JPH0257135B2 - - Google Patents

Info

Publication number
JPH0257135B2
JPH0257135B2 JP60135429A JP13542985A JPH0257135B2 JP H0257135 B2 JPH0257135 B2 JP H0257135B2 JP 60135429 A JP60135429 A JP 60135429A JP 13542985 A JP13542985 A JP 13542985A JP H0257135 B2 JPH0257135 B2 JP H0257135B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
whiskers
continuous
continuous fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60135429A
Other languages
Japanese (ja)
Other versions
JPS61295346A (en
Inventor
Shinichi Towata
Senichi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP13542985A priority Critical patent/JPS61295346A/en
Priority to US06/865,293 priority patent/US4732779A/en
Priority to DE3617055A priority patent/DE3617055C2/en
Priority to CA000509578A priority patent/CA1285831C/en
Publication of JPS61295346A publication Critical patent/JPS61295346A/en
Publication of JPH0257135B2 publication Critical patent/JPH0257135B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は繊維強化金属(FRM)の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing fiber reinforced metal (FRM).

〔従来の技術〕[Conventional technology]

近年、各種機械部品や構造材などにおいて、
種々の複合材料例えば金属を繊維で強化した
FRMが使用されている。FRMに用いられる強化
繊維は母材(マトリツクス)金属、特にアルミニ
ウム合金やマグネシウム合金などとは濡れにくい
反面、一端濡れると反応して繊維が劣化する。こ
のため、一般には強化繊維に表面処理が行われ
る。処理法としては例えばCVD法、めつき法が
挙げられる。これらの方法では強化繊維の表面に
金属やセラミツクを均一に膜状に被覆するが、強
化繊維との間の熱膨張係数の差による剥離が生じ
て表面処理の効果が減少したり、又、被膜を厚く
すると強化繊維のしなやかさが失われたり、硬く
脆くなるため繊維が損傷し易くなるなど問題が多
い。更に、繊維の一本一本に表面処理を行うため
には複雑な装置を必要とし、コスト的にも不利で
ある。又、これらの強化繊維を使用して高圧凝固
鋳造法によつてFRMを製造すると、繊維が片寄
り繊維の分布が粗な部分と密な部分が生じ易い。
このため、FRM中の繊維体積率(Vf)の制御が
困難であり、特にVfが小さい場合に強化繊維が
均一に分散したFRMは得難く、FRM本来の特色
である設計の自由度が損なわれていた。又、連続
繊維のみで強化したFRMでは強度の異方性が大
きく、例えば前記高圧凝固鋳造法による炭素連続
繊維強化アルミニウム合金では繊維の長さ方向の
強さは130Kg/mm2以上あるのに対して、それと直
角方向では数Kg/mm2しかない。短繊維のみを使用
したFRMでは等方性ではあるが強度は一般に低
い。
In recent years, in various mechanical parts and structural materials,
Various composite materials such as metal reinforced with fibers
FRM is used. The reinforcing fibers used in FRM do not easily wet the base metal (matrix), especially aluminum alloys and magnesium alloys, but once they get wet, they react and deteriorate, causing the fibers to deteriorate. For this reason, reinforcing fibers are generally subjected to surface treatment. Examples of the treatment method include CVD method and plating method. In these methods, the surface of the reinforcing fibers is uniformly coated with metal or ceramic in the form of a film, but peeling occurs due to the difference in thermal expansion coefficient between the reinforcing fibers, reducing the effectiveness of the surface treatment, or the coating If the reinforcing fibers are made too thick, there are many problems, such as the reinforcing fibers losing their flexibility and becoming hard and brittle, making the fibers more likely to be damaged. Furthermore, in order to perform surface treatment on each fiber, a complicated device is required, which is disadvantageous in terms of cost. Furthermore, when FRM is manufactured by high-pressure coagulation casting using these reinforcing fibers, the fibers tend to be lopsided and the distribution of fibers tends to be coarse in some areas and dense in others.
For this reason, it is difficult to control the fiber volume fraction (Vf) in FRM, and especially when Vf is small, it is difficult to obtain an FRM in which reinforcing fibers are uniformly dispersed, and the degree of freedom in design, which is an original feature of FRM, is lost. was. In addition, FRM reinforced only with continuous fibers has a large anisotropy in strength; for example, in the carbon continuous fiber reinforced aluminum alloy produced by the high-pressure solidification casting method, the strength in the longitudinal direction of the fibers is over 130 kg/mm 2 . However, in the direction perpendicular to that, it is only a few kg/ mm2 . Although FRM using only short fibers is isotropic, its strength is generally low.

又、従来より複合材料に用いる強化繊維として
連続繊維又は長繊維と短繊維又はウイスカとを組
み合わせて使用する方法等が提案されている。例
えば、FRM部材の内側には長繊維を使用し、外
側には短繊維を使用する方法がある。
Furthermore, methods have been proposed in which a combination of continuous fibers or long fibers and short fibers or whiskers is used as reinforcing fibers for composite materials. For example, there is a method of using long fibers on the inside of the FRM member and short fibers on the outside.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記従来例においても例えば長
繊維と短繊維とを部材の内外で使い分ける方法は
製造工程が煩雑となる。又強度も充分でない。更
にプリプレグ製造時に長繊維と短繊維とを混在せ
しめる方法は、長繊維束中の表面にはけ等によつ
て、短繊維を付着させることはできるが内部の長
繊維の一本一本の表面に均一に付着させることは
困難であり、得られる繊維体の品質が不均一とな
る。
However, even in the conventional example, the method of using long fibers and short fibers selectively inside and outside the member, for example, requires a complicated manufacturing process. Also, the strength is not sufficient. Furthermore, in the method of mixing long fibers and short fibers during prepreg production, short fibers can be attached to the surface of the long fiber bundle by brushing, etc., but the short fibers can be attached to the surface of each long fiber inside. It is difficult to uniformly adhere the fibers to the fibers, resulting in uneven quality of the resulting fibers.

