JPH0534308B2 - - Google Patents

Info

Publication number
JPH0534308B2
JPH0534308B2 JP62096889A JP9688987A JPH0534308B2 JP H0534308 B2 JPH0534308 B2 JP H0534308B2 JP 62096889 A JP62096889 A JP 62096889A JP 9688987 A JP9688987 A JP 9688987A JP H0534308 B2 JPH0534308 B2 JP H0534308B2
Authority
JP
Japan
Prior art keywords
carbide
nitride
ceramic
inorganic fiber
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62096889A
Other languages
Japanese (ja)
Other versions
JPS63265871A (en
Inventor
Senichi Yamada
Shinichi Towata
Hajime Ikuno
Taketami Yamamura
Toshihiro Ishikawa
Masaki Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Ube Corp
Original Assignee
Ube Industries Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd, Toyota Central R&D Labs Inc filed Critical Ube Industries Ltd
Priority to JP62096889A priority Critical patent/JPS63265871A/en
Priority to EP87108618A priority patent/EP0249927B1/en
Priority to DE8787108618T priority patent/DE3774939D1/en
Priority to US07/061,548 priority patent/US4961990A/en
Priority to CA 539851 priority patent/CA1283763C/en
Publication of JPS63265871A publication Critical patent/JPS63265871A/en
Publication of JPH0534308B2 publication Critical patent/JPH0534308B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、無機繊維強化セラミツク複合体
(FRC)およびその製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an inorganic fiber-reinforced ceramic composite (FRC) and a method for producing the same.

(従来の技術) 耐熱性セラミツクは、超高温下、超高圧下ある
いは腐食性環境下などの苛酷な条件下で使用され
ている。一般に、耐熱性セラミツクは通常機械的
衝撃に弱く、高温になると機械的強度や耐食性が
低下する欠点を有している。これらの欠点を補う
ため、アルミナ、炭素などからなる連続繊維もし
くは炭化珪素などからなる短繊維やウイスカとセ
ラミツクとを複合させた複合体が開発されてい
る。例えば、特開昭52−81309号公報には、有機
珪素高分子化合物から得られる炭化珪素繊維で補
強された耐熱性セラミツク複合体の製法が記載さ
れている。
(Prior Art) Heat-resistant ceramics are used under harsh conditions such as extremely high temperatures, extremely high pressures, and corrosive environments. Generally, heat-resistant ceramics have the disadvantage that they are weak against mechanical shock and that their mechanical strength and corrosion resistance decrease at high temperatures. To compensate for these drawbacks, composites have been developed in which continuous fibers made of alumina, carbon, etc., short fibers made of silicon carbide, or whiskers are combined with ceramic. For example, JP-A-52-81309 describes a method for producing a heat-resistant ceramic composite reinforced with silicon carbide fibers obtained from organosilicon polymer compounds.

(発明が解決しようとする問題点) しかしながら、この方法では、強化用繊維がマ
トリツクスであるセラミツク中に均一に分散しが
たい。
(Problems to be Solved by the Invention) However, with this method, it is difficult to uniformly disperse the reinforcing fibers in the ceramic matrix.

また無機長繊維のみで強化したFRCでは強度
の異方性が大きく、繊維の長さ方向の強度は大き
いが、それと直角方向の強度はきわめて小さくな
る。短繊維のみを使用したFRCは等方性ではあ
るが、その強度は一般に低い。これら両性能を兼
ねそなえた複合体を製造する目的で、本発明者ら
は先に短繊維、ウイスカまたは粉末を懸濁した溶
液中に連続繊維束を浸漬することにより繊維1本
1本の表面に短繊維、ウイスカまたは粉末などを
付着させる方法を提案した。本方法は、FRCの
作製に関し優れたものであるが、更に詳細に検討
した結果、短繊維、ウイスカまたは粉末の付着形
態によつてはかならずしも充分でない場合がある
ことがわかつた。
Furthermore, FRC reinforced only with inorganic long fibers has a large strength anisotropy; the strength in the longitudinal direction of the fibers is high, but the strength in the direction perpendicular to it is extremely low. Although FRC using only short fibers is isotropic, its strength is generally low. In order to produce a composite that has both of these properties, the present inventors first immersed a continuous fiber bundle in a solution in which short fibers, whiskers, or powder were suspended. We proposed a method of attaching short fibers, whiskers, or powder to the material. Although this method is excellent in producing FRC, further detailed study revealed that it may not always be sufficient depending on the form of adhesion of short fibers, whiskers, or powder.

本発明は、上記従来技術における問題点を解決
するためのものであり、その目的とするところ
は、FRCに使用した場合に連続繊維を複合材料
中に均一に分散させて、繊維体積率を制御でき、
また互に特性の異なる連続繊維を組み合せること
により、例えば連続繊維とマトリツクス間の応力
集中を軽減させ、更に破壊時の亀裂の伝播を妨
げ、複合材の機械特性を向上させることができる
複合材用繊維体を用いた無機繊維強化セラミツク
複合体およびその製造方法を提供することにあ
る。
The present invention is intended to solve the problems in the prior art described above, and its purpose is to uniformly disperse continuous fibers in a composite material and control the fiber volume fraction when used in FRC. I can,
In addition, by combining continuous fibers with different properties, it is possible to reduce stress concentration between the continuous fibers and the matrix, prevent crack propagation during fracture, and improve the mechanical properties of the composite material. An object of the present invention is to provide an inorganic fiber-reinforced ceramic composite using a fibrous material and a method for producing the same.

(問題点を解決するための手段) すなわち本発明の無機繊維強化セラミツク複合
体は、セラミツク、炭素および金属よりなる群か
ら選択された少なくとも1種を構成成分とする連
続繊維からなる連続繊維束または該連続繊維束か
ら作製された織布と、 該連続繊維の近傍に存在するセラミツク、炭
素、金属等の耐熱物質より選択された少なくとも
1種からなる微粒子と、 該連続繊維の繊維間隙に均一に分散して介在す
るセラミツク、炭素、金属等の耐熱物質より選択
された少なくとも1種からなる短繊維および/ま
たはウイスカと、 マトリツクスであるセラミツクとからなること
を特徴とする。
(Means for Solving the Problems) That is, the inorganic fiber-reinforced ceramic composite of the present invention comprises a continuous fiber bundle or A woven fabric made from the continuous fiber bundle, fine particles made of at least one type of heat-resistant material such as ceramic, carbon, metal, etc. existing in the vicinity of the continuous fiber, and uniformly distributed between the fibers of the continuous fiber. It is characterized by comprising short fibers and/or whiskers made of at least one kind selected from heat-resistant substances such as ceramic, carbon, and metal dispersed therein, and a ceramic matrix.

