JPS61166932A - Production of fiber preform - Google Patents

Production of fiber preform

Info

Publication number
JPS61166932A
JPS61166932A JP506485A JP506485A JPS61166932A JP S61166932 A JPS61166932 A JP S61166932A JP 506485 A JP506485 A JP 506485A JP 506485 A JP506485 A JP 506485A JP S61166932 A JPS61166932 A JP S61166932A
Authority
JP
Japan
Prior art keywords
fibers
soln
preform
bundle
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP506485A
Other languages
Japanese (ja)
Inventor
Suenobu Hata
畑 季延
Seiichi Koike
精一 小池
Toru Oota
徹 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP506485A priority Critical patent/JPS61166932A/en
Publication of JPS61166932A publication Critical patent/JPS61166932A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a preform in which reinforcing fibers including long fibers are uniformly dispersed and which has the strength and rigidity necessary in the stage of pressure casting by calcining the reinforcing fibers impregnated with a soln. prepd. by dispersing powder into an org. binder under specific conditions after drying. CONSTITUTION:The carbon long fibers 12 are taken up into a loop shape by using, for example, a manual winder 10 and are cut in the part A. The cut fibers are bundled in the part B to obtain the fiber bundle. On the other hand, an acrylic resin soln. and acetone which is a solvent are mixed. The binder soln. formed by adding a hardener to such mixture is prepd. An alloy powder is added to the soln. The above- mentioned fiber bundle 14 is immersed into such soln. 18 and the soln. 18 is stirred; at the same time, the bundle 14 is oscillated to penetrate thoroughly the soln. 18 among the fibers of the bundle 14. Then the A powder advances into the spaces among the fibers. The bundle 14 is then drawn out of the soln. 18 and is passed through a glass tube 20, by which the excess soln. is removed and the preform 22 is obtd. After the preform is dried and cured, the preform is calcined in an electric furnace 24 at and for the temp. at and for which the greater part of an org. compd. or org. metallic compd. is decomposed.

Description

【発明の詳細な説明】 L1上亘剋月】1 本発明は、金属または無機材料で形成した長繊維、短繊
維、ウィスカー等の細径繊維を用いて、加圧鋳造法、真
空鋳造法等により、繊維強化金属(FRH)を得るため
の繊維予備成形体(プリフォーム)を製造する方法に関
するものである。
[Detailed Description of the Invention] L1 Kaminowa Kokugetsu] 1 The present invention uses small diameter fibers such as long fibers, short fibers, and whiskers made of metal or inorganic material to perform a pressure casting method, a vacuum casting method, etc. The present invention relates to a method for manufacturing a fiber preform for obtaining fiber reinforced metal (FRH).

11且韮 軽合金マトリックスを繊維で強化したm維強化金属(以
下、FRHと称する)は、軽セ、高強度、高剛性、高耐
熱性なる優れた特性を−えており、近時、注目されてい
る材料である。FRHの漬産向き製造法として、有機系
あるいは無機系結合材(バインダー)を用いて繊維を所
望形状に成形して得た繊維予備成形体を鋳型内に入れ、
溶融金属を注いで、プランジャーで加圧する加圧鋳造法
が知られている。
11. Fiber-reinforced metal (hereinafter referred to as FRH), which is made by reinforcing a light alloy matrix with fibers, has been attracting attention recently because it has excellent properties such as light weight, high strength, high rigidity, and high heat resistance. This is the material that is used. As a manufacturing method for FRH pickling, a fiber preform obtained by molding fibers into a desired shape using an organic or inorganic binder is placed in a mold,
A pressure casting method is known in which molten metal is poured and pressurized with a plunger.

シ     と     口 ところが、長繊維の場合、結合剤を用いても、繊維に所
望形状を与え、これを保持することは難しく、また数十
〜数百万本の繊維を束ねることも容易ではない。それ故
、成形した繊維を#rI造金型金型内置する際、細心の
注意を払わなければならず、かつ溶融金属を金型内に注
入して加圧する際、繊維の一部が押し流されて変形した
り、さらには繊維が凝集する等により、不均一に分散し
、ミク目的に繊維の所定体積含有率(V、)を確保でき
ず、繊維凝集部においては、マトリックス金属の未充填
を生ずる等の不具合が生ずる。その結果、健全なFRH
を得ることが難しく、強度のばらつきを生じ、FRHの
信頼性が損なわれていた。
However, in the case of long fibers, even if a binder is used, it is difficult to give the fibers a desired shape and maintain it, and it is also not easy to bundle tens to millions of fibers. Therefore, great care must be taken when placing the formed fibers into the #rI mold, and when molten metal is injected into the mold and pressurized, some of the fibers may be swept away. The fibers may be deformed or even aggregated, resulting in non-uniform dispersion, making it impossible to secure the predetermined volume content (V,) of the fibers for the purpose of mixing. This may cause problems such as: As a result, healthy FRH
It was difficult to obtain the desired strength, resulting in variations in strength, and the reliability of the FRH was impaired.