本発明は上記従来技術における問題点を解決す
るためのものであり、その目的とするところは、
母材金属中に連続繊維を均一に分散させることに
より繊維体積率を制御でき、又、互いに特性の異
なる連続繊維や短繊維、ウイスカ又は粉末を組み
合わせることにより、異方性や残留応力、耐磨耗
性等の機械特性が向上した繊維強化金属を容易に
得ることができる製造方法を提供することにあ
る。
The present invention is intended to solve the problems in the prior art described above, and its purpose is to:
By uniformly dispersing continuous fibers in the base metal, the fiber volume fraction can be controlled, and by combining continuous fibers, short fibers, whiskers, or powders with different characteristics, it is possible to improve anisotropy, residual stress, and wear resistance. It is an object of the present invention to provide a manufacturing method that can easily obtain fiber-reinforced metal with improved mechanical properties such as wear resistance.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明の繊維強化金属の製造方法は、
炭化ケイ素、窒化ケイ素、アルミナ、シリカ、ア
ルミナ−シリカ、ジルコニア、ベリリア、炭化ボ
ロン、炭化チタン等のセラミツク、炭素、金属、
金属間化合物等の耐熱性物質より選択された少な
くとも1種からなる連続繊維を、 炭化ケイ素、窒化ケイ素、アルミナ、シリカ、
アルミナ−シリカ、ジルコニア、ベリリア、炭化
ボロン、炭化チタン等のセラミツク、炭素、金
属、金属間化合物等の耐熱性物質より選択された
少なくとも1種からなる短繊維、ウイスカ又は粉
末のうちの少なくとも1種を懸濁した処理液中に
浸漬すると共に、 少なくとも前記連続繊維に超音波によつて振動
を付与して該連続繊維に該短繊維、ウイスカ又は
粉末のうちの少なくとも1種を付着させることに
より、該連続繊維とその繊維間〓に介在する該短
繊維、ウイスカ又は粉末のうちの少なくとも1種
とからなる繊維体あるいは該繊維体からなる予備
成形体を調製し、しかる後 該繊維体あるいは該繊維体からなる予備成形体
を鋳造型のキヤビテイ内に配置し、次いで該キヤ
ビテイ内に母材金属の溶湯を注入した後冷却・固
化することを特徴とする。
That is, the method for manufacturing fiber reinforced metal of the present invention is as follows:
Ceramics such as silicon carbide, silicon nitride, alumina, silica, alumina-silica, zirconia, beryllia, boron carbide, titanium carbide, carbon, metals,
Continuous fibers made of at least one kind selected from heat-resistant substances such as intermetallic compounds, silicon carbide, silicon nitride, alumina, silica,
At least one kind of short fibers, whiskers, or powders made of at least one kind selected from ceramics such as alumina-silica, zirconia, beryllia, boron carbide, and titanium carbide, and heat-resistant substances such as carbon, metals, and intermetallic compounds. by immersing the continuous fibers in a treatment solution in which they are suspended, and applying vibrations to at least the continuous fibers using ultrasonic waves to attach at least one of the short fibers, whiskers, or powder to the continuous fibers, A fibrous body consisting of the continuous fiber and at least one of the short fibers, whiskers, or powder interposed between the fibers or a preformed body consisting of the fibrous body is prepared, and then the fibrous body or the fiber is prepared. The method is characterized in that a preformed body consisting of a body is placed in a cavity of a casting mold, and then a molten base metal is poured into the cavity and then cooled and solidified.

又、本発明の方法においては、繊維体を連続繊
維の各々の表面に短繊維、ウイスカ又は粉末のう
ちの少なくとも1種を付着させ、引き揃えて調製
するのが好ましい。
Further, in the method of the present invention, it is preferable to prepare the fibrous body by attaching at least one of short fibers, whiskers, or powder to the surface of each continuous fiber and aligning the continuous fibers.

連続繊維としては前記セラミツク、又は耐熱性
非金属元素例えば炭素、ホウ素、あるいは耐熱性
金属、合金、若しくは金属間化合物例えばモリブ
デン、タングステン、鋼、ステンレス鋼、CuZn、
FeAl等の材料よりなる繊維を単独又は組み合わ
せて用いることができる。繊維の太さや断面形状
等の性状は用途に応じて選択する。
Continuous fibers include the above-mentioned ceramics, heat-resistant nonmetallic elements such as carbon, boron, or heat-resistant metals, alloys, or intermetallic compounds such as molybdenum, tungsten, steel, stainless steel, CuZn,
Fibers made of materials such as FeAl can be used alone or in combination. Properties such as fiber thickness and cross-sectional shape are selected depending on the application.

なお、前記の中でも短繊維としては、耐熱性物
質として金属、金属間化合物、合金等を用いるの
が望ましい。これは、繊維体を複合材に適用する
に際して、複合化工程において母相となる溶融状
態又は高温状態の金属に対して化学反応等により
上記繊維が消失しないためである。
Note that among the above short fibers, it is desirable to use metals, intermetallic compounds, alloys, etc. as heat-resistant substances. This is because when applying the fibrous body to a composite material, the fibers do not disappear due to a chemical reaction or the like with the molten or high-temperature metal that becomes the matrix in the compositing step.

又、ウイスカとしては、耐熱性非金属元素を用
いるのが望ましい。これは、前記短繊維の場合と
同様に母相金属に対する化学的・熱的安定性に優
れているためである。
Further, it is desirable to use a heat-resistant nonmetallic element as the whisker. This is because, like the short fibers, they have excellent chemical and thermal stability with respect to the matrix metal.

更に、粉末としては金属間化合物を用いるのが
望ましい。これは、前記短繊維、ウイスカの場合
と同様な理由による。
Furthermore, it is desirable to use an intermetallic compound as the powder. This is due to the same reason as in the case of the short fibers and whiskers.

