JPH0620639B2 - Carbon fiber reinforced magnesium alloy member - Google Patents

Carbon fiber reinforced magnesium alloy member

Info

Publication number
JPH0620639B2
JPH0620639B2 JP14624085A JP14624085A JPH0620639B2 JP H0620639 B2 JPH0620639 B2 JP H0620639B2 JP 14624085 A JP14624085 A JP 14624085A JP 14624085 A JP14624085 A JP 14624085A JP H0620639 B2 JPH0620639 B2 JP H0620639B2
Authority
JP
Japan
Prior art keywords
carbon fiber
magnesium alloy
fiber reinforced
weight
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14624085A
Other languages
Japanese (ja)
Other versions
JPS626758A (en
Inventor
一徳 吹沢
李延 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP14624085A priority Critical patent/JPH0620639B2/en
Priority to US06/870,050 priority patent/US4889774A/en
Publication of JPS626758A publication Critical patent/JPS626758A/en
Publication of JPH0620639B2 publication Critical patent/JPH0620639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 A.発明の目的 (1) 産業上の利用分野 本発明は、強化繊維として炭素繊維を用い、またマトリ
ックスをマグネシウム合金より構成した炭素繊維強化マ
グネシウム合金製部材に関する。
Detailed Description of the Invention A. Object of the Invention (1) Field of Industrial Application The present invention relates to a carbon fiber reinforced magnesium alloy member in which carbon fiber is used as a reinforcing fiber and a matrix is made of a magnesium alloy.

(2) 従来の技術 従来、この種部材は高圧凝固鋳造法を適用して製造され
ており、したがって前記マグネシウム合金としては鋳造
品用合金が用いられている。
(2) Conventional Technology Conventionally, this kind of member is manufactured by applying a high pressure solidification casting method, and therefore, an alloy for castings is used as the magnesium alloy.

(3) 発明が解決しようとする問題点 しかしながら前記鋳造品用合金はアルミニウムを5〜1
0重量%と多量に含有しているので、そのアルミニウム
が炭素繊維と容易に反応して多量の脆化層を形成し、炭
素繊維の引張強さを著しく低下させるという問題があ
る。
(3) Problems to be Solved by the Invention However, the casting alloy contains aluminum in an amount of 5 to 1
Since it is contained in a large amount of 0% by weight, there is a problem that the aluminum easily reacts with the carbon fiber to form a large amount of embrittlement layer, and the tensile strength of the carbon fiber is remarkably reduced.

またアルミニウムの含有量が増加するに従い、マトリッ
クスにおけるAl12Mg17等の金属間化合物相の形成量
が多くなり、この相は引張強さが8〜12Kg/mmで、
伸びが0.3〜0.5%と非常に脆く、その上炭素繊維
表面、またはその近傍に偏析する傾向があるため、この
相の初期破断によるノッチの形成およびその進行に伴い
部材の引張強さが著しく低下するといる問題もある。
Further, as the content of aluminum increases, the amount of intermetallic compound phase such as Al 12 Mg 17 in the matrix increases, and this phase has a tensile strength of 8 to 12 kg / mm 2 .
Since the elongation is very brittle at 0.3 to 0.5% and tends to segregate on the carbon fiber surface or in the vicinity thereof, the notch formation due to the initial fracture of this phase and the tensile strength of the member accompanying its progress There is also a problem that the quality is significantly reduced.

本発明は前記問題を解決し得るようにした前記部材を提
供することを目的とする。
It is an object of the present invention to provide the member which can solve the above problems.

B.発明の構成 (1) 問題点を解決するための手段 本発明は、強化繊維として炭素繊維を用い、またマトリ
ックスをマグネシウム合金より構成した炭素繊維強化マ
グネシウム合金製部材において、前記マグネシウム合金
のアルミニウム含有量を0.3重量%以上5.0重量%
以下に設定したことを特徴とする。
B. Structure of the invention (1) Means for solving the problems The present invention uses a carbon fiber as a reinforcing fiber, and a carbon fiber reinforced magnesium alloy member made of a magnesium alloy matrix, the aluminum content of the magnesium alloy 0.3 wt% or more and 5.0 wt%
It is characterized by the following settings.