しかして、前記無機系結合剤は、短繊維、ウィスカーの
如く繊維同志の“からみ”が多いものに対して有効であ
るが、長繊維に対しては結合力が不十分で適用し難く、
また、前記有機系結合剤は、結合力は十分であるが、そ
のために繊維が凝集し易く、■、≧60%程度の繊維予
備成形体を得る場合に使用しうるものの、V、=30%
程度の低い繊維体積含有率の繊維予備成形体を得ること
はできず、かつマトリックス金属と繊維を複合した債に
有機物成分が大和に残ると、FRHの特性に悪影響を及
ぼすことになる。
However, the inorganic binder is effective for short fibers and whiskers that have a lot of tangles between fibers, but it is difficult to apply to long fibers because the binding force is insufficient.
In addition, although the organic binder has sufficient binding strength, the fibers tend to aggregate, and although it can be used to obtain a fiber preform with V, ≧60%, V, = 30%.
It is not possible to obtain a fiber preform with a low fiber volume content, and if organic components remain in the composite bond of matrix metal and fibers, they will adversely affect the properties of the FRH.

一方、束状繊維間に金属粉末を進入させ、加熱、加圧成
形する等の焼結法でFRHを得る方法(例、特開昭56
−119746号公報参照)が提案されており、この方
法を応用して、粉末を包含する繊維束を、加圧鋳造法に
おける!l紺予備成形体どして用いることも想定される
が、粉末による結合力は期待できず、必要な剛性が得ら
れないため、応用は不可能である。
On the other hand, there is a method of obtaining FRH by a sintering method such as introducing metal powder between bundled fibers, heating and press forming (for example, JP-A-56
119746) has been proposed, and by applying this method, fiber bundles containing powder can be produced by pressure casting. Although it is envisaged that it could be used as a navy blue preform, it is not possible to apply it because the bonding strength of the powder cannot be expected and the necessary rigidity cannot be obtained.

口  を ゛するための一: および 本発明の目的は、強化繊維が凝集せず均一に分散され、
加圧鋳造を行う際に必要な強度と剛性を有する繊維強化
金属用の繊維予備成形体を得る点にある。
Another object of the present invention is to disperse reinforcing fibers uniformly without agglomeration,
The object of the present invention is to obtain a fiber preform for fiber-reinforced metal having the strength and rigidity necessary for pressure casting.

前記目的は、有機化合物または有機金属化合物の溶液、
または有機溶媒で希釈したその溶液中に、金属または無
機材料製微細粉末を添加、分散させ、その溶液中に強化
繊維を浸漬し、次いで該強化繊維を溶液から取り出し、
溶液を結合剤として強化繊維を成形した後、乾燥、硬化
させ、かつ加熱焼成によって、結合剤である前記有機化
合物または有機金属化合物中の有機物成分の大部分を分
解せしめることによって達成される。
The purpose is to prepare a solution of an organic compound or an organometallic compound,
Alternatively, fine powder made of metal or inorganic material is added and dispersed in the solution diluted with an organic solvent, reinforcing fibers are immersed in the solution, and then the reinforcing fibers are taken out from the solution.
This is achieved by forming reinforcing fibers using a solution as a binder, followed by drying, curing, and heating to decompose most of the organic components in the organic compound or organometallic compound that is the binder.

有機系結合材を用いた場合に、強化繊維の凝集が生じ易
いことは前述の通りであるが、本発明者等は強化繊維間
に粉末を進入させることによって、繊維間の間隔を保持
し得ることに着眼し、有機系結合剤中に粉末を分散させ
ることにより、繊維の凝集および不均一分散の阻止を計
った。また、繊維予備成形体の焼成に当り、有機化合物
または有機金属化合物の有機物成分が完全に消失すると
、1MN予備成形体としての形状を維持し得ないため、
有機化合物または有機金属化合物における有機物成分の
分解、減少量が90〜99%(すなわち、その残存量が
1〜10%)である様な加熱焼成温度および時間を選択
し、それによって、加圧鋳造を行う際にtj/AM予備
成形体に要求される強度、剛性を確保することが可能と
なる。焼成によって得たI1M予備成形体の繊維相互間
には、粉末が介在して繊維間隔が保持されること、およ
び残留有機物成分が、その中に取り込まれた粉末によっ
て強化されていることにより、所望の繊維体積含有率V
、を確保し得るとともに十分な強度、剛性を得ることが
できる。
As mentioned above, reinforcing fibers tend to agglomerate when an organic binder is used, but the present inventors have found that by introducing powder between the reinforcing fibers, the spacing between the fibers can be maintained. Focusing on this, we attempted to prevent fiber aggregation and non-uniform dispersion by dispersing the powder in an organic binder. Furthermore, if the organic component of the organic compound or organometallic compound completely disappears during firing of the fiber preform, it will not be possible to maintain the shape of the 1MN preform.
The heating and firing temperature and time are selected such that the amount of decomposition and reduction of the organic component in the organic compound or organometallic compound is 90 to 99% (that is, the remaining amount is 1 to 10%), and thereby pressure casting. When performing this, it becomes possible to ensure the strength and rigidity required for the tj/AM preform. The powder is interposed between the fibers of the I1M preform obtained by firing to maintain the fiber spacing, and the residual organic components are reinforced by the powder incorporated therein, so that the desired properties can be achieved. Fiber volume content V
, and at the same time, sufficient strength and rigidity can be obtained.