本発明の複合体の好ましい実施態様としては例
えば以下のものが挙げられる。
Preferred embodiments of the composite of the present invention include, for example, the following.

(ア) 微粒子の平均粒径が短繊維および/またはウ
イスカの平均長さの1/30以下である複合体。
(a) A composite in which the average particle diameter of fine particles is 1/30 or less of the average length of short fibers and/or whiskers.

(イ) 連続繊維であるセラミツクが炭化物、窒化
物、酸化物、硼化物系セラミツクから選択され
た少なくとも1種である複合体。
(a) A composite in which the continuous fiber ceramic is at least one selected from carbide, nitride, oxide, and boride ceramics.

(ウ) 炭化物系セラミツクが炭化珪素であり、窒化
物系セラミツクが窒化珪素であり、酸化物系セ
ラミツクがアルミナである上記(イ)の複合体。
(c) The composite of (a) above, wherein the carbide ceramic is silicon carbide, the nitride ceramic is silicon nitride, and the oxide ceramic is alumina.

(エ) 連続繊維であるセラミツクが、 (i) 実質的に珪素、M、炭素および酸素からな
る非晶質物質または、 (ii) 実質的にβ−SiC,MC,β−SiCとMCの
固溶体および/またはMC1-Xの粒径が500Å
以下の各結晶質超微粒子および非晶質の
SiO2とMO2からなる集合体、または (iii) 上記()の非晶質物質と上記()の結
晶質超微粒子および非晶質からなる集合体と
の混合物、 (但し、上記式中のMはTiまたはZrを示し、
Xは0より大きく1未満の数である) である複合体。
(D) Ceramic, which is a continuous fiber, is (i) an amorphous material consisting essentially of silicon, M, carbon and oxygen, or (ii) a solid solution of β-SiC, MC, or β-SiC and MC. and/or MC 1-X particle size 500Å
Each of the following crystalline ultrafine particles and amorphous
An aggregate consisting of SiO 2 and MO 2 , or (iii) a mixture of the amorphous substance in () above and an aggregate consisting of crystalline ultrafine particles and amorphous in () above, (However, in the above formula, M represents Ti or Zr,
X is a number greater than 0 and less than 1).

(オ) 連続繊維に対する微粒子、および短繊維およ
び/またはウイスカの体積率が0.5〜500%であ
る複合体。
(e) A composite in which the volume ratio of fine particles, short fibers and/or whiskers to continuous fibers is 0.5 to 500%.

(カ) 連続繊維の配合割合が、複合体に対して10〜
70体積%である複合体。
(f) The blending ratio of continuous fibers to the composite is 10 to 10.
The complex is 70% by volume.

(キ) 複合体のマトリツクスであるセラミツクが炭
化珪素、炭化チタニウム、炭化ジルコニウム、
炭化バナジウム、炭化ニオブ、炭化タンタル、
炭化硼素、炭化クロム、炭化タングステン、炭
化モリブデン、グラフアイト等の炭化物セラミ
ツク;窒化珪素、窒化チタン、窒化ジルコニウ
ム、窒化バナジウム、窒化ニオブ、窒化タンタ
ル、窒化硼素、窒化アルミニウム、窒化ハフニ
ウム等の窒化物セラミツク;アルミナ、シリ
カ、マグネシア、ムライト、コージライト等の
酸化物セラミツク;硼珪酸塩ガラス、高シリカ
含有ガラス、アルミノケイ酸塩ガラス等のガラ
スセラミツクである複合体。
(g) Ceramic, which is the matrix of the composite, is made of silicon carbide, titanium carbide, zirconium carbide,
vanadium carbide, niobium carbide, tantalum carbide,
Carbide ceramics such as boron carbide, chromium carbide, tungsten carbide, molybdenum carbide, and graphite; Nitride ceramics such as silicon nitride, titanium nitride, zirconium nitride, vanadium nitride, niobium nitride, tantalum nitride, boron nitride, aluminum nitride, and hafnium nitride. ; oxide ceramics such as alumina, silica, magnesia, mullite, cordierite; composites which are glass-ceramics such as borosilicate glasses, high silica-containing glasses, aluminosilicate glasses, etc.;

また本発明の無機繊維強化セラミツク複合体の
製造方法は、セラミツク、炭素および金属よりな
る群から選択された少なくとも1種を構成成分と
する連続繊維からなる連続繊維束または該連続繊
維束からなる織布を、セラミツク、炭素、金属等
の耐熱物質から選択された少なくとも1種からな
る微粒子、および短繊維および/またはウイスカ
を懸濁した処理液中に浸漬し、該連続繊維1本1
本の表面に、該微粒子、および該短繊維および/
またはウイスカを付着させることにより生成した
繊維体をセラミツク粉末に埋設して焼成すること
を特徴とする。
Further, the method for producing an inorganic fiber reinforced ceramic composite of the present invention includes a continuous fiber bundle made of continuous fibers containing at least one selected from the group consisting of ceramic, carbon, and metal, or a woven fabric made of the continuous fiber bundle. A cloth is immersed in a treatment liquid in which fine particles made of at least one type of heat-resistant material selected from ceramics, carbon, metals, etc., and short fibers and/or whiskers are suspended, and each continuous fiber is
The fine particles and the short fibers and/or
Alternatively, it is characterized in that a fibrous body produced by attaching whiskers is embedded in ceramic powder and fired.

本発明の複合体の製造方法の好ましい実施態様
としては例えば以下のものが挙げられる。
Preferred embodiments of the method for producing a composite of the present invention include, for example, the following.

(ク) 各構成成分が前記(ア)〜(キ)のものであ
る製造方法。
(h) A manufacturing method in which each component is one of the above (a) to (g).

(ケ) 微粒子が連続繊維の表面近傍に多く付着
されてなり、短繊維および/またはウイスカが
その外側に多く付着されてなる製造方法。
(k) A manufacturing method in which many fine particles are attached near the surface of continuous fibers, and many short fibers and/or whiskers are attached to the outside thereof.