(2) 作 用 前記のようにアルミニウム含有量を0.3重量%以上
5.0重量%以下に設定すると、炭素繊維とアルミニウ
ムの反応による脆化層の形成量が少なくなり、またマト
リックスにおけるAl12Mg17等の脆い金属間化合物相
の形成量が少なくなるので、実用上十分な引張強さを有
する前記部材を提供することができる。ただし、アルミ
ニウム含有量が5.0重量%を上回ると、部材の引張強
さが急激に低下して到底実用に供し得ない。また前記含
有量が0.3重量%を下回ると、鋳造性が著しく損なわ
れるため量産性の低下を来たす。
(2) Operation When the aluminum content is set to 0.3% by weight or more and 5.0% by weight or less as described above, the amount of the embrittlement layer formed by the reaction between carbon fiber and aluminum decreases, and the Al content in the matrix is reduced. Since the amount of brittle intermetallic compound phase such as 12 Mg 17 formed is small, it is possible to provide the member having practically sufficient tensile strength. However, when the aluminum content exceeds 5.0% by weight, the tensile strength of the member is drastically reduced and it cannot be put to practical use. On the other hand, if the content is less than 0.3% by weight, the castability is significantly impaired and the mass productivity is lowered.

(3) 実施例 まず、炭素繊維よりなる繊維成形体の製造について説明
する。
(3) Example First, the production of a fiber molding made of carbon fiber will be described.

第1図(a)に示すように、手回し式巻取り機1を用い
て、直径7μmの炭素繊維(東レ社製トレカT300)
fの長繊維を細長いループ上に巻取り、これを長径側の
一端部Aにおいて切断し、また長径側の他端部Bにおい
て束ね、90万本の繊維よりなる繊維束を得る。このよ
うに繊維本数を設定した理由は、後述する成形用ガラス
管の内径との関係で繊維成形体の体積含有率(Vf)を
30%にするためである。
As shown in FIG. 1 (a), a carbon fiber having a diameter of 7 μm (Torayca T300 manufactured by Toray Industries, Inc.) was used with a hand-wound winder 1.
The long fibers of f are wound on an elongated loop, cut at one end A on the long diameter side and bundled at the other end B on the long diameter side to obtain a fiber bundle of 900,000 fibers. The reason for setting the number of fibers in this way is to set the volume content (Vf) of the fiber molded body to 30% in relation to the inner diameter of the molding glass tube described later.

アクリル樹脂系溶液(東洋インキ社製 オリバイン(BP
S4668))と、溶媒としてのアセトンを1:1の割合で
混合し、これにアクリル樹脂系溶液の4%に相当する硬
化剤(ポリイソシアネート)を加えて結合剤溶液を調製
し、この結合剤溶液に粒度325メッシュ以下の繊維凝
着防止用Ti粉末を100g/の割合で添加する。
Acrylic resin-based solution (Olivine (BP manufactured by Toyo Ink Co., Ltd.
S4668)) and acetone as a solvent are mixed at a ratio of 1: 1 and a curing agent (polyisocyanate) corresponding to 4% of the acrylic resin solution is added to this to prepare a binder solution. To the solution, Ti powder for preventing fiber adhesion having a particle size of 325 mesh or less is added at a rate of 100 g /.

第1図(b)に示すように、結合剤溶液L中に繊維束Fを
浸し、その繊維束Fを振りながら結合剤溶液Lを撹拌し
つつそのTiを含む結合剤溶液Lを繊維束Fの繊維間に
十分に浸透させる。
As shown in FIG. 1 (b), the fiber bundle F is immersed in the binder solution L, the binder solution L is agitated while shaking the fiber bundle F, and the binder solution L containing Ti is added to the fiber bundle F. Allow it to fully penetrate between the fibers.

第1図(c)に示すように、結合剤溶液Lから引出された
繊維束Fを内径12mmのガラス管T内を通過させて余分
な結合剤溶液Lを絞り、また両端部を切断して直径12
mm、長さ20mmの予備成形体を得る。
As shown in FIG. 1 (c), the fiber bundle F drawn from the binder solution L is passed through a glass tube T having an inner diameter of 12 mm to squeeze the excess binder solution L, and both ends are cut. Diameter 12
mm to obtain a preform having a length of 20 mm.

第1図(d)に示すように、乾燥し硬化した予備成形体P
を電気炉E内に設置し、予備成形体Pにアルゴンガス雰
囲気中にて400℃、1時間の焼成処理を施し棒状繊維
成形体を得る。前記焼成処理により有機成分は分解除去
され、繊維成形体の残留有機成分は、焼成前の5%とな
る。
As shown in FIG. 1 (d), a dried and cured preform P
Is placed in an electric furnace E, and the preform P is fired at 400 ° C. for 1 hour in an argon gas atmosphere to obtain a rod-shaped fiber compact. The organic component is decomposed and removed by the firing treatment, and the residual organic component of the fiber molded body becomes 5% before the firing.

下表はマトリックスであるマグネシウム合金(I)〜
(VIII)の化学成分を示す。
The table below shows the matrix magnesium alloy (I)
The chemical components of (VIII) are shown below.