本発明で使用する有機化合物、または有機金属化合物を
選択するに当っては、それ等を加熱分解させる際の繊維
の高温劣化を十分考慮しなければならず、例えば、強化
IIIとして高強度炭素Il雑を用いる場合には、大気
中において400℃を越える加熱を行うと、繊維が劣化
するため、400°C以下で加熱分解する有機化合物ま
たは有機金属化合物を使用する必要があり、アクリル系
樹脂、スチロール系樹脂、セルロース系樹脂等が好適で
ある。
When selecting the organic compound or organometallic compound used in the present invention, it is necessary to fully consider the high-temperature deterioration of the fibers when thermally decomposing them. For example, as reinforcement III, high-strength carbon When using acrylic resins, it is necessary to use organic compounds or organometallic compounds that decompose under heat at 400°C or less, as the fibers will deteriorate if heated above 400°C in the air.Acrylic resins, Styrene resins, cellulose resins, etc. are suitable.

また、有機金属化合物を使用する場合には、前記条件に
加えて、加熱分解後の残存金属成分が繊維に対して悪影
響を及ぼさないものでなければならず、かつその代表物
であるシリコーン樹脂の場合、残留SLとマトリックス
金属との適合性をも考慮しなければならない。
Furthermore, when using organometallic compounds, in addition to the above conditions, the metal components remaining after thermal decomposition must have no adverse effect on the fibers, and silicone resins, which are typical of them, must be In this case, the compatibility between the residual SL and the matrix metal must also be considered.

一方、有機化合物または有機金属化合物をアセトン・ト
ルエンの如き有機溶媒で希釈した溶液中に添加する粉末
の材質は、強化411uおよびマトリックス金属との適
合性によって決定され、マトリックス金属と同材質、あ
るいはその主要含有元素の金属粉末(または合金粉末′
)を使用することができ、また、マトリックス金属への
溶解が好ましくなければ、セラミック粉末を用いること
ができる。後者においては、セラミック粒子による分散
強化効果を企図し得る利点がある。
On the other hand, the material of the powder to be added to a solution prepared by diluting an organic compound or an organometallic compound with an organic solvent such as acetone or toluene is determined by the compatibility with the reinforcement 411u and the matrix metal, and is made of the same material as the matrix metal or its material. Metal powder (or alloy powder) containing the main elements
) can be used, and if dissolution into the matrix metal is undesirable, ceramic powders can be used. In the latter case, there is an advantage that a dispersion strengthening effect by ceramic particles can be contemplated.

また、粉末の粒径は、強化繊維径、taI11予備成形
体の設定体積含有率V、によって決定され、例えば、径
7μmの炭素繊維を用いる場合には、10μ風以下の粒
径が望ましい。しかしながら、設定体積含有率V、が低
く、30%以Fであれば、径7μ肌の炭素繊維であって
も、粒径40μm以下の粉末を使用することができる。
Further, the particle size of the powder is determined by the reinforcing fiber diameter and the set volume content V of the taI11 preform. For example, when carbon fibers with a diameter of 7 μm are used, a particle size of 10 μm or less is desirable. However, if the set volume content V is low and is 30% or more, powder with a particle size of 40 μm or less can be used even if the carbon fiber has a diameter of 7 μm.

そして、前記溶液中への粉末の添加量は、繊維予備成形
体の設定体積含有率■、との関係で決定され、vfが小
さくなれば、それに応じて添加量を増やさなければなら
ない。
The amount of powder added to the solution is determined in relation to the set volume content ratio (2) of the fiber preform, and as vf becomes smaller, the amount added must be increased accordingly.

さらに、強化繊維としては、径30μ雇以上の金属(例
、ステンレス鋼)、または無機材料(例、炭素、炭化珪
素、アルミナ)製の長繊維、短繊維、ウィスカーを使用
することができ、特に長繊維を束ねた繊維束の形態での
使用が好適である。
Further, as reinforcing fibers, long fibers, short fibers, and whiskers made of metal (e.g., stainless steel) or inorganic materials (e.g., carbon, silicon carbide, alumina) with a diameter of 30 μm or more can be used, and in particular, It is preferable to use the fiber bundle in the form of a bundle of long fibers.

叉」1引ユ 下記の手順により、F!&雑予備成形体を成形し、高強
度炭素繊維強化マグネシウム合金復合材の丸棒(12N
Rφx  120#)を得た。
F! by following the steps below. & Miscellaneous preforms are formed into round bars (12N) of high-strength carbon fiber reinforced magnesium alloy composite material.
Rφx 120#) was obtained.

■第1図(a)に示す手回し式巻取り4110を用いて
、径7μmの炭素長繊維(東し■装丁300)12をル
ープ状に巻取り、これをA部において切断し、8部にお
いて束ね、90万本の繊維の束を形成した。
■ Using the hand-cranked winding device 4110 shown in Fig. 1(a), wind the long carbon fiber (east binding 300) 12 with a diameter of 7 μm into a loop, cut it at section A, and cut it at section A. They were bundled together to form a bundle of 900,000 fibers.

この繊維本数は、後記ガラス管20の内径との関係で決
定され、繊維含有体積率V、=30%を狙ったものであ
る。
The number of fibers is determined in relation to the inner diameter of the glass tube 20, which will be described later, and is aimed at a fiber content volume ratio V=30%.