連続繊維の繊維間〓に介在させる短繊維、ウイ
スカ又は粉末の量は両者の性状や製造したFRM
の用途などによつても異なるが、機械部品や構造
材に用いる場合には連続繊維、短繊維、ウイスカ
又は粉末の連続繊維に対する体積率は0.5〜500%
程度とするのが好ましい。
The amount of short fibers, whiskers, or powder interposed between continuous fibers depends on the properties of both fibers and the manufactured FRM.
The volume ratio of continuous fibers, short fibers, whiskers, or powder to continuous fibers is 0.5 to 500% when used for mechanical parts or structural materials, although it varies depending on the application.
It is preferable to set it as approximately.

更に好ましくは、短繊維、ウイスカ又は粉末の
連続繊維に対する体積率は1〜9%の範囲内とす
る。この範囲内であれば、連続繊維の体積率を適
度に保つことができるので、繊維軸線に対して平
行あるいは垂直の両方向で高強度のFRMを製造
することができる。
More preferably, the volume ratio of short fibers, whiskers or powder to continuous fibers is within the range of 1 to 9%. Within this range, the volume fraction of the continuous fibers can be maintained at an appropriate level, making it possible to produce FRMs with high strength in both directions parallel and perpendicular to the fiber axis.

又、前記短繊維、ウイスカ又は粉末のうちの少
なくとも1種は、連続繊維の長手方向に均一に付
着してなるものがよい。
Further, it is preferable that at least one of the short fibers, whiskers, and powder is uniformly adhered to the continuous fibers in the longitudinal direction.

本発明の方法に使用できる母材金属としてはア
ルミニウム若しくはマグネシウム又はこれらを主
成分とする合金が挙げられる。母材金属と強化繊
維体との比率は、母材金属及び強化繊維体の種類
や製造したFRMの用途などによつて種々に変化
させることができる。
Base metals that can be used in the method of the present invention include aluminum, magnesium, or alloys containing these as main components. The ratio of the base metal and the reinforcing fiber body can be varied depending on the types of the base metal and the reinforcing fiber body, the use of the produced FRM, and the like.

本発明の方法において、繊維体を製造する方法
は、簡便さ及び適用範囲の広さなどの点で懸濁液
浸漬法とする。懸濁液浸漬法の一例としては、例
えばボビンなどに巻き付けた連続繊維又は適当数
の該連続繊維を束ねた連続繊維束を巻き戻して、
短繊維、ウイスカ又は粉末のうちの少なくとも1
種を懸濁した液体中に浸漬し、該連続繊維の各々
の表面に該短繊維、ウイスカ又は粉末を付着さ
せ、引き揃えて再びボビンに巻き取る方法が挙げ
られる。
In the method of the present invention, the method for producing the fibrous body is a suspension dipping method from the viewpoint of simplicity and wide applicability. As an example of the suspension dipping method, for example, a continuous fiber wound around a bobbin or a continuous fiber bundle obtained by bundling an appropriate number of continuous fibers is unwound.
At least one of short fibers, whiskers, or powder
Examples include a method in which seeds are immersed in a liquid in which they are suspended, the short fibers, whiskers, or powder are attached to the surface of each of the continuous fibers, the fibers are aligned, and the fibers are wound up again on a bobbin.

連続繊維束を使用する場合には繊維の数は特に
限定されないが、少ない方が各繊維一本一本に均
一に短繊維などを付着させることができてよい。
又、繊維数の多い連続繊維束を浸漬する液体には
超音波により振動を与えて各繊維に均一に繊維束
内部の繊維まで付着を行う。超音波は液体を入れ
た溶器の外側に設けて超音波付加器によつて外壁
を介して少なくとも連続繊維に与えてもよいし、
又は適当数の超音波振動子例えばセラミツク振動
子を液体中に適切に配置して直接液体に与えても
よい。超音波の照射パターンは連続的であつても
パルス状であつてもよい。その強度や振動数及び
照射時間は連続繊維やこれに付着させる短繊維、
ウイスカ又は粉末の種類、あるいは前記付着物の
液中濃度、連続繊維の浸漬時間などの処理条件に
よつて選択するが、例えば振動数は10KHz〜
2000KHz程度が使用し易い。
When using a continuous fiber bundle, the number of fibers is not particularly limited, but the smaller the number, the better, since short fibers can be evenly attached to each fiber.
Further, the liquid in which the continuous fiber bundle with a large number of fibers is immersed is vibrated by ultrasonic waves to uniformly adhere to each fiber up to the fibers inside the fiber bundle. Ultrasonic waves may be applied to at least the continuous fibers through the outer wall by an ultrasonic adder provided outside the melter containing the liquid,
Alternatively, an appropriate number of ultrasonic transducers, such as ceramic transducers, may be appropriately placed in the liquid and applied directly to the liquid. The ultrasonic irradiation pattern may be continuous or pulsed. The strength, frequency and irradiation time are determined by continuous fibers, short fibers attached to these,
The selection depends on the type of whiskers or powder, the concentration of the deposits in the liquid, the immersion time of the continuous fibers, and other processing conditions, but for example, the frequency is 10 KHz or more.
Approximately 2000KHz is easy to use.

付着させるべき物を懸濁させる処理液は水でも
よいが、有機溶剤例えばエタノール、メタノー
ル、アセトン特にエタノールが好ましい。とりわ
け、連続繊維の表面にサイジング剤が塗布されて
いる場合には、エタノールなどの有機溶剤を用い
るとサイジング剤の溶解により短繊維などの付着
が容易となり、又、揮発性が水に比べて高いので
乾燥が早く、生産性が向上する利点がある。又、
前記有機溶剤と水との混合物を使用してもよい。
The treatment liquid for suspending the substance to be deposited may be water, but organic solvents such as ethanol, methanol, acetone, and especially ethanol are preferred. In particular, when a sizing agent is applied to the surface of continuous fibers, using an organic solvent such as ethanol will dissolve the sizing agent, making it easier for short fibers to adhere, and the volatility is higher than that of water. This has the advantage of faster drying and improved productivity. or,
Mixtures of the organic solvents mentioned above and water may also be used.

