JPH0378177B2 - - Google Patents

Info

Publication number
JPH0378177B2
JPH0378177B2 JP11578583A JP11578583A JPH0378177B2 JP H0378177 B2 JPH0378177 B2 JP H0378177B2 JP 11578583 A JP11578583 A JP 11578583A JP 11578583 A JP11578583 A JP 11578583A JP H0378177 B2 JPH0378177 B2 JP H0378177B2
Authority
JP
Japan
Prior art keywords
mold
aggregate
fibers
metal
reinforcing fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11578583A
Other languages
Japanese (ja)
Other versions
JPS609569A (en
Inventor
Atsushi Kitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11578583A priority Critical patent/JPS609569A/en
Publication of JPS609569A publication Critical patent/JPS609569A/en
Publication of JPH0378177B2 publication Critical patent/JPH0378177B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 この発明は、繊維強化金属複合材料の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a fiber reinforced metal composite material.

金属を補強繊維で強化してなる、いわゆる繊維
強化金属複合材料(以下、FRMという)は、金
属のみからなる材料にくらべて比強度や比弾性率
が高いことから、いろいろな分野で注目されてい
る。
Fiber-reinforced metal composite materials (hereinafter referred to as FRM), which are made by reinforcing metal with reinforcing fibers, are attracting attention in various fields because they have higher specific strength and specific modulus than materials made only of metal. There is.

そのようなFRMを製造する方法としては、従
来、溶射法、イオンプレーテイング法、蒸着法、
メツキ法、化学気相析出法、粉末冶金法、箔冶金
法、ホツトプレス法、真空鋳造法など、いろいろ
な方法が提案され、実施されているが、最近にな
つて、より高強度で、かつ弾性率の高いFRMが
得られるという理由で、高圧鋳造法と呼ばれる方
法が注目されるようになつてきた。
Conventional methods for manufacturing such FRM include thermal spraying, ion plating, vapor deposition,
Various methods have been proposed and put into practice, such as the plating method, chemical vapor deposition method, powder metallurgy method, foil metallurgy method, hot press method, and vacuum casting method. A method called high-pressure casting has been attracting attention because it can obtain FRM with a high rate of production.

高圧鋳造法は、補強繊維の集合体を成形用の型
に入れ、その型内にマトリクスとなる金属の溶湯
を加圧、注入し、いわゆる鋳込むものである。こ
のとき、補強繊維が、たとえば炭素繊維のよう
に、高温で大気に晒された場合に酸化しやすいも
のであると、劣化して補強の意味をなさなくな
り、高い強度、高弾性のFRMが得られない。そ
のため、従来の方法においては、あらかじめバイ
ンダーで所望の形状に結着した補強繊維、つまり
集合体を、一端を閉じた円筒状の金属製容器に収
納し、容器ごと型に入れて鋳込むようにしてい
る。しかしながら、この従来の方法は、以下にお
いて説明するような欠点を有している。
In the high-pressure casting method, an aggregate of reinforcing fibers is placed in a mold, and a molten metal serving as a matrix is poured into the mold under pressure, so-called casting. At this time, if the reinforcing fiber is one that easily oxidizes when exposed to the atmosphere at high temperatures, such as carbon fiber, it will deteriorate and the reinforcement will become meaningless, resulting in a FRM with high strength and high elasticity. I can't do it. Therefore, in the conventional method, reinforcing fibers, that is, aggregates that have been bound into the desired shape with a binder, are stored in a cylindrical metal container with one end closed, and the container is then placed in a mold and cast. . However, this conventional method has drawbacks as explained below.

すなわち、補強繊維の集合体を、一端を閉じた
円筒状の容器に入れて鋳込むと、容器の中に形成
されたFRMを取り出すのに、まず容器の周りに
鋳込まれたマトリクス金属を切削して取り除き、
さらに容器を切削して取り除くという、2段階
の、しかもやつかいな操作が必要になつてくる。
そのため、従来の方法は生産性が大変低い。
In other words, when an aggregate of reinforcing fibers is placed in a cylindrical container with one end closed and cast, the matrix metal cast around the container must first be cut to remove the FRM formed inside the container. and remove it,
Furthermore, a two-step and complicated operation of cutting and removing the container becomes necessary.
Therefore, the productivity of the conventional method is very low.