■アクリル樹脂系溶液(東洋インキ■製 商標8二オリ
バイン(BPS4668))と溶媒のアセトンを1:1
の比率で混合し、これに前記アクリル樹脂系溶液の4x
に相当する硬化剤(ポリイソシアネート)を加えた結合
剤溶液を容器16中に用意し、該結合剤溶液に、100
7/J!のフルミニ・クム合金粉末(JIS7075.
325メツシユ以下)を添加した。
■Acrylic resin solution (manufactured by Toyo Ink ■ Trademark 8 Biolivine (BPS4668)) and solvent acetone in a ratio of 1:1.
and add 4x of the acrylic resin solution to this.
A binder solution containing a curing agent (polyisocyanate) corresponding to
7/J! full mini-cum alloy powder (JIS7075.
(up to 325 mesh) was added.

該結合剤溶液18中に、前記0項により(qだ411束
14を浸漬し、結合剤溶液18を撹拌させるとともに繊
維束14を振動させて、tag束14の繊維間に結合剤
溶液18を十分に浸透させる。この操作によってアルミ
ニウム合金粉末も繊維間に速入する(第1図(b)参照
)。
The binder solution 18 is immersed in the binder solution 18 according to item 0 above, and the binder solution 18 is stirred and the fiber bundle 14 is vibrated to spread the binder solution 18 between the fibers of the tag bundle 14. By this operation, the aluminum alloy powder also quickly enters between the fibers (see Fig. 1(b)).

■繊維束14を結合剤溶液18から引出し、第1図(C
)に示す様に内径12#l1lIφのガラス管20内を
通過させ、余分な溶液を排除して、繊維予備成形体(1
2mφX20#l1l)を得た。
■ Pull out the fiber bundle 14 from the binder solution 18, and
), the fiber preformed body (1
2mφX20#l1l) was obtained.

■該繊維予備成形体22を乾燥、硬化させた後、電気炉
24内で窒素ガス雰囲気の下、400℃×1時間の加熱
−焼成を行った(第1図(d)参照)。この加熱焼成に
より、有機物成分は分解し、残留有機物成分は、焼成前
の5xであった。
(2) After drying and curing the fiber preform 22, it was heated and fired at 400° C. for 1 hour in an electric furnace 24 under a nitrogen gas atmosphere (see FIG. 1(d)). By heating and firing, the organic components were decomposed, and the remaining organic components were 5x the amount before firing.

■焼成済みの繊維予備成形体22を、窒素雰囲気下、4
00℃で枢分間予備加熱した侵、加圧鋳造用金型内にセ
ツティングし、直ちに溶湯温度730℃のマグネシウム
合金(八STHAZ31相当、またはJI3831相当
)を注入し、1000/(jf/Caiの圧力を60秒
間作用させた。
■The fired fiber preform 22 is placed in a nitrogen atmosphere for 4 hours.
The mold was preheated at 00℃ for the central part, then set in a pressurized casting mold, and immediately a magnesium alloy (equivalent to 8STHAZ31 or JI3831) with a molten metal temperature of 730℃ was injected, and the temperature was 1000/(jf/Cai). Pressure was applied for 60 seconds.

斯くして得られたFRHは、その断面観察結果から、繊
維が凝集することなく均一に分散し、注湯、加圧時にお
ける繊維予備成形体の変形がなく、添加アルミニウム合
金粉末がマトリックス金属に完全に固溶し、原形をとど
めていないことが確認された。
The results of cross-sectional observation of the FRH obtained in this way show that the fibers are uniformly dispersed without agglomeration, that the fiber preform does not deform during pouring and pressurization, and that the added aluminum alloy powder is absorbed into the matrix metal. It was confirmed that it was completely dissolved and did not retain its original shape.

また、該FRHの引張り試験を行い、引張り強度85K
g[7m2、弾性率11.500Kgf/m 2なる結
果を得た。
In addition, a tensile test was conducted on the FRH, and the tensile strength was 85K.
The result was that the elastic modulus was 11.500 Kgf/m 2 .

同一条件)でアルミニウム合金粉末を使用しなかった場
合には、工程■でm維の凝集が起こり、所望した12m
n+φの断面形状が得られなかった。該4111予備成
形体を用いてFRHを成形した結果、繊維凝集部にマト
リックス金属が浸透せずに鋳造欠陥となり、引張強度は
17kg/ma+2 、弾性率は5700k(1,/a
m2であった。
If no aluminum alloy powder was used under the same conditions (same conditions), agglomeration of m fibers would occur in step (2), resulting in the desired 12 m
A cross-sectional shape of n+φ could not be obtained. As a result of molding FRH using the 4111 preform, the matrix metal did not penetrate into the fiber agglomeration area, resulting in casting defects, the tensile strength was 17 kg/ma+2, and the elastic modulus was 5700 k (1,/a
It was m2.

支1璽ユ 径7μmの高強度炭素繊維に膜厚0.4μmのNiメッ
キを施したもの(セラニーズ社製 商品名:セリオン6
000 )を用いた点、およびiI雑予漏成形体の焼成
雰囲気を水素ガス雰囲気とした点を除き、実施例1と同
一条件で繊維予備成形体を形成し、アルミニウム合金(
JIS AC4C)を用いて実施例1と同一条件で加圧
鋳造を行い、FRHを得た。
High-strength carbon fiber with a diameter of 7 μm and Ni plating with a thickness of 0.4 μm (manufactured by Celanese, product name: Selion 6)
A fiber preform was formed under the same conditions as in Example 1, except that aluminum alloy (
Pressure casting was performed using JIS AC4C) under the same conditions as in Example 1 to obtain FRH.