処理液中の付着物濃度は特に限定されないが、
あまり小さいと連続繊維上に均一な付着がみられ
ず効果が少なくなり、又逆に大きすぎると付着量
が必要以上に多くなるため、例えば付着物として
炭化ケイ素ウイスカを用い、繊維数6000本/ヤー
ンの連続繊維束を処理する場合、炭化ケイ素ウイ
スカ濃度は0.5g/〜30g/程度が好ましい。
The concentration of deposits in the treatment liquid is not particularly limited, but
If it is too small, uniform adhesion will not be observed on the continuous fibers and the effect will be reduced, and if it is too large, the amount of adhesion will be larger than necessary. When treating a continuous fiber bundle of yarn, the silicon carbide whisker concentration is preferably about 0.5 g/-30 g/.

多数の連続繊維よりなる束を処理液中に浸漬す
る場合には浸漬前に繊維束にブロワを当てて開繊
することが望ましい。繊維数や処理液への超音波
振動の強弱によつてブロワの吐出流量を調整する
とよい。繊維数が少ないか、又は処理液に充分な
強さの超音波振動を付与する場合にはブロワは必
ずしも必要ではない。
When a bundle consisting of a large number of continuous fibers is immersed in a treatment liquid, it is desirable to spread the fiber bundle by applying a blower to the fiber bundle before dipping. It is preferable to adjust the discharge flow rate of the blower depending on the number of fibers and the intensity of ultrasonic vibration to the processing liquid. A blower is not necessarily required when the number of fibers is small or when sufficiently strong ultrasonic vibrations are applied to the processing liquid.

処理液を入れた処理槽の数は1基でもよいが、
複数の付着物を用いる場合などには、各々の付着
物を懸濁した複数の処理槽を用いてもよい。浸漬
時間の調整は可動ロールなどの通常の方法により
行うことができる。又、必要ならば処理した連続
繊維束をボビンに巻き取る前に乾燥炉や赤外線乾
燥機、熱風乾燥機等を用いて乾燥させる。
The number of processing tanks containing processing liquid may be one, but
When using a plurality of deposits, a plurality of treatment tanks in which each deposit is suspended may be used. The immersion time can be adjusted by a conventional method such as using a movable roll. If necessary, the treated continuous fiber bundle is dried using a drying oven, an infrared dryer, a hot air dryer, etc. before winding it onto a bobbin.

次いで前記方法によつて製造した繊維体を適当
な長さに切断するか、又は該繊維体を予め所望の
FRM製品に応じた大きさ、形状の予備成形体と
し、鋳造型のキヤビテイ内に配置する。異なる種
類の繊維体を組み合わせて使用してもよい。
Next, the fibrous body produced by the above method is cut into an appropriate length, or the fibrous body is preliminarily cut into a desired length.
A preformed body with a size and shape appropriate for the FRM product is placed in the cavity of a casting mold. A combination of different types of fibers may be used.

この予備成形体を所定温度例えば700〜800℃に
予熱し、次いでキヤビテイ内に予備成形体とほぼ
同温度に加熱した母材金属の溶湯を注入する。次
いで、この溶湯を所定圧例えば400Kg/cm2〜900
Kg/cm2に加圧しながら室温まで冷却して母材金属
を固化させる。更に必要があれば得られた製品に
ついて表面加工や機械加工を行つてもよい。
This preform is preheated to a predetermined temperature, for example, 700 to 800°C, and then a molten base metal heated to approximately the same temperature as the preform is poured into the cavity. Next, this molten metal is heated to a predetermined pressure, for example 400Kg/cm 2 to 900Kg/cm 2 .
The base metal is solidified by cooling to room temperature while applying pressure to Kg/cm 2 . Furthermore, if necessary, the obtained product may be subjected to surface treatment or machining.

本発明に用いる連続繊維やこの表面に付着させ
る短繊維、ウイスカ又は粉末及び母材金属は市販
品をそのまま使用することができる。
Commercially available products can be used as they are for the continuous fibers used in the present invention, short fibers, whiskers or powders, and base metals to be attached to the surface of the continuous fibers.

第1図に本発明の方法により製造した繊維強化
金属の一例を示す。図中、13はウイスカ(又は
短繊維)、14は連続繊維、15は母材金属を示
し、連続繊維14の間〓にウイスカ13が配置さ
れ、残る空間に母材金属15を充填した構造を有
する。ウイスカ13の種類や性状、付着時の条件
又はウイスカ13を付着した連続繊維14の充填
条件などを選択すれば、ウイスカ13を間〓に均
一に配置することもできるし、又は連続繊維14
の周囲に集中的に配置することもできる。ウイス
カ13によつて母材金属15は強化されるが、更
に強化するために所望の元素を所定量添加するこ
とも可能である。この場合、母材の合金組成は限
定されるものではない。連続繊維14の間〓にウ
イスカ13が配置されることによつて、連続繊維
14同士の接触が防止される利点があるほか、ウ
イスカ13の量を変えることによつて連続繊維1
4の体積率を制御できる。
FIG. 1 shows an example of fiber-reinforced metal manufactured by the method of the present invention. In the figure, 13 is a whisker (or short fiber), 14 is a continuous fiber, and 15 is a base metal.The whisker 13 is placed between the continuous fibers 14, and the remaining space is filled with the base metal 15. have By selecting the type and property of the whiskers 13, the conditions at the time of attachment, or the filling conditions of the continuous fibers 14 to which the whiskers 13 are attached, the whiskers 13 can be uniformly arranged in the spaces between the whiskers 13, or the continuous fibers 14 can be arranged uniformly.
They can also be placed centrally around the Although the base metal 15 is strengthened by the whiskers 13, it is also possible to add a predetermined amount of a desired element to further strengthen it. In this case, the alloy composition of the base material is not limited. By arranging the whiskers 13 between the continuous fibers 14, there is an advantage that contact between the continuous fibers 14 can be prevented, and by changing the amount of the whiskers 13, the continuous fibers 1
The volume ratio of 4 can be controlled.