(コ) 処理液に超音波振動を与える製造方法。(j) A manufacturing method that applies ultrasonic vibration to the processing liquid.

(サ) 処理液を入れた処理槽を1つ用いる製造
方法。
(S) A manufacturing method that uses one processing tank containing processing liquid.

(シ) 処理液を入れた処理槽を2つ以上用いる
製造方法。
(c) A manufacturing method that uses two or more processing tanks containing processing liquid.

(ス) 連続繊維束あるいは織布を、微粒子を懸
濁した処理液中に浸漬し、その後短繊維およ
び/またはウイスカを懸濁した処理液中に浸漬
し、連続繊維の表面近傍に微粒子を多く付着さ
せ、短繊維および/またはウイスカをその外側
に多く付着させる上記(シ)の製造方法。
(S) A continuous fiber bundle or woven fabric is immersed in a treatment liquid in which fine particles are suspended, and then immersed in a treatment liquid in which short fibers and/or whiskers are suspended, so that many fine particles are placed near the surface of the continuous fibers. The manufacturing method of (C) above, in which a large amount of short fibers and/or whiskers are attached to the outside thereof.

連続繊維としてはセラミツク例えば炭化珪素、
窒化珪素、窒化硼素、窒化アルミニウム、アルミ
ナ、シリカ、ポリメタロカルボシランの焼成物ま
たは耐熱性非金属元素例えば炭素、硼素、耐熱性
金属若しくは合金例えば鋼、ステンレス鋼、タン
グステン等の材料よりなる無機繊維を単独または
組み合せて用いる事ができる。繊維の太さや断面
形状等の性状は用途に応じて選択する。
Continuous fibers include ceramics such as silicon carbide,
Inorganic fibers made of fired products of silicon nitride, boron nitride, aluminum nitride, alumina, silica, polymetallocarbosilane, or heat-resistant nonmetallic elements such as carbon, boron, heat-resistant metals or alloys such as steel, stainless steel, tungsten, etc. can be used alone or in combination. Properties such as fiber thickness and cross-sectional shape are selected depending on the application.

微粒子としては、前記連続無機繊維に使用した
ものと同一の材料を用いて製造したものを用いる
ことができる。これらは1種を用いてもよいし、
2種以上を組み合せてもよい。
As the fine particles, particles manufactured using the same material as that used for the continuous inorganic fiber can be used. One type of these may be used, or
Two or more types may be combined.

短繊維やウイスカとしては前記連続無機繊維あ
るいは微粒子に使用したものと同一の材料を用い
て、製造したものを用いることができる。
The short fibers and whiskers can be manufactured using the same material as that used for the continuous inorganic fibers or fine particles.

また、いずれか1種を用いてもよいし、2種以
上を組み合せて用いてもよい。
Moreover, any one type may be used, or two or more types may be used in combination.

短繊維やウイスカの長さ、太さ及び断面形状は
微粒子の平均粒径等の性状、連続繊維との組み合
せや要求特性を考慮して選択するとよいが、短繊
維またはウイスカは連続繊維の平均直径の1/3000
〜1/5の平均直径、アスペクト比50〜1000である
ものが、また、微粒子は連続繊維の平均直径の1/
5000〜1/2の平均直径を有するものが望ましい。
The length, thickness, and cross-sectional shape of short fibers and whiskers should be selected taking into consideration the properties such as the average particle diameter of the fine particles, the combination with continuous fibers, and the required characteristics. 1/3000 of
Those with an average diameter of ~1/5 and an aspect ratio of 50-1000;
It is desirable to have an average diameter of 5,000 to 1/2.

連続繊維の内側に多く付着させる微粒子、ある
いはその外側に多く付着させる短繊維、および/
またはウイスカの量は両者の性状や製造した繊維
体の性状やそれによつて補強したFRCの用途等
によつても異なるが、短繊維、ウイスカおよび微
粒子の合計の連続繊維に対する体積率は0.1%〜
500%程度とするのが好ましい。また、微粒子と
短繊維および/またはウイスカとの比率は重量比
で0.1:5〜40:1の範囲が好ましい。
Fine particles that are mostly attached to the inside of the continuous fibers, or short fibers that are mostly attached to the outside of the continuous fibers, and/or
Although the amount of whiskers varies depending on the properties of the two, the properties of the manufactured fibrous body, and the purpose of the FRC reinforced with it, the volume ratio of the total of short fibers, whiskers, and fine particles to continuous fibers is 0.1% or more.
It is preferable to set it to about 500%. Further, the ratio of fine particles to short fibers and/or whiskers is preferably in the range of 0.1:5 to 40:1 by weight.

本発明におけるセラミツクマトリツクスとして
は、前記の実施態様(キ)に記載のものが挙げら
れる。これらは単独または組み合せて用いてもよ
い。
Ceramic matrices in the present invention include those described in embodiment (g) above. These may be used alone or in combination.

本発明の無機繊維強化セラミツク複合体に用い
る繊維体の製造方法は懸濁液浸漬法であり、これ
は簡便さ及び適用範囲の広さ等の点で好ましい。
この懸濁液浸漬法の一例としては、例えばボビン
等に巻き付けた連続繊維を束ねた連続繊維束また
はこの連続繊維束からなる織布を巻き戻して、微
粒子と短繊維および/またはウイスカを同時に懸
濁した液体中に浸漬して再びボビンに巻き取る方
法が挙げられる。この様にして得られた繊維束ま
たは織布を連続繊維1本1本の表面に微粒子と短
繊維および/またはウイスカとが付着した状態と
なる。この場合、処理液を入れた処理槽は、1つ
でもよいが、種々の変法のため異なる組成の処理
液を入れた処理槽を2つ以上用いてもよい。
The method for manufacturing the fibers used in the inorganic fiber-reinforced ceramic composite of the present invention is a suspension dipping method, which is preferred from the viewpoints of simplicity and wide applicability.
As an example of this suspension dipping method, a continuous fiber bundle made of continuous fibers wound around a bobbin or the like or a woven fabric made of this continuous fiber bundle is unwound to suspend fine particles, short fibers, and/or whiskers at the same time. One method is to immerse it in a cloudy liquid and wind it up on a bobbin again. The fiber bundle or woven fabric thus obtained is in a state in which fine particles, short fibers and/or whiskers are attached to the surface of each continuous fiber. In this case, the number of processing tanks containing the processing liquid may be one, but for various modification methods, two or more processing tanks containing processing liquids of different compositions may be used.

