111757A (en) * 1983-11-21 1985-06-18 Honda Motor Co Ltd Production of fiber reinforced composite member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119318U (en) * 1990-03-17 1991-12-09

Similar Documents

Publication Publication Date Title
CA2081048C (en) Nickel coated carbon preforms
EP0110097B1 (en) Method and apparatus for manufacturing composite material using pressure chamber and casting chamber
CN110052613B (en) Aluminum/magnesium/aluminum alloy composite plate and preparation method and application thereof
US6082436A (en) Method of centrifugally casting reinforced composite articles
EP0765946A1 (en) Processes for producing Mg-based composite materials
JP2002529249A (en) Methods and devices for chill molding
US5295528A (en) Centrifugal casting of reinforced articles
US4889774A (en) Carbon-fiber-reinforced metallic material and method of producing the same
JPS62149831A (en) Manufacture of fiber-reinforced metallic composite material
US5207263A (en) VLS silicon carbide whisker reinforced metal matrix composites
US4681151A (en) Method for production of fiber-reinforced metal composite material
JPH0620639B2 (en) Carbon fiber reinforced magnesium alloy member
JP2909545B2 (en) Manufacturing method of metal matrix composite material
EP1595623A1 (en) Compound body manufacturing method, compound body manufacturing device, and compound body
JPS5941428A (en) Manufacture of carbon fiber-reinforced composite metallic material
Neussl et al. Selectively fibre-reinforced components produced by the modified investment casting process
JPS6029433A (en) Production of fiber-reinforced metallic composite material
JPS642471B2 (en)
JPS62199740A (en) Composite al alloy material
JPS62185844A (en) Production of fiber reinforced metallic composite material
JPS60177140A (en) Composite metallic material and its production
JPH0411612B2 (en)
JPH04367365A (en) Fiber reinforced metallic cylindrical body and production thereof
JPH0459938A (en) Carbon fiber reinforced composite
JPS606265A (en) Production of composite fiber member