更に、ウイスカ13の存在によつて連続繊維1
4と直角方向の強度が改善されるために、繊維強
化金属の異方性が軽減される。母材金属15より
小さい熱膨張係数を有するウイスカ13を使用す
れば、熱的残留応力が軽減される効果がある。
Furthermore, due to the presence of whiskers 13, the continuous fiber 1
Since the strength in the direction perpendicular to 4 is improved, the anisotropy of the fiber-reinforced metal is reduced. The use of whiskers 13 having a coefficient of thermal expansion smaller than that of the base metal 15 has the effect of reducing thermal residual stress.

すなわち、母材金属15の熱膨張係数は連続繊
維14のそれよりも大きため、繊維強化金属の冷
熱サイクル負荷時に連続繊維14と母材金属15
間でずれ、あるいは剥離が生ずる。しかしなが
ら、連続繊維14の繊維間〓に介在するウイスカ
13の熱膨張係数が母材金属15のそれよりも小
さいと、ウイスカ13が連続繊維14と母材金属
15との界面における熱膨張の緩衝材として働
き、連続繊維14と母材金属15との熱膨張係数
の差が減少する。そのため、熱的残留応力が軽減
される。更に、耐磨耗性を有するウイスカ13を
使用することによつて、耐磨耗性に優れた繊維強
化金属を得ることができる。
That is, since the thermal expansion coefficient of the base metal 15 is larger than that of the continuous fibers 14, the continuous fibers 14 and the base metal 15 are
Misalignment or peeling occurs between the two. However, if the thermal expansion coefficient of the whiskers 13 interposed between the continuous fibers 14 is smaller than that of the base metal 15, the whiskers 13 act as a buffer for thermal expansion at the interface between the continuous fibers 14 and the base metal 15. As a result, the difference in coefficient of thermal expansion between the continuous fibers 14 and the base metal 15 is reduced. Therefore, thermal residual stress is reduced. Furthermore, by using the whisker 13 having wear resistance, a fiber-reinforced metal with excellent wear resistance can be obtained.

〔実施例〕〔Example〕

以下の実施例において本発明を更に詳細に説明
する。なお、本発明は下記実施例に限定されるも
のではない。
The invention will be explained in further detail in the following examples. Note that the present invention is not limited to the following examples.

実施例 1 第2図は本発明に用いる強化繊維体の製造装置
の一例を示す。炭化ケイ素ウイスカ(平均直径約
0.2μm、平均長さ約100μm)5gをエタノール
1000c.c.の入つた処理槽1中に投入後、超音波付加
器2により超音波振動を与えて懸濁させ、処理液
3を調整した。東レ(株)製M40炭素繊維束(繊維直
径7〜8μm、繊維数6000本、サイジング剤付)
4をボビンから巻き戻し、超音波を付加させたま
まで浸漬時間が約15秒となるよう可動ローラ6及
び7によつて調節して処理液3中に浸漬しながら
通し、次いで圧力ローラ8及び9によつて押圧し
た後再びボビン10に巻取り、室温・大気中で乾
燥させた。
Example 1 FIG. 2 shows an example of a manufacturing apparatus for a reinforcing fiber body used in the present invention. Silicon carbide whiskers (average diameter approx.
0.2μm, average length about 100μm) 5g with ethanol
After putting it into the processing tank 1 containing 1000 c.c., ultrasonic vibration was applied by the ultrasonic adder 2 to suspend it, and the processing liquid 3 was prepared. Toray Industries, Inc. M40 carbon fiber bundle (fiber diameter 7-8 μm, number of fibers 6000, with sizing agent)
4 is unwound from the bobbin and passed through the processing liquid 3 while being immersed in the processing liquid 3 while adjusting the immersion time by the movable rollers 6 and 7 so that the immersion time is about 15 seconds while the ultrasonic waves are still being applied. After being pressed by a roller, it was wound up again onto the bobbin 10 and dried at room temperature in the atmosphere.

図中、11はブロワ、12は乾燥炉を示し、、
必要に応じて使用する。
In the figure, 11 is a blower, 12 is a drying oven,
Use as needed.

処理前黒色であつた繊維は処理後うぐいす色を
帯び、電子顕微鏡(SEM)観察の結果、第3図
に示すようにウイスカ13が連続繊維14上に付
着しているのが認められた。又、処理後秤量の結
果、繊維束長さ10m当たり0.15g(連続繊維に対
する体積率2.3%)のウイスカが付着しているの
が分かつた。
The fibers, which were black before the treatment, took on a light gray color after the treatment, and as a result of electron microscopy (SEM) observation, it was observed that whiskers 13 were attached to the continuous fibers 14, as shown in FIG. In addition, as a result of weighing after treatment, it was found that 0.15 g of whiskers (volume ratio to continuous fibers: 2.3%) was attached per 10 m of fiber bundle length.