前記繊維成形体をアルゴンガス雰囲気中にて400℃で
数分間加熱した後、繊維成形体を金型のキャビテイに設
置し、直ちに730℃の前記マグネシウム合金(I)〜
(VIII)の溶湯をキャビテイに注入して1000Kg/cm
2の圧力を60秒間作用させ、直径12mm、長さ120m
mの8種類の棒状炭素繊維強化部材を得る。
After heating the fiber molded body at 400 ° C. for several minutes in an argon gas atmosphere, the fiber molded body is placed in the cavity of the mold, and immediately after the magnesium alloy (I) at 730 ° C.
The molten metal of (VIII) is poured into the cavity and 1000 kg / cm
Applying pressure of 2 for 60 seconds, diameter 12mm, length 120m
Eight types of rod-shaped carbon fiber reinforced members of m are obtained.

第2図は各部材のアルミニウム合金量と引張強さの関係
を示す。第2図において(I)〜(VIII)は前記マグネ
シウム合金(I)〜(VIII)をマトリックスとした部材
にそれぞれ対応する。
FIG. 2 shows the relationship between the amount of aluminum alloy and the tensile strength of each member. In FIG. 2, (I) to (VIII) correspond to members having the magnesium alloys (I) to (VIII) as a matrix, respectively.

第2図から明らかなように、マトリックスのアルミニウ
ム含有量が増すに従い引張強さが低下するが、アルミウ
ム含有量が5.0重量%以下であれば、実用上十分な引
張強さを確保することができる。
As is clear from FIG. 2, as the aluminum content of the matrix increases, the tensile strength decreases, but if the aluminum content is 5.0% by weight or less, ensure practically sufficient tensile strength. You can

前記含有量が5.0重量%を上回ると引張強さが急激に
低下するので、到底実用に供し得なくなる。その理由
は、アルミニウム含有量が5.0重量%を上回ると、ア
ルミニウムと炭素繊維との反応による脆化層の形成量が
多くなり、またAl12Mg17等の脆い金属間化合物相の
形成量が多くなることにある。
If the content exceeds 5.0% by weight, the tensile strength is drastically reduced, and it cannot be put to practical use at all. The reason is that when the aluminum content exceeds 5.0% by weight, the amount of the embrittlement layer formed by the reaction between aluminum and the carbon fiber increases, and the amount of the brittle intermetallic compound phase such as Al 12 Mg 17 formed. Is to increase.

なおマトリックスをマグネシウム単体とした部材におい
ては、マグネシウム単体の熱容量が小さく、溶湯の流動
性も悪いため十分な複合化を行うことができない。
In addition, in a member in which the matrix is made of magnesium alone, the heat capacity of magnesium alone is small and the fluidity of the molten metal is poor, so that sufficient complexing cannot be performed.

前記部材としては、例えば第3図に示すように、桿部1
を、軸方向に配設された棒状炭素繊維成形体2により強
化された内燃機関用コンロッド3が該当する。
As the member, for example, as shown in FIG.
Corresponds to the connecting rod 3 for an internal combustion engine reinforced by the rod-shaped carbon fiber molded body 2 arranged in the axial direction.

C.発明の効果 本発明によれば、マグネシウム合金のアルミニウム含有
量を0.3重量%以上5.0重量%以下に設定するの
で、炭素繊維とアルミニウムとの反応による脆化層の形
成量およびマトリックスにおけるAl12Mg17等の脆い
金属間化合物相の形成量をそれぞれ少なくし、実用上十
分な引張強さを有する前記部材を提供することができ
る。
C. EFFECTS OF THE INVENTION According to the present invention, since the aluminum content of the magnesium alloy is set to 0.3% by weight or more and 5.0% by weight or less, the amount of the embrittlement layer formed by the reaction between the carbon fiber and aluminum and the matrix It is possible to provide the above-mentioned member having a practically sufficient tensile strength by reducing the formation amount of each brittle intermetallic compound phase such as Al 12 Mg 17 .

【図面の簡単な説明】[Brief description of drawings]