この発明の目的は、従来の方法の上記欠点を解
決し、生産性が極めて高いFRMの製造方法を提
供するにある。
An object of the present invention is to solve the above-mentioned drawbacks of the conventional methods and to provide a method for manufacturing FRM with extremely high productivity.

上記目的を達成するために、この発明において
は、成形用の型の中に、離型板で挟んだ補強繊維
の集合体を配置し、次いで前記型内にマトリクス
金属の溶湯を加圧、注入して成形した後、成形体
を型から取り出し、その成形体を前記離型板の部
分で分離することを特徴とする、繊維強化金属の
製造方法が提供される。
In order to achieve the above object, in the present invention, an aggregate of reinforcing fibers sandwiched between mold release plates is placed in a mold, and then a molten matrix metal is pressurized and injected into the mold. There is provided a method for producing a fiber-reinforced metal, which comprises taking out the molded body from the mold after molding and separating the molded body at the part of the mold release plate.

この発明の方法を詳細に説明するに、まず、補
強繊維の、たとえば板状集合体の両面に、それよ
りもやや大きめの離型板を当接する。すなわち、
補強繊維の集合体を2枚の離型板で挟み、補強繊
維の集合体と離型板との重ね合せ体を得る。さら
に、その重ね合せ体の四隅において、上記2枚の
離型板の間に、たとえばボルトを渡し、集合体を
締め付ける。このとき、上記両面の離型板は、補
強繊維の集合体を圧縮してその密度を高めるとと
もに、集合体の両面があたかも大気からシールさ
れたような状態を作り出し、次の工程で重ね合せ
体を加熱された型に入れた場合に、酸化により補
強繊維が劣化するのを極力防止するように作用す
る。
To explain the method of the present invention in detail, first, a slightly larger release plate is brought into contact with both surfaces of, for example, a plate-shaped aggregate of reinforcing fibers. That is,
An aggregate of reinforcing fibers is sandwiched between two release plates to obtain a superposed body of the aggregate of reinforcing fibers and the release plate. Furthermore, bolts, for example, are passed between the two release plates at the four corners of the stacked body to tighten the assembly. At this time, the release plates on both sides compress the reinforcing fiber aggregate to increase its density, and create a state in which both sides of the aggregate are sealed from the atmosphere, and in the next step, the stacked When placed in a heated mold, the reinforcing fibers are prevented from deteriorating due to oxidation as much as possible.

次に、ボルト締めした上記重ね合せ体を、加熱
された成形用の型に入れ、その型の中に、マトリ
クス金属の溶湯を、好ましくは200〜2000Kg/cm2
の圧力で加圧、注入し、成形する。このときの溶
湯の温度は、マトリクス金属の融点から、融点以
上250℃程度までの範囲である。
Next, the bolted stacked body is placed in a heated molding mold, and molten matrix metal is poured into the mold at a rate of preferably 200 to 2000 kg/cm 2
Pressure is applied, injected, and molded. The temperature of the molten metal at this time ranges from the melting point of the matrix metal to about 250°C above the melting point.

次に、マトリクス金属が固化するのを待つて成
形体を型から取り出し、この成形体の4つの側
面、つまり離型板が存在していない側面に鋳込ま
れているマトリクス金属部分をボルトごとに切り
落した後、ハンマー等で軽くたたく。すると、成
形体は離型板の部分で簡単に剥離し、FRMのみ
を取り出すことができる。つまり、成形体の、単
に4つの側面を切り落すのみでFRMを取り出す
ことができるわけである。
Next, after waiting for the matrix metal to solidify, the molded body is removed from the mold, and the matrix metal parts cast on the four sides of this molded body, that is, the side where the mold release plate is not present, are removed bolt by bolt. After cutting it off, tap it lightly with a hammer. Then, the molded body can be easily peeled off at the part of the mold release plate, and only the FRM can be taken out. In other words, the FRM can be taken out by simply cutting off the four sides of the molded body.