次いで、第4図Aに示すように、前記方法によ
り製造した繊維体16を長さ150mmに切断して50
本束ね、鋼製パイプ17中に挿入した。次いでB
に示すように、鋼製パイプ17をヒータ18によ
り窒素ガス中で760℃に予熱し、更にCに示すよ
うに鋳造型19内に配置して、760℃に加熱した
純アルミニウムの溶湯20を注入し、パンチ21
を用いて500Kg/cm2で60秒加圧した。
Next, as shown in FIG. 4A, the fibrous body 16 produced by the above method was cut into a length of 150 mm.
The final bundle was inserted into the steel pipe 17. Then B
As shown in C, a steel pipe 17 is preheated to 760°C in nitrogen gas by a heater 18, and then placed in a casting mold 19 as shown in C, and molten pure aluminum 20 heated to 760°C is injected. Punch 21
Pressure was applied at 500 Kg/cm 2 for 60 seconds using a

得られた繊維強化金属の連続繊維の繊維軸線に
対して直角方向の金属組織の断面図を第1図に示
す。図から明らかなように、連続繊維14は母材
金属15中に均一に分散され、相互の接触はほと
んど認められなかつた。又、繊維間〓には多数の
ウイスカ13の存在が確認された。
FIG. 1 shows a cross-sectional view of the metal structure of the continuous fibers of the obtained fiber-reinforced metal in a direction perpendicular to the fiber axis. As is clear from the figure, the continuous fibers 14 were uniformly dispersed in the base metal 15, and almost no mutual contact was observed. Furthermore, the presence of a large number of whiskers 13 was confirmed between the fibers.

実施例 2 炭化ケイ素ウイスカ(実施例1で用いたものと
同じ)と窒化ケイ素ウイスカ(平均直径約0.3μ
m、平均長さ約200μm)各5gを、第2図に示
すエタノール1000c.c.の入つた処理槽1中に投入
後、超音波付加器2により超音波振動を与えて懸
濁させ、処理液3を調整した。実施例1と同一の
炭素繊維束を使用し、浸漬時間を20秒とする以外
は実施例1と同一の方法でウイスカを付着させた
連続繊維体を製造したところ、繊維束長さ10m当
たり0.2g(連続繊維に対する体積率3.1%)のウ
イスカが付着した。
Example 2 Silicon carbide whiskers (same as those used in Example 1) and silicon nitride whiskers (average diameter approximately 0.3μ
m, average length approximately 200 μm) was put into the treatment tank 1 containing 1000 c.c. of ethanol as shown in Fig. 2, and then suspended by applying ultrasonic vibration with the ultrasonic adder 2, and then treated. Solution 3 was prepared. A continuous fiber body with whiskers attached was produced in the same manner as in Example 1 except that the same carbon fiber bundle as in Example 1 was used and the immersion time was 20 seconds. g (volume ratio to continuous fibers: 3.1%) of whiskers were attached.

次いで第4図Aに示すように、前記方法により
製造した繊維体16を長さ150mmに切断して100本
束ね、鋼製パイプ17中に挿入した。次いで、B
に示すように、鋼製パイプ17を窒素ガス中で
720℃に予熱し、更にCに示すように、鋳造型1
9内に配置して、720℃に加熱した純マグネシウ
ムの溶湯20を注入し、パンチ21を用いて750
Kg/cm2で60秒加圧した。
Next, as shown in FIG. 4A, the fibrous body 16 produced by the above method was cut into lengths of 150 mm, bundled into 100 pieces, and inserted into a steel pipe 17. Then, B
As shown in the figure, the steel pipe 17 is placed in nitrogen gas.
Preheat to 720℃, and then as shown in C, cast mold 1.
9, inject a pure magnesium molten metal 20 heated to 720℃, and use a punch 21 to
Pressure was applied at Kg/cm 2 for 60 seconds.

得られた繊維強化金属の、連続繊維の繊維軸線
に対して直角方向の金属組織の断面図は第1図と
同様であり、繊維間〓には多数のウイスカが認め
られ、連続繊維同士の接触は著しく少なかつた。
The cross-sectional view of the metal structure of the obtained fiber-reinforced metal in the direction perpendicular to the fiber axis of the continuous fibers is similar to that shown in Figure 1, and a large number of whiskers are observed between the fibers, indicating that the continuous fibers are in contact with each other. were significantly less.

曲げ強さ測定試験: 実施例1と同様の方法を用いて、ウイスカ付着
条件を変えて本発明の方法により繊維強化金属を
製造し、連続繊維の繊維軸線に対して直角方向に
対する曲げ試験を行つた。結果を第5図に示す。
ウイスカを付着させた連続繊維を用いた本発明の
方法による繊維強化金属は、ウイスカを用いない
従来の繊維強化金属に比べて約2〜5倍曲げ強さ
が向上しており、ハイブリツド効果が明確に現れ
ている。又、超音波付加の効果及び処理液にエタ
ノールを用いる効果も明瞭であり、付着時の条件
を適切に選択することにより大きな曲げ強さが得
られることが分かる。
Bending strength measurement test: Using the same method as in Example 1, fiber-reinforced metal was produced by the method of the present invention with different whisker attachment conditions, and a bending test was performed in the direction perpendicular to the fiber axis of the continuous fibers. Ivy. The results are shown in Figure 5.
The fiber-reinforced metal produced by the method of the present invention using continuous fibers with whiskers attached has approximately 2 to 5 times higher bending strength than conventional fiber-reinforced metal that does not use whiskers, demonstrating a clear hybrid effect. It appears in Furthermore, the effect of applying ultrasonic waves and the effect of using ethanol as a treatment liquid are also clear, and it can be seen that large bending strength can be obtained by appropriately selecting the conditions during deposition.