また、処理液としては、微粒子と短繊維およ
び/またはウイスカとを同時に懸濁したものを使
用してもよく、あるいは微粒子を懸濁した処理液
と短繊維および/またはウイスカを懸濁した処理
液を2種の処理槽に入れて使用してもよい。後者
の場合、連続繊維束または織布を浸漬する順序
は、微粒子を懸濁した処理液からでも、短繊維お
よび/またはウイスカを懸濁した処理液からでも
よい。
In addition, the processing liquid may be one in which fine particles and short fibers and/or whiskers are suspended at the same time, or a processing liquid in which fine particles are suspended and a treatment liquid in which short fibers and/or whiskers are suspended. may be used by placing them in two types of treatment tanks. In the latter case, the order in which the continuous fiber bundle or woven fabric is immersed may be in the treatment liquid in which fine particles are suspended or in the treatment liquid in which short fibers and/or whiskers are suspended.

ここで、連続繊維表面近傍に微粒子が多く付着
されて、短繊維および/またはウイスカがその外
側に多く付着されてなる連続繊維束あるいは織布
は、以下のようにして製造することができる。
Here, a continuous fiber bundle or woven fabric in which many fine particles are attached near the surface of the continuous fibers and many short fibers and/or whiskers are attached to the outside thereof can be produced as follows.

すなわち、連続繊維束あるいは織布を、微粒子
を懸濁した処理液に浸漬した後、短繊維および/
またはウイスカを懸濁した処理液に浸漬する。こ
の場合、まず微粒子が連続繊維束の中へ侵入し、
繊維1本1本の表面に付着する。これにより、繊
維間隙が広がり、その後の短繊維および/または
ウイスカの連続繊維束中への侵入が容易になる。
That is, after a continuous fiber bundle or woven fabric is immersed in a treatment liquid in which fine particles are suspended, short fibers and/or
Or immerse the whiskers in a treatment solution in which they are suspended. In this case, first the fine particles penetrate into the continuous fiber bundle,
It adheres to the surface of each fiber. This widens the fiber gaps and facilitates subsequent penetration of short fibers and/or whiskers into the continuous fiber bundle.

あるいは、平均粒径が短繊維および/またはウ
イスカの平均長さの1/30以下の微粒子と、短繊維
および/またはウイスカとを同時に懸濁した処理
液に連続繊維束あるいは織布を浸漬する。この場
合、微粒子が主としてまず繊維間隙へ侵入し、繊
維の表面に付着して繊維間を押し広げることによ
つて短繊維および/またはウイスカの繊維間隙へ
の侵入が容易になる。また、超音波により振動を
与えると各繊維に均一に繊維束内部の繊維まで付
着を行なうことができる。超音波は処理液を入れ
た容器の外側に設けた超音波付加器によつて与え
てもよいし、または適当数の超音波振動子、例え
ばセラミツク振動子を処理液中に適当に配置して
与えても良い。超音波の照射パターンは連続的で
あつてもパルス状であつてもよい。その強度や振
動数及び照射時間は連続繊維やこれに付着させる
短繊維、ウイスカまたは微粒子の種類、あるいは
前記付着物の液中密度、連続繊維の浸漬時間など
の処理条件によつて選択するが、例えば振動数は
10KHz〜2000KHz程度が使用し易い。
Alternatively, a continuous fiber bundle or woven fabric is immersed in a treatment liquid in which fine particles having an average particle diameter of 1/30 or less of the average length of short fibers and/or whiskers, and short fibers and/or whiskers are simultaneously suspended. In this case, the fine particles mainly first enter the fiber gaps, adhere to the surfaces of the fibers, and spread the fibers apart, thereby facilitating the penetration of the short fibers and/or whiskers into the fiber gaps. Furthermore, when vibration is applied using ultrasonic waves, each fiber can be uniformly attached to the fibers inside the fiber bundle. Ultrasonic waves may be applied by an ultrasonic adder installed outside the container containing the processing liquid, or by appropriately placing an appropriate number of ultrasonic transducers, such as ceramic transducers, in the processing liquid. You can give it to me. The ultrasonic irradiation pattern may be continuous or pulsed. The intensity, vibration frequency, and irradiation time are selected depending on the type of continuous fibers, short fibers, whiskers, or fine particles to be attached to the continuous fibers, the density of the deposits in the liquid, and the processing conditions such as the immersion time of the continuous fibers. For example, the frequency is
Approximately 10KHz to 2000KHz is easy to use.

付着させるべき物を懸濁させる液体は水でもよ
いが、連続繊維の表面にサイジング剤が塗布され
ている場合には、サイジング剤の表面活性剤か溶
剤を用いるとよい。例えばエタノール、メタノー
ル、アセトン特にエタノールなどの有機溶剤は、
揮発性が水に比べて高いので乾燥が早く、生産性
が向上する利点がある。また、前記有機溶剤と水
との混合物を使用してもよい。1種の付着物を懸
濁した処理液を複数用いる場合と2種以上の付着
物を懸濁した処理液を1つ用いる場合のいずれも
処理液中の付着物濃度は特に限定されないが、あ
まり小さいと連続繊維上に均一な付着が見られず
効果がなくなり、また逆に大きすぎると付着量が
必要以上に多くなるため、例えば付着物として平
均直径0.3μmの炭化ケイ素ウイスカと平均粒径
0.3μmの炭化ケイ素微粒子を用い繊維数6000本/
ヤーンの連続繊維束を処理する場合、これらの付
着物の濃度は0.5g/〜80g/程度が望まし
い。
The liquid for suspending the substance to be adhered may be water, but if a sizing agent is applied to the surface of the continuous fibers, a surfactant or a solvent for the sizing agent may be used. Organic solvents such as ethanol, methanol, acetone, especially ethanol,
Because it has higher volatility than water, it dries quickly and has the advantage of improving productivity. Alternatively, a mixture of the organic solvent and water may be used. The concentration of deposits in the treatment solution is not particularly limited in both cases where a plurality of processing solutions containing one type of deposit are used and when a single processing solution containing two or more types of deposits is used. If it is too small, uniform adhesion will not be observed on the continuous fibers and the effect will be lost, and if it is too large, the amount of adhesion will be larger than necessary.For example, silicon carbide whiskers with an average diameter of 0.3 μm and average particle size
6000 fibers/using 0.3μm silicon carbide particles
When treating a continuous fiber bundle of yarn, the concentration of these deposits is preferably about 0.5 g/~80 g/.