実施例1と同様に良好なFRHが得られ、引張り試験に
よれば、引張り強度82#f/aw2、弾性率14.0
OOK9r/rtm”であった。
Good FRH was obtained as in Example 1, and according to the tensile test, the tensile strength was 82 #f/aw2 and the elastic modulus was 14.0.
OOK9r/rtm".

11釧ユ ■径11μ乳のピッチ系高強度炭素繊維(LJCC社製
P55)を、実施例1と同様に、径12M1φでV、=
30%を狙い、36万本の束にした。
11 Pitch-based high-strength carbon fiber (P55 manufactured by LJCC) with a diameter of 11 μm was heated to a diameter of 12M1φ in the same manner as in Example 1.
Aiming for 30%, they made a bundle of 360,000 pieces.

■ポリメヂルメタアクリレート樹脂(東洋インキn製 
商品名: BXX4720 )をトルエンで稀釈した結
合剤溶液(固形分34x)中に、100g/Jの純A1
粉末(粒径10uTrL以下)を添加して、該溶液中に
炭素繊維束を浸漬し、実施例1と同様にして繊維間への
結合剤溶液の浸透を計った。
■Polymethyl methacrylate resin (manufactured by Toyo Ink n)
100g/J of pure A1 in a binder solution (solid content 34x) diluted with toluene (trade name: BXX4720)
A powder (particle size of 10 uTrL or less) was added, a carbon fiber bundle was immersed in the solution, and the penetration of the binder solution between the fibers was measured in the same manner as in Example 1.

■結合剤溶液から引き出した炭素繊維束を、内径12釧
φのガラス管を通して引き扱き、これを乾燥、硬化させ
、大気中で、300℃×30分の加熱焼成を行った。そ
の残留有機物成分は、焼成前の7χであった。
(2) The carbon fiber bundle pulled out from the binder solution was passed through a glass tube with an inner diameter of 12 mm, dried and hardened, and then fired at 300° C. for 30 minutes in the atmosphere. The residual organic matter component was 7χ before firing.

■焼成済みの繊維予備成形体を、実施例1と同一の条件
で、アルミニウム合金(JIS AC5A)と複合化し
た。
(2) The fired fiber preform was composited with an aluminum alloy (JIS AC5A) under the same conditions as in Example 1.

斯くして得られたFRHは、実施例1と同様に良好であ
り、引張り強度70に9r/1ea2;弾性率17,0
00Kgf/#llI2であった。
The thus obtained FRH was as good as in Example 1, with a tensile strength of 70 and 9r/1ea2; elastic modulus of 17.0
It was 00Kgf/#llI2.

支i■A ■径20μmのαアルミナIIfi(デュポン社製ファ
イバー FP)を、iomφX  100m+、V、=
50%の丸棒状繊維予備成形体を得るべく、12万5千
本の束にした。
Support i ■ A ■ α alumina IIfi (Fiber FP manufactured by DuPont) with a diameter of 20 μm, iomφX 100m +, V, =
In order to obtain a 50% round fiber preform, 125,000 fibers were bundled.

■シリコーン樹脂(信越化学工業■製)をトルエンで稀
釈した結合剤溶液中に、50o/ jの純AJ粉末(粒
径10μTrL以))を添加して、該溶液中にαアルミ
ナ繊維束を浸漬し、実施例1と同様にして繊維間への結
合剤溶液の浸透を計った。
■Add 50o/j pure AJ powder (particle size of 10μTrL or more) to a binder solution made by diluting silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd.) with toluene, and immerse the α-alumina fiber bundle in the solution. Then, in the same manner as in Example 1, the penetration of the binder solution between the fibers was measured.

■結合剤溶液から引き出したαアルミナ繊維束を内径1
0awφのダイスを通して引き後き、これを乾燥、硬化
させ、窒素雰囲気下500℃×2時間の加熱焼成を行っ
た。その残留有機物成分は、焼成前の35%であり、分
析の結果、珪素、炭素、および酸素が検出された。
■The α-alumina fiber bundle drawn from the binder solution is
It was passed through a die of 0 awφ, dried and cured, and then heated and baked at 500° C. for 2 hours in a nitrogen atmosphere. The residual organic component was 35% of that before firing, and as a result of analysis, silicon, carbon, and oxygen were detected.

■焼成済みの!IN予備成形体を保温性の良好なセラミ
ック製鋳型内にセツティングし、700℃で余熱した後
、真空室内に装入し、圧力1o−2torrで、750
℃のAJ!合金(JIS AC4C)を注渇し、注瀾後
、直らに圧カフKgr/ciで不活性ガスにより加圧し
て、FRHを得た。
■Already fired! The IN preform was set in a ceramic mold with good heat retention, preheated at 700°C, placed in a vacuum chamber, and heated at 750°C at a pressure of 10-2 Torr.
AJ of ℃! The alloy (JIS AC4C) was drained, and after pouring, it was immediately pressurized with an inert gas using a pressure cuff Kgr/ci to obtain FRH.