〔発明の効果〕 上述のように本発明の繊維強化金属の製造方法
は、連続繊維と、該連続繊維の繊維間〓に介在す
る短繊維、ウイスカ又は粉末とからなる繊維体又
は、これから作製された予備成形体を調製し、し
かる後該繊維体あるいは後該繊維体からなる予備
成形体を鋳造型のキヤビテイ内に配置し、次いで
母材金属の溶湯を注入した後冷却・固化する方法
であるため簡便で生産効率が高い。更に、強化繊
維体の製造時に処理液に超音波を付加することに
加えて必要であれば更に母材金属の溶湯に超音波
を付加したり、処理液として有機溶剤を使用する
などの各種変法が可能であり、これにより付着量
を制御できるため同一設備で各種の強化繊維体を
製造することができ、又、これらの繊維体によつ
て予め種々の形状の予備成形体を作製することも
可能であるため、各種性状の繊維強化金属を容易
に得ることができる。
[Effects of the Invention] As described above, the method for producing a fiber-reinforced metal of the present invention can produce a fiber body made of continuous fibers and short fibers, whiskers, or powder interposed between the continuous fibers, or a fiber body made from the fibers. This is a method in which a preformed body is prepared, the fibrous body or a preformed body made of the fibrous body is placed in a cavity of a casting mold, and then molten metal of the base metal is poured into the mold and then cooled and solidified. Therefore, it is simple and has high production efficiency. Furthermore, in addition to applying ultrasonic waves to the treatment liquid during the production of reinforced fiber bodies, various modifications such as adding ultrasonic waves to the molten metal of the base metal and using organic solvents as the treatment liquid are also carried out. This method allows the amount of adhesion to be controlled, making it possible to manufacture various types of reinforcing fiber bodies in the same equipment, and preforming various shapes of preforms using these fiber bodies. Therefore, fiber-reinforced metals with various properties can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法により製造した繊維強化
金属の一例の金属組織の光学顕微鏡写真、第2図
は本発明の製造方法における強化繊維体の製造装
置の一例の概略図、第3図は第2図の装置を用い
て製造した繊維体における繊維の形状に示す電子
顕微鏡写真、第4図は第3図の繊維体を用いて本
発明の方法により繊維強化金属を製造する工程を
示す概略図、第5図は本発明の方法により製造し
た繊維強化金属のウイスカ付着条件と曲げ強さ及
び従来の繊維強化金属の曲げ強さを示すグラフで
ある。 図中、1……処理槽、2……超音波付加器、3
……処理液、4……炭素繊維束、5,10……ボ
ビン、6,7……可動ローラ、8,9……圧力ロ
ーラ、11……ブロワ、12……乾燥炉、13…
…ウイスカ、14……連続繊維、15……母材金
属、16……繊維体、17……パイプ、18……
ヒータ、19……鋳造型、20……溶湯、21…
…パンチ。
FIG. 1 is an optical micrograph of the metal structure of an example of fiber-reinforced metal manufactured by the method of the present invention, FIG. 2 is a schematic diagram of an example of an apparatus for manufacturing a reinforced fiber body in the manufacturing method of the present invention, and FIG. FIG. 2 is an electron micrograph showing the shape of the fibers in the fibrous body produced using the apparatus shown in FIG. 5 are graphs showing the whisker adhesion conditions and bending strength of the fiber-reinforced metal manufactured by the method of the present invention and the bending strength of the conventional fiber-reinforced metal. In the figure, 1... treatment tank, 2... ultrasonic adder, 3
...Treatment liquid, 4...Carbon fiber bundle, 5,10...Bobbin, 6,7...Movable roller, 8,9...Pressure roller, 11...Blower, 12...Drying oven, 13...
... Whisker, 14 ... Continuous fiber, 15 ... Base metal, 16 ... Fibrous body, 17 ... Pipe, 18 ...
Heater, 19... Casting mold, 20... Molten metal, 21...
…punch.

Claims (1)

【特許請求の範囲】 1 炭化ケイ素、窒化ケイ素、アルミナ、シリ
カ、アルミナ−シリカ、ジルコニア、ベリリア、
炭化ボロン、炭化チタン等のセラミツク、炭素、
金属、金属間化合物等の耐熱性物質より選択され
た少なくとも1種からなる連続繊維を、 炭化ケイ素、窒化ケイ素、アルミナ、シリカ、
アルミナ−シリカ、ジルコニア、ベリリア、炭化
ボロン、炭化チタン等のセラミツク、炭素、金
属、金属間化合物等の耐熱性物質より選択された
少なくとも1種からなる短繊維、ウイスカ又は粉
末のうちの少なくとも1種を懸濁した処理液中に
浸漬すると共に、 少なくとも前記連続繊維に超音波によつて振動
を付与して該連続繊維に該短繊維、ウイスカ又は
粉末のうちの少なくとも1種を付着させることに
より、該連続繊維とその繊維間〓に介在する該短
繊維、ウイスカ又は粉末のうちの少なくとも1種
とからなる繊維体あるいは該繊維体からなる予備
成形体を調製し、しかる後 該繊維体あるいは該繊維体からなる予備成形体
を鋳造型のキヤビテイ内に配置し、次いで該キヤ
ビテイ内に母材金属の溶湯を注入した後冷却・固
化することを特徴とする繊維強化金属の製造方
法。 2 繊維体を連続繊維の各々の表面に短繊維、ウ
イスカ又は粉末のうちの少なくとも1種を付着さ
せ、引き揃えて調製することを特徴とする特許請
求の範囲第1項記載の繊維強化金属の製造方法。
[Claims] 1 Silicon carbide, silicon nitride, alumina, silica, alumina-silica, zirconia, beryllia,
Ceramics such as boron carbide and titanium carbide, carbon,
Continuous fibers made of at least one kind selected from heat-resistant substances such as metals and intermetallic compounds, silicon carbide, silicon nitride, alumina, silica,
At least one kind of short fibers, whiskers, or powders made of at least one kind selected from ceramics such as alumina-silica, zirconia, beryllia, boron carbide, and titanium carbide, and heat-resistant substances such as carbon, metals, and intermetallic compounds. by immersing the continuous fibers in a treatment solution in which they are suspended, and applying vibrations to at least the continuous fibers using ultrasonic waves to attach at least one of the short fibers, whiskers, or powder to the continuous fibers, A fibrous body comprising the continuous fibers and at least one of the short fibers, whiskers, or powder interposed between the fibers or a preformed body consisting of the fibrous bodies is prepared, and then the fibrous bodies or the fibers are prepared. 1. A method for producing a fiber-reinforced metal, which comprises placing a preformed body consisting of a preform in a cavity of a casting mold, and then injecting a molten base metal into the cavity, followed by cooling and solidifying. 2. The fiber-reinforced metal according to claim 1, characterized in that the fibrous body is prepared by attaching at least one of short fibers, whiskers, or powder to the surface of each continuous fiber and aligning the fibers. Production method.
JP13542985A 1985-05-21 1985-06-21 Fiber-reinforced metal and its production Granted JPS61295346A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13542985A JPS61295346A (en) 1985-06-21 1985-06-21 Fiber-reinforced metal and its production
US06/865,293 US4732779A (en) 1985-05-21 1986-05-21 Fibrous material for composite materials, fiber-reinforced metal produced therefrom, and process for producing same
DE3617055A DE3617055C2 (en) 1985-05-21 1986-05-21 Fiber material for composite materials, process for its production and use of this fiber material
CA000509578A CA1285831C (en) 1985-05-21 1986-05-21 Fibrous material for composite materials, fiber- reinforced metal produced therefrom, and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13542985A JPS61295346A (en) 1985-06-21 1985-06-21 Fiber-reinforced metal and its production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1183290A Division JP2648968B2 (en) 1989-07-15 1989-07-15 Fiber reinforced metal