上記において、補強繊維は、炭素繊維、炭化ケ
イ素繊維、アルミナ繊維、アルミナ−シリカ繊
維、ボロン繊維、金属繊維などの高強度、高弾性
繊維である。そのような補強繊維は、連続繊維で
あつても、また短繊維やウイスカーであつてもよ
いものである。また、織物やマツトなどの布帛形
態であつてもよい。特に、厚物のFRMを成形し
たい場合には、布帛形態のものを所望の枚数重ね
合わせて集合体を形成するのが好ましい。なお、
補強繊維が連続繊維、短繊維またはウイスカーで
ある場合には、それらを有機質バインダーで結着
してあらかじめ集合体を形成しておいてもよい
し、布帛形態である場合には、それらの複数枚を
積層した後、上記補強繊維のマルチフイラメン
ト、または成形温度で飛散するような、たとえば
綿糸などで一体に縫合して集合体を形成しておい
てもよい。
In the above, the reinforcing fibers are high-strength, high-elasticity fibers such as carbon fibers, silicon carbide fibers, alumina fibers, alumina-silica fibers, boron fibers, and metal fibers. Such reinforcing fibers may be continuous fibers, short fibers or whiskers. Further, it may be in the form of a fabric such as a woven fabric or matte. Particularly, when it is desired to mold a thick FRM, it is preferable to stack a desired number of fabric-shaped sheets to form an aggregate. In addition,
If the reinforcing fibers are continuous fibers, short fibers, or whiskers, they may be bound together with an organic binder to form an aggregate in advance, or if they are in the form of a fabric, they may be made of multiple sheets. After laminating the reinforcing fibers, the reinforcing fibers may be sewn together using multifilaments of the reinforcing fibers or cotton threads that scatter at the molding temperature to form an aggregate.

マトリクス金属は、FRMにおいて通常使用さ
れる、たとえばアルミニウム、マグネシウム、
銅、チタン、ニツケルなどや、これらの少なくと
も1種を主成分とする合金のようなものである。
The matrix metals are commonly used in FRM, such as aluminum, magnesium,
These include copper, titanium, nickel, etc., and alloys containing at least one of these as a main component.

離型板は、成形時にマトリクス金属と反応しに
くいものであるのが好ましい。また、マトリクス
金属よりも融点の高いもの、好ましくは300℃以
上高い融点をもつものであるのが好ましい。具体
的には、金属板やセラミツクス板を使用する。た
とえば、マトリクス金属がアルミニウムである場
合には、鉄板や銅板などの金属板が好ましい。
The release plate is preferably one that does not easily react with the matrix metal during molding. Further, it is preferable to use a material having a melting point higher than that of the matrix metal, preferably a material having a melting point higher than that of the matrix metal by 300°C or more. Specifically, a metal plate or a ceramic plate is used. For example, when the matrix metal is aluminum, a metal plate such as an iron plate or a copper plate is preferable.

離型板には、成形後の離型性を一層向上させる
目的で、離型剤、たとえば水溶性黒鉛、ボロンナ
イトライドなどを塗布しておくのが好ましい。
It is preferable to apply a mold release agent, such as water-soluble graphite or boron nitride, to the mold release plate in order to further improve mold release properties after molding.

上記において、補強繊維の集合体の締め付けを
ボルトで行う必要は必ずしもなく、たとえば、集
合体と離型板との重ね合せ体を金属線などで緊縛
するなど、他の締め付け手段を使用してもよい。
また、締め付けは行わず、集合体の両面に離型板
を単に当接することであつてもよい。
In the above, it is not necessarily necessary to tighten the reinforcing fiber aggregate with bolts; for example, other tightening means may be used, such as binding the stack of the aggregate and release plate with metal wire. good.
Alternatively, the release plates may simply be brought into contact with both surfaces of the assembly without tightening.