浸漬時間の調整は可動ロールなどの通常の方法
により行なうことができる。また必要ならば処理
した連続繊維束をボビンに巻き取る前に乾燥炉や
赤外線乾燥機、熱風乾燥機等を用いて乾燥させ
る。さらに、処理中に短繊維や微粒子の沈殿を防
ぐために攪拌手段、例えばスターラーを用いる
か、気体を吹き込んでも良い。
The immersion time can be adjusted by a conventional method such as using a movable roll. Furthermore, if necessary, the treated continuous fiber bundle is dried using a drying oven, an infrared dryer, a hot air dryer, etc. before being wound onto a bobbin. Furthermore, in order to prevent precipitation of short fibers and fine particles during the treatment, stirring means such as a stirrer may be used, or gas may be blown.

本発明の複合体に用いる連続繊維やこの表面に
付着させる微粒子、短繊維、ウイスカは市販品を
そのまま使用することができる。
As for the continuous fibers used in the composite of the present invention and the fine particles, short fibers, and whiskers to be attached to the surface thereof, commercially available products can be used as they are.

本発明において、複合体製造の際に必要により
添加される結合剤としては、セラミツクマトリツ
クスを高密度に焼結するための結合剤と、セラミ
ツク粉状マトリツクスと無機繊維の密着性を高め
るための結合剤とがある。前者としては、それぞ
れ炭化物、窒化物、酸化物ガラスセラミツクを焼
結する際に使用される結合剤が挙げられる。例え
ば、炭化珪素の結合剤としては硼素、炭素、炭化
硼素があり、窒化珪素の結合剤としてアルミナ、
マグネシア、イツトリア、窒化アルミニウムがあ
る。後者としては、ジフエニルシロキサン、ジメ
チルシロキサン、ポリボロジフエニルシロキサ
ン、ポリボロジメチルシロキサン、ポリカルボシ
ラン、ポリジメチルシラザン、ポリチタノカルボ
シラン、ポリジルコノカルボシラン等の有機珪素
重合体、およびジフエニルシランジール、ヘキサ
メチルジシラザン等の有機珪素化合物が挙げられ
る。
In the present invention, the binder added as necessary during composite production includes a binder for sintering the ceramic matrix to a high density, and a binder for increasing the adhesion between the ceramic powder matrix and the inorganic fibers. There is a binding agent. The former includes binders used when sintering carbide, nitride, and oxide glass ceramics, respectively. For example, binders for silicon carbide include boron, carbon, and boron carbide, and binders for silicon nitride include alumina,
These include magnesia, ittria, and aluminum nitride. The latter include organic silicon polymers such as diphenylsiloxane, dimethylsiloxane, polyborodiphenylsiloxane, polyborodimethylsiloxane, polycarbosilane, polydimethylsilazane, polytitanocarbosilane, polyzirconocarbosilane, and diphenylsiloxane. Examples include organosilicon compounds such as enylsilandyl and hexamethyldisilazane.

これらの結合剤の使用量は通常0.5〜20重量%
である。
The amount of these binders used is usually 0.5-20% by weight
It is.

本発明の無機繊維強化セラミツク複合体は、繊
維体とマトリツクスとの一体化においては以下に
示すようなそれ自体公知の方法に従つて製造する
ことができる。
The inorganic fiber-reinforced ceramic composite of the present invention can be manufactured by a method known per se as shown below in integrating the fiber body and the matrix.

セラミツク粉状マトリツクスと強化用繊維との
集合体を得る方法は種々あり、特にセラミツク粉
状マトリツクスまたはセラミツクと結合剤よりな
る混和体に繊維を埋設させる方法や、強化用繊維
と上記セラミツク粉状マトリツクスまたは上記混
和体を交互に配設する方法や、予め強化用繊維を
設置しておき、その間隙に上記セラミツク粉状マ
トリツクスまたは上記混和体を充填する方法等に
よれば比較的容易に集合体を得ることができる。
次に、これらの集合体を焼結する方法としては、
ラバープレス、金型プレス等を用いて前記集合体
を50〜5000Kg/cm2の圧力で加圧成形した後、加熱
炉で800〜2400℃の温度範囲で焼結する方法や、
50〜5000Kg/cm2の圧力で加圧したままで800〜
2400℃の温度範囲でホツトプレス焼結する方法等
がある。
There are various methods for obtaining an aggregate of a ceramic powder matrix and reinforcing fibers, and in particular, a method of embedding fibers in a ceramic powder matrix or a mixture of ceramic and a binder, and a method of embedding fibers in a ceramic powder matrix or a mixture of ceramic powder and a ceramic powder matrix. Alternatively, the aggregate can be formed relatively easily by a method in which the above-mentioned mixtures are arranged alternately, or by a method in which reinforcing fibers are placed in advance and the gaps are filled with the ceramic powder matrix or the above-mentioned mixture. Obtainable.
Next, the method for sintering these aggregates is as follows.
A method in which the aggregate is pressure-formed at a pressure of 50 to 5000 kg/cm 2 using a rubber press, a mold press, etc., and then sintered in a heating furnace at a temperature range of 800 to 2400°C;
800~ while pressurized with a pressure of 50~5000Kg/ cm2
There are methods such as hot press sintering in a temperature range of 2400°C.

上記焼結は、真空中、あるいは窒素、アルゴ
ン、一酸化炭素、水素等から選ばれる不活性ガス
からなる雰囲気下に行うことができる。
The above sintering can be performed in a vacuum or in an atmosphere consisting of an inert gas selected from nitrogen, argon, carbon monoxide, hydrogen, and the like.