第1図は繊維成形体の製造工程説明図、第2図は各種部
材のアルミニウム含有量と引張強さの関係を示すグラ
フ、第3図は内燃機関用コンロッドの縦断正面図であ
る。
FIG. 1 is an explanatory view of a manufacturing process of a fiber molded body, FIG. 2 is a graph showing a relationship between aluminum content and tensile strength of various members, and FIG. 3 is a vertical sectional front view of a connecting rod for an internal combustion engine.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】強化繊維として炭素繊維を用い、またマト
リックスをマグネシウム合金より構成した炭素繊維強化
マグネシウム合金製部材において、前記マグネシウム合
金のアルミニウム含有量を0.3重量%以上5.0重量
%以下に設定したことを特徴とする炭素繊維強化マグネ
シウム合金製部材。
1. A carbon fiber reinforced magnesium alloy member comprising carbon fiber as a reinforcing fiber and a matrix made of a magnesium alloy, wherein the aluminum content of the magnesium alloy is 0.3% by weight or more and 5.0% by weight or less. A member made of a carbon fiber reinforced magnesium alloy characterized by being set to.
【請求項2】前記部材は内燃機関コンロッドであり、そ
れの桿部が、軸方向に配設された前記炭素繊維によって
強化されている、特許請求の範囲第(1)項記載の炭素繊
維強化マグネシウム合金製部材。
2. The carbon fiber reinforced according to claim 1, wherein the member is an internal combustion engine connecting rod, and a rod portion of the member is reinforced by the carbon fibers arranged in the axial direction. A member made of magnesium alloy.
JP14624085A 1985-06-03 1985-07-03 Carbon fiber reinforced magnesium alloy member Expired - Lifetime JPH0620639B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14624085A JPH0620639B2 (en) 1985-07-03 1985-07-03 Carbon fiber reinforced magnesium alloy member
US06/870,050 US4889774A (en) 1985-06-03 1986-06-03 Carbon-fiber-reinforced metallic material and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14624085A JPH0620639B2 (en) 1985-07-03 1985-07-03 Carbon fiber reinforced magnesium alloy member

Publications (2)

Publication Number Publication Date
JPS626758A JPS626758A (en) 1987-01-13
JPH0620639B2 true JPH0620639B2 (en) 1994-03-23

Family

ID=15403268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14624085A Expired - Lifetime JPH0620639B2 (en) 1985-06-03 1985-07-03 Carbon fiber reinforced magnesium alloy member

Country Status (1)

Country Link
JP (1) JPH0620639B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270398A (en) * 1985-05-25 1986-11-29 Kawasaki Steel Corp Composite plated steel sheet having high corrosion resistance and its manufacture
JPS63203778A (en) * 1987-02-19 1988-08-23 Nippon Steel Corp Highly corrosion-resistant double-layered dispersion plated steel sheet
JPH0635673B2 (en) * 1987-08-26 1994-05-11 新日本製鐵株式会社 Method for producing zinc-chromium electroplated steel sheet excellent in surface quality and corrosion resistance
JPH01290796A (en) * 1988-05-17 1989-11-22 Nippon Steel Corp Electroplated steel sheet having high corrosion resistance
JPH0280597A (en) * 1988-09-19 1990-03-20 Nippon Steel Corp Composite electroplated steel sheet having high corrosion resistance
JPH01290797A (en) * 1988-05-17 1989-11-22 Nippon Steel Corp Composite electroplated steel sheet having superior corrosion resistance
FR2698582B1 (en) * 1992-11-30 1995-02-24 Aerospatiale Composite material with reinforcing fibers and metallic matrix.
JP4518676B2 (en) * 1999-05-14 2010-08-04 裕 松田 Method for producing magnesium alloy member
JP2006011333A (en) * 2004-03-24 2006-01-12 ▲吉▼良 雅貴 Solid model

Also Published As

Publication number Publication date
JPS626758A (en) 1987-01-13

Similar Documents

Publication Publication Date Title
JPS5996236A (en) Production of composite material
US5791397A (en) Processes for producing Mg-based composite materials
JP4568410B2 (en) Method for manufacturing preform for magnesium metal matrix composite, method for manufacturing metal matrix composite, and composite
JPH0620639B2 (en) Carbon fiber reinforced magnesium alloy member
US4889774A (en) Carbon-fiber-reinforced metallic material and method of producing the same
US3431970A (en) Process for producing structures containing shaped voids
EP0380973B1 (en) Reinforced materials
US4681151A (en) Method for production of fiber-reinforced metal composite material
JP2000225457A (en) Ceramic reinforced metallic compound material, and its manufacture
JPH0142340B2 (en)
JP4352472B2 (en) Magnesium matrix composite
JPH0672029B2 (en) Fiber reinforced metal
JP3182939B2 (en) Manufacturing method of composite material
JPS61257440A (en) Metallic composite material reinforced with fiber
JPS6151618B2 (en)
JPS59101271A (en) Preparation of preform
JP2948226B2 (en) Method for producing fiber composite member
JPH09184031A (en) Production of metal matrix composite material
JPS61279648A (en) Manufacture of carbon fiber-reinforced metallic member
JPS62174340A (en) Preform material
JP4048581B2 (en) Method for producing aluminum matrix composite material
JPS6140740B2 (en)
JPS6267133A (en) Production of fiber reinforced metallic member
JPS61166932A (en) Production of fiber preform
JP2586083B2 (en) Manufacturing method of fiber molding

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term