斯くして得られたFRHは、繊維が凝集することなく均
一に分散し、引張り強度50/(9f/a+” 、弾性
率21,0OQN9f/am2であった。
The thus obtained FRH had fibers uniformly dispersed without agglomeration, a tensile strength of 50/(9f/a+"), and an elastic modulus of 21.0OQN9f/am2.

裏蓋■1 ■径14μ卯の炭化珪素長繊維(日本カーボン■製 商
標名二二カロン)を、12#lIφX 100mの丸棒
状繊維予備成形体を得るべく、30万本の束にした。
Back Cover ■1 ■ 300,000 silicon carbide long fibers (manufactured by Nippon Carbon ■, trade name: 22 Calon) with a diameter of 14 μm were bundled to obtain a round rod-shaped fiber preform of 12#lIφX 100m.

■実施例1と同一の結合剤溶液中に、150g/ J!
のS!3N+粉末(粒径5μm以下)を添加して該溶液
中に炭素珪素m離京を浸漬し、実施例1と同様にして繊
維間への結合剤溶液の浸透を計った。
■In the same binder solution as in Example 1, 150 g/J!
The S! 3N+ powder (particle size of 5 μm or less) was added and a carbon-silicon material was immersed in the solution, and the penetration of the binder solution between the fibers was measured in the same manner as in Example 1.

■結合剤溶液から引き出した炭化珪素繊維束を内径12
m+φのガラス管を通して引扱き、これを、大気中で1
50℃×1時間の乾燥を行って硬化させ、窒素ガス雰囲
気下400℃×1時間の加熱焼成を行った。
■The silicon carbide fiber bundle pulled out from the binder solution is
It is handled through a glass tube of m + φ, and then heated in the atmosphere for 1
It was cured by drying at 50° C. for 1 hour, and then heated and fired at 400° C. for 1 hour in a nitrogen gas atmosphere.

■焼成済みの繊維予備成形体を、加圧f7造法により、
マグネシウム合金(ASTHA131相当、またはJI
S 831相当)と複合化した。
■The fired fiber preform is made using the pressurized F7 method.
Magnesium alloy (equivalent to ASTHA131 or JI
S 831 equivalent).

斯くして得られたFRHは、繊維が凝集することなく均
一に分散し、引張り強度43に9f/rtm2、弾性率
9.QQQK9f/纒2であった。
The thus obtained FRH has fibers uniformly dispersed without agglomeration, a tensile strength of 43, 9 f/rtm2, and an elastic modulus of 9. It was QQQK9f/Ki2.

友i■ヱ ■(0,3〜μmφ)X数百μmの炭化珪素ウィスカー
(東海カーボン■製 商標名:トーカマックス)  1
60gを、実施例3と同一組成の順AJ粉末入り結合剤
溶液中に添加して撹拌し、これを、幅50#l1lIX
長さ100#の金型内に流し込み、プランジャーで加圧
して、過剰樹脂分を取り除き、50mrn×100mt
n X 50mmの繊維予備成形体を得た。
Friend i■ヱ■ (0.3~μmφ) x several hundred μm silicon carbide whiskers (manufactured by Tokai Carbon ■, trade name: TOKAMAX) 1
60g was added to a binder solution containing AJ powder having the same composition as in Example 3 and stirred.
Pour into a mold with a length of 100#, pressurize with a plunger to remove excess resin, 50mrn x 100mt
A fiber preform of n x 50 mm was obtained.

■該予備成形体を大気中で乾燥、硬化させた後、大気中
で、300℃×1時間の加熱焼成を行った。得られたm
帷子g/a成形体の見掛は比重は、0.65であった。
(2) After drying and curing the preform in the atmosphere, it was fired at 300° C. for 1 hour in the atmosphere. Obtained m
The apparent specific gravity of the cloth g/a molded product was 0.65.

■焼成済みの繊維予備成形体を加圧鋳造用金型内にセツ
ティングし、150℃のアルミニウム合金(JIS A
C4D)を注渇し、注湯完了後、直ちに圧力1100O
N/cdで、60秒間加圧した。
■Set the fired fiber preform in a pressure casting mold and cast it into an aluminum alloy (JIS A) at 150°C.
C4D), and immediately after pouring, the pressure was increased to 1100O.
Pressure was applied for 60 seconds at N/cd.

斯くして得られたFRHは、炭化珪素ウィスカーが、擬
集することなく均一に分散していた。比較のために結合
剤を用いることなく形成した炭化珪素ウィスカーの繊維
予備成形体を用いて得たFRHでは、繊維予備成形体の
漬れや、割れが生じていた。また、本実施例のFRHは
、引張り強度45に9f/#2、弾性率10.7008
fl fits 2であった。
In the thus obtained FRH, silicon carbide whiskers were uniformly dispersed without agglomeration. For comparison, an FRH obtained using a fiber preform of silicon carbide whiskers formed without using a binder exhibited soaking and cracking of the fiber preform. In addition, the FRH of this example has a tensile strength of 45, 9f/#2, and an elastic modulus of 10.7008.
It was fl fits 2.