このようにして得られた無機繊維強化セラミツ
ク複合体は、以下の述べる一連の処理を少なくと
も1回以上施すことにより、さらにより高密度な
焼結体とすることができる。即ち、焼結体を減圧
下で有機珪素化合物または有機珪素重合体の溶融
液、または必要により該化合物または該重合体を
有機溶媒に溶解させた溶液に浸漬して、該融液ま
たは該溶液を焼結体の粒界および気孔に含浸さ
せ、前記含浸後の焼結体を加熱する一連の処理に
より、より高密度の焼結体を得ることができる。
加熱処理は800〜2500℃の温度範囲で、真空中あ
るいは窒素、アルゴン、一酸化炭素、水素等から
選ばれる不活性ガスからなる雰囲気下に行われ
る。
The inorganic fiber-reinforced ceramic composite thus obtained can be made into a sintered body with even higher density by subjecting it to the following series of treatments at least once. That is, the sintered body is immersed under reduced pressure in a melt of an organosilicon compound or an organosilicon polymer, or if necessary, in a solution in which the compound or the polymer is dissolved in an organic solvent, and the melt or the solution is dissolved. A higher-density sintered body can be obtained by a series of treatments in which the grain boundaries and pores of the sintered body are impregnated and the impregnated sintered body is heated.
The heat treatment is performed at a temperature in the range of 800 to 2500° C. in vacuum or in an atmosphere consisting of an inert gas selected from nitrogen, argon, carbon monoxide, hydrogen, etc.

(実施例) 以下の実施例において本発明を更に詳細に説明
する。なお、本発明は下記の実施例に限定される
ものではない。
(Example) The present invention will be explained in further detail in the following example. Note that the present invention is not limited to the following examples.

炭化珪素ウイスカ(平均直径約0.2μm平均長さ
約100μm)100gと炭化珪素粒子(平均粒径
0.28μm)250gをエチルアルコール5000c.c.の入つ
た処理槽中に投入後、超音波付加器により超音波
振動を与えて懸濁させ、処理液を調整した。炭化
珪素繊維の繊維束(500本糸)をボビンから巻き
戻し、浸漬時間を15秒となるよう可動ローラによ
つて調節して処理液中に浸漬しながら通し、同時
に処理液に超音波を付加して、更に空気を吹き込
んで攪拌し、次いで、圧力ローラによつて押圧し
た後再びボビンに巻き取り、室温、大気中で乾燥
させた。処理前黒色であつた繊維は処理後灰緑色
を帯び、電子顕微鏡観察の結果、連続繊維の表面
に微粒子が、更にその外側にウイスカが付着して
いるのが認められた。また、処理後秤量の結果、
体積比で10%の微粒子とウイスカが付着した連続
繊維体が生成していることがわかつた。
100 g of silicon carbide whiskers (average diameter approximately 0.2 μm, average length approximately 100 μm) and silicon carbide particles (average particle size
After putting 250 g of ethyl alcohol (0.28 μm) into a processing tank containing 5000 c.c. of ethyl alcohol, ultrasonic vibration was applied using an ultrasonic adder to suspend the solution, thereby preparing a processing solution. A fiber bundle of silicon carbide fibers (500 threads) is unwound from the bobbin, the immersion time is adjusted to 15 seconds using a movable roller, and the immersion time is adjusted to 15 seconds, and the process is immersed in the processing solution. At the same time, ultrasonic waves are applied to the processing solution. The mixture was further stirred by blowing air into the mixture, then pressed with a pressure roller, wound up again on a bobbin, and dried at room temperature in the atmosphere. The fibers, which were black before treatment, turned grayish-green after treatment, and as a result of electron microscopic observation, it was observed that fine particles were attached to the surface of the continuous fibers, and whiskers were also attached to the outside of the fibers. In addition, as a result of weighing after treatment,
It was found that continuous fibers with 10% volume ratio of fine particles and whiskers attached were formed.

この処理した繊維束を一軸方向に揃えたシート
状物と、アルミナ2重量%、イツトリア3重量%
および窒化アルミニウム3重量%とが混合された
α−窒化珪素粉末(平均粒径;0.5μ)とを、上記
繊維束の繊維が異なる層間で互いに直交するよう
に、交互に積層させた。積層体を、ホツトプレス
装置により1750℃、300Kg/cm2で30分間保持して、
無機繊維強化窒化珪素複合焼結体を得た。
A sheet-like material in which the treated fiber bundles are uniaxially aligned, 2% by weight of alumina, 3% by weight of Ittria.
and α-silicon nitride powder (average particle size: 0.5μ) mixed with 3% by weight of aluminum nitride were alternately laminated so that the fibers of the fiber bundle were orthogonal to each other between different layers. The laminate was held at 1750°C and 300Kg/cm 2 for 30 minutes using a hot press device.
An inorganic fiber reinforced silicon nitride composite sintered body was obtained.

この複合焼結体の繊維含量は10重量%であつ
た。複合体の断面を走査型電子顕微鏡で調べたと
ころ、マトリツクスである窒化珪素中に強化用繊
維が互いに接することなく分散していることが認
められた。複合体の室温における抗折強度は128
Kg/mm2であり、1300℃における抗折強度は68Kg/
mm2であつた。
The fiber content of this composite sintered body was 10% by weight. When the cross section of the composite was examined using a scanning electron microscope, it was found that the reinforcing fibers were dispersed in the silicon nitride matrix without touching each other. The bending strength of the composite at room temperature is 128
Kg/ mm2 , and the bending strength at 1300℃ is 68Kg/mm2.
It was warm in mm2 .

なお、炭化珪素ウイスカと炭化珪素粒子を付着
させなかつた以外は上記と同様にして得られた複
合体の室温抗折強度は97Kg/mm2であつた。
Note that the room temperature flexural strength of the composite obtained in the same manner as above except that silicon carbide whiskers and silicon carbide particles were not attached was 97 Kg/mm 2 .

本発明のFRCの断面を電子顕微鏡で調べたと
ころ、FRCの連続繊維は微粒子とその外側のウ
イスカの付着により繊維の間隔が適度に保たれる
ためマトリツクスセラミツク中に均一に分散し、
付着させない場合に比べて繊維同士の接触などは
減少した。
When a cross section of the FRC of the present invention was examined using an electron microscope, it was found that the continuous fibers of FRC are uniformly dispersed in the matrix ceramic because the distance between the fibers is maintained at an appropriate distance by the attachment of fine particles and whiskers on the outside.
The contact between fibers was reduced compared to when they were not attached.