また、補強繊維の集合体と離型板との重ね合せ
体は、型に入れる前に作つておいてもよいし、型
に入れるのと同時に作つてもよい。たとえば、ま
ず離型板を型に入れ、その上に、補強繊維の短繊
維やウイスカーを散布したり、織物やマツトを重
ね合わせながら配置して集合体を作り、さらにそ
の上に離型板を置くといつた方法を採ることがで
きる。この場合、離型板は集合体とほぼ同じ大き
さであつてよい。
Further, the superposed body of the reinforcing fiber aggregate and the release plate may be made before being put into the mold, or may be made at the same time as being put into the mold. For example, first a release plate is placed in a mold, then reinforcing short fibers or whiskers are sprinkled on top of it, or fabrics or mats are placed one on top of the other to form an aggregate, and then a release plate is placed on top of that. You can use the same method as placing it. In this case, the release plate may be approximately the same size as the assembly.

さらに、離型板と、補強繊維の、たとえば板状
集合体とを交互に重ね合わせるようにすれば、一
度の鋳込によつて複数個のFRMを同時に成形く
ることも可能になる。
Furthermore, by alternately overlapping mold release plates and, for example, plate-shaped aggregates of reinforcing fibers, it becomes possible to simultaneously mold a plurality of FRMs by one casting.

次に、この発明の方法を実施例に基づいてさら
に詳細に説明する。
Next, the method of the present invention will be explained in more detail based on examples.

実施例 東レ株式会社製炭素繊維“トレカ”M40からな
る平織物を長さ60mm、幅40mmに裁断し、これを経
糸方向を揃えて30枚積層し、炭素繊維織物の集合
体を得た。
Example A plain woven fabric made of carbon fiber "Torayca" M40 manufactured by Toray Industries, Inc. was cut to a length of 60 mm and a width of 40 mm, and 30 pieces were laminated with the warp direction aligned to obtain an aggregate of carbon fiber woven fabric.

次に、上記集合体の両面に、離型剤として水溶
性黒鉛を塗布した60mm角の鉄板(厚み5mm)を当
接して集合体と鉄板との重ね合せ体を作り、その
重ね合せ体の四隅において上記2枚の鉄板の間に
ボルトを渡して集合体を締め付けた。この重ね合
せ体の上記集合体部分の厚みは、約7mmであつ
た。
Next, a 60 mm square iron plate (thickness 5 mm) coated with water-soluble graphite as a mold release agent is brought into contact with both sides of the above aggregate to form a stack of the aggregate and the iron plate, and the four corners of the stack are In this step, a bolt was passed between the two iron plates and the assembly was tightened. The thickness of the aggregate portion of this stacked body was approximately 7 mm.

次に、ボルト締めした上記重ね合せ体を成形用
の割り型に入れ、その型に、500Kg/cm2の圧力で、
アルミニウム合金(JIS AC4C)の溶湯(温度
750℃)を注入して成形した。
Next, the above-mentioned stacked body tightened with bolts was placed in a split mold for molding, and was placed in the mold under a pressure of 500 kg/cm 2 .
Molten metal (temperature) of aluminum alloy (JIS AC4C)
750℃) and molded.

アルミニウム合金が固化するのを待つて成形体
を型から取り出し、周囲の4つの側面を切断機で
ボルトごと切り落した後、木槌で軽くたたいたと
ころ、成形体は離型板の部分で簡単に分離し、
FRMを極めて容易に取り出すことができた。
After waiting for the aluminum alloy to solidify, the molded body was taken out of the mold, and the four surrounding sides were cut off along with the bolts using a cutting machine, and then lightly tapped with a mallet. separated into
The FRM could be taken out very easily.

次に、上記FRMの上記切断面を光学顕微鏡で
観察したところ、織物を構成している炭素繊維の
酸化はほとんど認められなかつた。
Next, when the above-mentioned cut surface of the above-mentioned FRM was observed with an optical microscope, almost no oxidation of the carbon fibers constituting the fabric was observed.