支え透ユ 実施例1と同様の繊維と結合剤溶液を用いて第2図、第
3図示の如き簡単なフィラメント・ワインディング装置
により、円環状m維予備成形体を作成した。繊維供給用
ボビン32に巻かれた高強度炭素繊維束30は、複数の
がイドローラ34に誘導されて、結合剤溶液(アクリル
樹脂とAJI合金粉末混合液)18中を通過した後、ダ
イス36によって、設定■「を狙い、余剰樹脂分が取除
かれる。
An annular m-fiber preform was prepared using the same fibers and binder solution as in Example 1 of the supporting cast and using a simple filament winding apparatus as shown in FIGS. 2 and 3. The high-strength carbon fiber bundle 30 wound around the fiber supply bobbin 32 is guided by a plurality of idle rollers 34, passes through a binder solution (mixture of acrylic resin and AJI alloy powder) 18, and then is passed through a die 36. , setting ``Aiming for ``, the excess resin is removed.

その後、炭素繊維束30は、巻取りマンドレル40と同
期して動くガイド38を介してマンドレルに巻取られて
ゆく。結合剤溶液18は、繊維束内への樹脂およびA1
粉末の浸透を促進させるために、空気の吹き込み、翼体
の回転等によって、撹拌される。さらに、図示されてい
ない同期送り装置によって、ダイス36によって引き抜
かれた後マンドレル40に巻取られるまでの繊維に過度
の張力が加ねってamm径径変化しない様に工夫されて
いる。
Thereafter, the carbon fiber bundle 30 is wound onto a winding mandrel via a guide 38 that moves in synchronization with the winding mandrel 40. The binder solution 18 binds the resin and A1 into the fiber bundle.
In order to promote the penetration of the powder, it is stirred by blowing air, rotating blades, etc. Further, a synchronous feeding device (not shown) is designed to prevent the fibers from changing in amm diameter due to excessive tension being applied to the fibers after being drawn by the die 36 and before being wound around the mandrel 40.

かくして得られた円環状繊維予備成形体を、実施例1と
同様の条件で加熱焼成した後、実施例1と同様に加圧鋳
造法にてMg合金(ASTHAZ31相当)と複合化し
た。得られたFRHを、内径40maφ、外径50+u
+φに機械加工して、圧縮荷重を加えた時     “
の変形量を、Illll化しないMQ合金(ASTHA
231相当)との対比で測定した。その結果、同一荷重
に対する変形量は1/3に減じており、繊維強化による
大幅な剛性の向上が確認された。
The annular fiber preform thus obtained was heated and fired under the same conditions as in Example 1, and then composited with an Mg alloy (equivalent to ASTHAZ31) by pressure casting in the same manner as in Example 1. The obtained FRH has an inner diameter of 40maφ and an outer diameter of 50+u.
When machining +φ and applying compressive load “
MQ alloy (ASTHA
231 equivalent)). As a result, the amount of deformation under the same load was reduced to 1/3, confirming a significant improvement in rigidity due to fiber reinforcement.

1豆五11 以上の説明から明らかな様に、有機化合物または有機金
属化合物の溶液、または有機溶媒で稀釈したその溶液中
に、金属または無機材料製微細粉末を添加、分散させ、
その溶液中に強化IIIを浸漬し、次いで該強化繊維を
溶液から取り出し、溶液を結合剤として強化繊維を成形
した後、乾燥、硬化させ、かつ加熱焼成によって、結合
剤である前記有機化合物または有機金属化合物中の有機
物成分の大部分を分解せしめることを特徴とする繊維予
備成形体の製造方法が提案された。
As is clear from the above explanation, fine powder made of metal or inorganic material is added and dispersed in a solution of an organic compound or an organometallic compound, or a solution thereof diluted with an organic solvent,
Reinforcement III is immersed in the solution, then the reinforcing fibers are taken out from the solution, the reinforcing fibers are formed using the solution as a binder, and then dried, hardened, and fired by heating to remove the organic compound or organic A method for producing a fiber preform has been proposed, which is characterized by decomposing most of the organic components in the metal compound.

斯かる本発明方法によれば、繊維体積含有率V、を10
〜80%の範囲で適宜選択した繊維予備成形体を得るこ
とができ、該iag予備成形体は、繊維が凝集すること
なく均一に分散しており、かつ強度、剛性が高いため、
形状を保持するための容器、ホルダー等の治具を必要と
せず、加圧鋳造によりマトリックス金属と複合化する際
にi!維予崗成形体の形状が損われることがなく、高品
質のFRHを得ることができる。
According to the method of the present invention, the fiber volume content V is 10
It is possible to obtain a fiber preform suitably selected in the range of ~80%, and the IAG preform has fibers uniformly dispersed without agglomeration, and has high strength and rigidity.
There is no need for jigs such as containers or holders to hold the shape, and i! A high quality FRH can be obtained without damaging the shape of the fiber molded body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係わる繊維予備成形体の製
造手順を示し、第2図は他の実施例に係る繊維予備成形
体の製造手順を示す側面図、第3図はその■−■線矢視
図である。 10・・・手回し式巻゛取り機、12・・・炭素長繊維
、14・・・繊維束、16・・・容器、18・・・結合
剤溶液、20・・・ガラス管、22・・・繊維予備成形
体、24・・・電気炉、30・・・炭素繊維束、32・
・・繊維供給用ボビン、34・・・ガイドローラ、36
・・・ダイス、38・・・ガイド、40・・・巻取りマ
ンドレル。 代理人 弁理士  江 原   望 外2名
FIG. 1 shows a manufacturing procedure for a fiber preform according to one embodiment of the present invention, FIG. 2 is a side view showing a manufacturing procedure for a fiber preform according to another embodiment, and FIG. - ■ line arrow view. DESCRIPTION OF SYMBOLS 10... Hand-crank winder, 12... Carbon long fiber, 14... Fiber bundle, 16... Container, 18... Binder solution, 20... Glass tube, 22... - Fiber preform, 24... Electric furnace, 30... Carbon fiber bundle, 32.
...Fiber supply bobbin, 34...Guide roller, 36
...Dice, 38...Guide, 40... Winding mandrel. Agent: Patent attorney Nozomi Ehara, 2 people