連続繊維に微粒子のみを添加して強化した
FRCの場合には繊維間隔は広がるが、繊維垂直
方向の強化効果が少ない。また、連続繊維にウイ
スカまたは短繊維のみを添加して強化したFRC
の場合は、繊維の間隔が広がりにくく、繊維軸方
向、繊維垂直方向共に強化効果が少ない。
Continuous fibers reinforced by adding only fine particles
In the case of FRC, the fiber spacing increases, but the reinforcing effect in the fiber vertical direction is small. In addition, FRC is reinforced by adding only whiskers or short fibers to continuous fibers.
In the case of , the fiber spacing is difficult to widen, and the reinforcing effect is small in both the fiber axial direction and the fiber perpendicular direction.

(発明の効果) 上述のように本発明の無機繊維強化セラミツク
複合体は、連続繊維のそれぞれの表面に微粒子と
短繊維および/またはウイスカを付着させた連続
繊維束あるいは該連続繊維束よりなる織布でマト
リツクスセラミツクが強化されているため、複合
体中にそれぞれの連続繊維を均一に分散させるこ
とができ、繊維の体積率を非常に広範囲に制御す
ることが可能である。また連続繊維同志の接触が
減少し、さらにその間に介在する短繊維および/
またはウイスカにより破壊時の亀裂の伝播が妨げ
られるので繊維軸方向のみならず、繊維軸に直交
する方向までも強化され、かつ複合体の組成が均
一となるため強さなどの機械特性が改善された。
(Effects of the Invention) As described above, the inorganic fiber-reinforced ceramic composite of the present invention is a continuous fiber bundle in which fine particles, short fibers, and/or whiskers are attached to each surface of the continuous fibers, or a woven fabric made of the continuous fiber bundles. Because the matrix ceramic is reinforced with fabric, each continuous fiber can be uniformly distributed in the composite, making it possible to control the volume fraction of the fibers over a very wide range. In addition, the contact between continuous fibers is reduced, and the short fibers and/or
Alternatively, the whiskers prevent the propagation of cracks at the time of fracture, which strengthens the fiber not only in the axial direction but also in the direction perpendicular to the fiber axis, and the composition of the composite becomes uniform, improving mechanical properties such as strength. Ta.

また、これまでの繊維強化セラミツク複合材料
においては、繊維含有量の少ない場合、繊維が偏
在しやすく、複合則に従つた理論強度を得ること
が難しかつたが、本発明の複合体においては、繊
維含有量の少ない場合でもマトリツクスであるセ
ラミツク中に連続繊維が非常に均一に分散し、複
合則通りの強度が得られるので設計の自由度が向
上した。
In addition, in conventional fiber-reinforced ceramic composite materials, when the fiber content is low, the fibers tend to be unevenly distributed, making it difficult to obtain theoretical strength according to the composite law, but in the composite of the present invention, Even when the fiber content is low, the continuous fibers are dispersed very uniformly in the ceramic matrix, and the strength according to the composite law can be obtained, increasing the degree of freedom in design.

さらに、本発明の複合体は、連続無機繊維、耐
熱性物質の微粒子、短繊維および/またはウイス
カおよびマトリツクスとなるセラミツクの種々の
組み合せが可能であり、広範囲にわたる要求特性
を満たすことができる。
Further, the composite of the present invention can be made of various combinations of continuous inorganic fibers, fine particles of heat-resistant material, short fibers and/or whiskers, and ceramics serving as the matrix, and can satisfy a wide range of required properties.

また本発明の製造方法によつて上記複合体を容
易に得ることができる。
Further, the above-mentioned composite can be easily obtained by the production method of the present invention.

Claims (1)