Claims (1)

【特許請求の範囲】[Claims] 1 成形用の型の中に、離型板で挾んだ補強繊維
の集合体を配置し、次いで前記型内にマトリクス
金属の溶湯を加圧、注入して成形した後、成形体
を型から取り出し、その成形体を前記離型板の部
分で分離することを特徴とする、繊維強化金属複
合材料の製造方法。
1 Place an aggregate of reinforcing fibers sandwiched between mold release plates in a mold, then pressurize and inject molten matrix metal into the mold to form the mold, and then remove the molded body from the mold. A method for producing a fiber-reinforced metal composite material, which comprises taking out the molded body and separating the molded body at the part of the mold release plate.
JP11578583A 1983-06-29 1983-06-29 Production of fiber-reinforced composite metallic material Granted JPS609569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11578583A JPS609569A (en) 1983-06-29 1983-06-29 Production of fiber-reinforced composite metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11578583A JPS609569A (en) 1983-06-29 1983-06-29 Production of fiber-reinforced composite metallic material

Publications (2)

Publication Number Publication Date
JPS609569A JPS609569A (en) 1985-01-18
JPH0378177B2 true JPH0378177B2 (en) 1991-12-12

Family

ID=14671001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11578583A Granted JPS609569A (en) 1983-06-29 1983-06-29 Production of fiber-reinforced composite metallic material

Country Status (1)

Country Link
JP (1) JPS609569A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137842A (en) * 1986-11-29 1988-06-09 Toppan Printing Co Ltd Binding adhesive supply control apparatus in delivery part of rotary press
DE3907923C1 (en) * 1989-03-11 1989-12-07 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De
ATE145252T1 (en) * 1990-05-09 1996-11-15 Lanxide Technology Co Ltd THIN MMC'S AND THEIR PRODUCTION
JP4585230B2 (en) * 2004-05-17 2010-11-24 学校法人東海大学 Fiber reinforced composite material
JP5653154B2 (en) * 2010-09-28 2015-01-14 日本ファインセラミックス株式会社 Metal-ceramic composite material and manufacturing method thereof
JP5751788B2 (en) * 2010-09-28 2015-07-22 日本ファインセラミックス株式会社 Metal-ceramic composite material and manufacturing method thereof

Also Published As

Publication number Publication date
JPS609569A (en) 1985-01-18

Similar Documents

Publication Publication Date Title
US4746374A (en) Method of producing titanium aluminide metal matrix composite articles
FI91723C (en) A method of making a metal matrix composite by directional solidification
FI91724C (en) Process for manufacturing a metal matrix composite using a negative form of an alloy
JPH01252741A (en) Fiber-reinforced composite material
CN111560572A (en) Continuous carbon fiber reinforced magnesium-aluminum bimetal-based composite material and preparation method thereof
JPH0317884B2 (en)
JPH0378177B2 (en)
US4732314A (en) Method of manufacturing a metal-based composite material
US5207263A (en) VLS silicon carbide whisker reinforced metal matrix composites
Kreider et al. Boron-reinforced aluminum
US5564620A (en) Forming metal-intermetallic or metal-ceramic composites by self-propagating high-temperature reactions
JPS6296627A (en) Production of fiber reinforced composite metallic material
Ruutopold et al. The role of interfaces in the application of rapidly solidified metal ribbons as reinforcements for composites
JP4239047B2 (en) Method for producing magnesium-based composite material and magnesium-based composite material
JPS60177140A (en) Composite metallic material and its production
JPS62185844A (en) Production of fiber reinforced metallic composite material
EP4332073A1 (en) Heat resistant structure and member for heat treatment furnace
JPH03111526A (en) Manufacture of fiber reinforced metal matrix composite
JPS62227049A (en) Manufacture of metal-base composite material
JPH0364579B2 (en)
Yamada et al. Mechanical properties of aluminum alloys reinforced with continuous fibers and dispersoids
JPH01272731A (en) Manufacture of fiber reinforced metallic composite material
JPS642471B2 (en)
Ikuno et al. Thermal cycling behavior of carbon fiber-reinforced Al alloy with SiC particulates and whiskers
JPH0152109B2 (en)