Claims (1)

【特許請求の範囲】 繊維強化金属用繊維予備成形体の製造方法において、 有機化合物または有機金属化合物の溶液、または有機溶
媒で希釈したその溶液中に、金属または無機材料製微細
粉末を添加、分散させ、その溶液中に強化繊維を浸漬し
、次いで該強化繊維を溶液から取り出し、溶液を結合剤
として強化繊維を成形した後、乾燥、硬化させ、かつ加
熱焼成によって、結合剤である前記有機化合物または有
機金属化合物中の有機物成分の大部分を分解せしめるこ
とを特徴とする繊維予備成形体の製造方法。
[Claims] A method for producing a fiber preform for fiber-reinforced metals, comprising adding and dispersing fine powder made of a metal or inorganic material into a solution of an organic compound or an organometallic compound, or a solution thereof diluted with an organic solvent. Then, the reinforcing fibers are immersed in the solution, the reinforcing fibers are taken out from the solution, the reinforcing fibers are formed using the solution as a binder, and then dried, hardened, and heated to remove the organic compound as the binder. Alternatively, a method for producing a fiber preform, which comprises decomposing most of the organic components in the organometallic compound.
JP506485A 1985-01-17 1985-01-17 Production of fiber preform Pending JPS61166932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP506485A JPS61166932A (en) 1985-01-17 1985-01-17 Production of fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP506485A JPS61166932A (en) 1985-01-17 1985-01-17 Production of fiber preform

Publications (1)

Publication Number Publication Date
JPS61166932A true JPS61166932A (en) 1986-07-28

Family

ID=11600957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP506485A Pending JPS61166932A (en) 1985-01-17 1985-01-17 Production of fiber preform

Country Status (1)

Country Link
JP (1) JPS61166932A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295346A (en) * 1985-06-21 1986-12-26 Toyota Central Res & Dev Lab Inc Fiber-reinforced metal and its production
JPS63266031A (en) * 1986-12-16 1988-11-02 Kobe Steel Ltd Pellet of mixture of reinforcing material and metallic powder and its production
WO1994018139A1 (en) * 1993-02-02 1994-08-18 Lanxide Technology Company, Lp Novel methods for making preforms for composite formation processes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295346A (en) * 1985-06-21 1986-12-26 Toyota Central Res & Dev Lab Inc Fiber-reinforced metal and its production
JPH0257135B2 (en) * 1985-06-21 1990-12-04 Toyoda Chuo Kenkyusho Kk
JPS63266031A (en) * 1986-12-16 1988-11-02 Kobe Steel Ltd Pellet of mixture of reinforcing material and metallic powder and its production
WO1994018139A1 (en) * 1993-02-02 1994-08-18 Lanxide Technology Company, Lp Novel methods for making preforms for composite formation processes
US5667742A (en) * 1993-02-02 1997-09-16 Lanxide Technology Company, Lp Methods for making preforms for composite formation processes

Similar Documents

Publication Publication Date Title
DE2648459C3 (en) Process for the production of refractory workpieces
US6635215B2 (en) Process for producing silicon carbide composites from silicon-based polymers by radiation application
US3936535A (en) Method of producing fiber-reinforced composite members
WO1996008453A1 (en) Ceramic-based composite fiber material and method of manufacturing the same
EP0108216B1 (en) Composite material manufacturing method exothermically reducing metallic oxide in binder by element in matrix metal
JP2944838B2 (en) Method for manufacturing ceramic matrix composite material member
JPS61166932A (en) Production of fiber preform
JP2005194141A (en) Composite material and its production method
US4681151A (en) Method for production of fiber-reinforced metal composite material
US5207263A (en) VLS silicon carbide whisker reinforced metal matrix composites
JPH0620639B2 (en) Carbon fiber reinforced magnesium alloy member
WO2001012871A1 (en) Metal matrix composite and piston using the same
JPH0378177B2 (en)
JPS6289831A (en) Manufacture of fiber preliminary compact
JPS5930778A (en) Manufacture of fiber reinforced sic sintered body
JPH0196340A (en) Aluminum alloy composite material and its manufacture
JP2006152324A (en) FIBER-REINFORCED Ti-Al COMPOSITE MATERIAL AND MANUFACTURING METHOD THEREFOR
JPH09268080A (en) Production of composite ceramic of filament
JPS63297277A (en) Sic whisker-reinforced metallic composite material and production thereof
JPS642471B2 (en)
JPH10130067A (en) Production of c/c crucible for pulling up signal crystal
JPS5933655B2 (en) Beryllium beryllium
JPS61213330A (en) Bar-shaped body having high-temperature resistant strength and its production
JPS5834150A (en) Production of composite material
JPS58110411A (en) Manufacture of carbonaceous material