Publications (2)

Publication Number Publication Date
JPS61295346A JPS61295346A (en) 1986-12-26
JPH0257135B2 true JPH0257135B2 (en) 1990-12-04

Family

ID=15151519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13542985A Granted JPS61295346A (en) 1985-05-21 1985-06-21 Fiber-reinforced metal and its production

Country Status (1)

Country Link
JP (1) JPS61295346A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0280830A1 (en) * 1987-03-02 1988-09-07 Battelle Memorial Institute Method for producing metal or alloy casting, composites reinforced with fibrous or particulate materials
JPS63216936A (en) * 1987-03-04 1988-09-09 Toshiba Corp Manufacture of metal-base composite material
JPS6417831A (en) * 1987-07-14 1989-01-20 Ube Industries Production of fiber reinforced metallic pre-impregnated sheet
JPH01159335A (en) * 1987-09-03 1989-06-22 Honda Motor Co Ltd Fiber reinforced light alloy member having excellent heat conductivity and sliding characteristics
JP2788448B2 (en) * 1988-03-10 1998-08-20 マツダ株式会社 Method for producing fiber composite member
JP2948226B2 (en) * 1988-03-10 1999-09-13 マツダ株式会社 Method for producing fiber composite member
JPH086250B2 (en) * 1988-05-02 1996-01-24 宇部興産株式会社 Hybrid fiber manufacturing method
JPH0747790B2 (en) * 1988-05-27 1995-05-24 宇部興産株式会社 Method for producing fiber reinforced metal prepreg sheet
JP2639072B2 (en) * 1989-03-22 1997-08-06 石川島播磨重工業株式会社 Metallic composite materials
JP2540772Y2 (en) * 1990-08-07 1997-07-09 株式会社小松製作所 Gear pump case
JPH1064983A (en) * 1996-08-16 1998-03-06 Sony Corp Wafer stage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191341A (en) * 1984-10-12 1986-05-09 Sumitomo Chem Co Ltd Fiber reinforced metallic composite body
JPS61166932A (en) * 1985-01-17 1986-07-28 Honda Motor Co Ltd Production of fiber preform

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191341A (en) * 1984-10-12 1986-05-09 Sumitomo Chem Co Ltd Fiber reinforced metallic composite body
JPS61166932A (en) * 1985-01-17 1986-07-28 Honda Motor Co Ltd Production of fiber preform

Also Published As

Publication number Publication date
JPS61295346A (en) 1986-12-26

Similar Documents

Publication Publication Date Title
US4732779A (en) Fibrous material for composite materials, fiber-reinforced metal produced therefrom, and process for producing same
EP0071449B1 (en) Ceramic shell mold for casting metal matrix composites
Zhu et al. Effect of Al2O3 coating thickness on microstructural characterization and mechanical properties of continuous carbon fiber reinforced aluminum matrix composites
US5891249A (en) Apparatus for the preparation of metal matrix fiber composites
US3828839A (en) Process for preparing fiber reinforced metal composite structures
JPH0257135B2 (en)
JPH0116291B2 (en)
JPS58144441A (en) Manufacture of composite body of carbon fiber reinforced metal
JPS624349B2 (en)
JPH031437B2 (en)
JPH0524266B2 (en)
JPH0413412B2 (en)
US4831707A (en) Method of preparing metal matrix composite materials using metallo-organic solutions for fiber pre-treatment
Kun et al. CVD SiC/Al composites produced by a vacuum suction casting process
Yu et al. A functionally gradient coating on carbon fibre for C/Al composites
JP2648968B2 (en) Fiber reinforced metal
JPH03103334A (en) Fiber-reinforced metal
FR2494260A1 (en) PROCESS FOR TREATING FIBER AND PROCESS FOR PRODUCING COMPOSITE MATERIAL FROM FIBERGLASS, CERAMIC, METAL OR THE LIKE
JPS62299569A (en) Fiber body for composite material and its production
JP2579754B2 (en) Preform wire and method for producing preform sheet
JPH086250B2 (en) Hybrid fiber manufacturing method
JPH01132876A (en) Fiber body for composite material
US4419389A (en) Method for making carbon/metal composite pretreating the carbon with tetraisopropyltitanate
Hill et al. The preparation and properties of cast boron-aluminum composites
JPH0534308B2 (en)