【特許請求の範囲】 1 セラミツク、炭素および金属よりなる群から
選択された少なくとも1種を構成成分とする連続
繊維からなる連続繊維束または該連続繊維束から
作製された織布と、 該連続繊維の近傍に存在するセラミツク、炭
素、金属等の耐熱物質より選択された少なくとも
1種からなる微粒子と、 該連続繊維の繊維間隙に均一に分散して介在す
るセラミツク、炭素、金属等の耐熱物質より選択
された少なくとも1種からなる短繊維および/ま
たはウイスカと、 マトリツクスであるセラミツクとからなること
を特徴とする無機繊維強化セラミツク複合体。 2 微粒子の平均粒径が短繊維および/またはウ
イスカの平均長さの1/30以下であることを特徴と
する特許請求の範囲第1項記載の無機繊維強化セ
ラミツク複合体。 3 連続繊維であるセラミツクが炭化物、窒化
物、酸化物、硼化物系セラミツクから選択された
少なくとも1種であることを特徴とする特許請求
の範囲第1項記載の無機繊維強化セラミツク複合
体。 4 炭化物系セラミツクが炭化珪素であり、窒化
物系セラミツクが窒化珪素であり、酸化物系セラ
ミツクがアルミナであることを特徴とする特許請
求の範囲第3項記載の無機繊維強化セラミツク複
合体。 5 連続繊維であるセラミツクが、 (i) 実質的に珪素、M、炭素および酸素からなる
非晶質物質または、 (ii) 実質的にβ−SiC,MC,β−SiCとMCの固
溶体および/またはMC1-Xの粒径が500Å以下
の各結晶質超微粒子および非晶質のSiO2
MO2からなる集合体、または (iii) 上記()の非晶質物質と上記()の結晶
質超微粒子および非晶質からなる集合体との混
合物、 (但し、上記式中のMはTiまたはZrを示し、
Xは0より大きく1未満の数である) であることを特徴とする特許請求の範囲第1項ま
たは第2項記載の無機繊維強化セラミツク複合
体。 6 連続繊維に対する微粒子、および短繊維およ
び/またはウイスカの体積率が0.5〜500%である
ことを特徴とする特許請求の範囲第1項記載の無
機繊維強化セラミツク複合体。 7 連続繊維の配合割合が、複合体に対して10〜
70体積%であることを特徴とする特許請求の範囲
第1項記載の無機繊維強化セラミツク複合体。 8 複合体のマトリツクスであるセラミツクが炭
化珪素、炭化チタニウム、炭化ジルコニウム、炭
化バナジウム、炭化ニオブ、炭化タンタル、炭化
硼素、炭化クロム、炭化タングステン、炭化モリ
ブデン、グラフアイト等の炭化物セラミツク;窒
化珪素、窒化チタン、窒化ジルコニウム、窒化バ
ナジウム、窒化ニオブ、窒化タンタル、窒化硼
素、窒化アルミニウム、窒化ハフニウム等の窒化
物セラミツク;アルミナ、シリカ、マグネシア、
ムライト、コージライト等の酸化物セラミツク;
硼珪酸塩ガラス、高シリカ含有ガラス、アルミノ
珪酸塩ガラス等のガラスセラミツクであることを
特徴とする特許請求の範囲第1項記載の無機繊維
強化セラミツク複合体。 9 セラミツク、炭素および金属よりなる群から
選択された少なくとも1種を構成成分とする連続
繊維からなる連続繊維束または該連続繊維束から
なる織布を、セラミツク、炭素、金属等の耐熱物
質から選択された少なくとも1種からなる微粒
子、および短繊維および/またはウイスカを懸濁
した処理液中に浸漬し、該連続繊維1本1本の表
面に、該微粒子、および該短繊維および/または
ウイスカを付着させることにより生成した繊維体
をセラミツク粉末に埋設して焼成することを特徴
とする無機繊維強化セラミツク複合体の製造方
法。 10 微粒子の平均粒径が短繊維および/または
ウイスカの平均長さの1/30以下であることを特徴
とする特許請求の範囲第9項記載の無機繊維強化
セラミツク複合体の製造方法。 11 連続繊維であるセラミツクが炭化物、窒化
物、酸化物、硼化物系セラミツクから選択された
少なくとも1種であることを特徴とする特許請求
の範囲第9項記載の無機繊維強化セラミツク複合
体の製造方法。 12 炭化物系セラミツクが炭化珪素であり、窒
化物系セラミツクが窒化珪素であり、酸化物系セ
ラミツクがアルミナであることを特徴とする特許
請求の範囲第11項記載の無機繊維強化プラスチ
ツク複合体の製造方法。 13 連続繊維であるセラミツクが、 (i) 実質的に珪素、M、炭素および酸素からなる
非晶質物質または、 (ii) 実質的にβ−SiC,MC,β−SiCとMCの固
溶体および/またはMC1-Xの粒径が500Å以下
の各結晶質超微粒子および非晶質のSiO2
MO2からなる集合体、または (iii) 上記()の非晶質物質と上記()の結晶
質超微粒子および非晶質からなる集合体との混
合物、 (但し、上記式中のMはTiまたはZrを示し、
Xは0より大きく1未満の数である) であることを特徴とする特許請求の範囲第9項ま
たは第10項記載の無機繊維強化セラミツク複合
体の製造方法。 14 連続繊維に対する微粒子、および短繊維お
よび/またはウイスカの体積率が0.5〜500%であ
ることを特徴とする特許請求の範囲第9項記載の
無機繊維強化セラミツク複合体の製造方法。 15 連続繊維の配合割合が、複合体に対して10
〜70体積%であることを特徴とする特許請求の範
囲第9項記載の無機繊維強化セラミツク複合体の
製造方法。 16 複合体のマトリツクスであるセラミツクが
炭化珪素、炭化チタニウム、炭化ジルコニウム、
炭化バナジウム、炭化ニオブ、炭化タンタル、炭
化硼素、炭化クロム、炭化タングステン、炭化モ
リブデン、グラフアイト等の炭化物セラミツク;
窒化珪素、窒化チタン、窒化ジルコニウム、窒化
バナジウム、窒化ニオブ、窒化タンタル、窒化硼
素、窒化アルミニウム、窒化ハフニウム等の窒化
物セラミツク;アルミナ、シリカ、マグネシア、
ムライト、コージライト等の酸化物セラミツク;
硼珪酸塩ガラス、高シリカ含有ガラス、アルミノ
ケイ酸塩ガラス等のガラスセラミツクであること
を特徴とする特許請求の範囲第9項記載の無機繊
維強化セラミツク複合体の製造方法。 17 微粒子が連続繊維の表面近傍に多く付着さ
れてなり、短繊維および/またはウイスカがその
外側に多く付着されてなることを特徴とする特許
請求の範囲第9項記載の無機繊維強化セラミツク
複合体の製造方法。 18 処理液に超音波振動を与えることを特徴と
する特許請求の範囲第9項記載の無機繊維強化セ
ラミツク複合体の製造方法。 19 処理液を入れた処理槽を1つ用いることを
特徴とする特許請求の範囲第9項記載の無機繊維
強化セラミツク複合体の製造方法。 20 処理液を入れた処理槽を2つ以上用いるこ
とを特徴とする特許請求の範囲第9項記載の無機
繊維強化セラミツク複合体の製造方法。 21 連続繊維束あるいは織布を、微粒子を懸濁
した処理液中に浸漬し、その後短繊維および/ま
たはウイスカを懸濁した処理液中に浸漬し、連続
繊維の表面近傍に微粒子を多く付着させ、短繊維
および/またはウイスカをその外側に多く付着さ
せることを特徴とする特許請求の範囲第20項記
載の無機繊維強化セラミツク複合体の製造方法。
[Scope of Claims] 1. A continuous fiber bundle made of continuous fibers containing at least one member selected from the group consisting of ceramic, carbon, and metal, or a woven fabric made from the continuous fiber bundle, and the continuous fibers. fine particles consisting of at least one kind of heat-resistant substances such as ceramics, carbon, metals, etc. existing in the vicinity of the continuous fibers; An inorganic fiber-reinforced ceramic composite comprising short fibers and/or whiskers made of at least one selected type, and a ceramic matrix. 2. The inorganic fiber-reinforced ceramic composite according to claim 1, wherein the average particle diameter of the fine particles is 1/30 or less of the average length of the short fibers and/or whiskers. 3. The inorganic fiber-reinforced ceramic composite according to claim 1, wherein the continuous fiber ceramic is at least one selected from carbide, nitride, oxide, and boride ceramics. 4. The inorganic fiber reinforced ceramic composite according to claim 3, wherein the carbide ceramic is silicon carbide, the nitride ceramic is silicon nitride, and the oxide ceramic is alumina. 5 Ceramic, which is a continuous fiber, is (i) an amorphous material consisting essentially of silicon, M, carbon, and oxygen, or (ii) a solid solution of β-SiC, MC, β-SiC and MC, and/or Or each crystalline ultrafine particle of MC 1-X with a particle size of 500 Å or less and amorphous SiO 2
or ( iii ) a mixture of the amorphous substance in () above and the aggregate consisting of crystalline ultrafine particles and amorphous in () above (however, M in the above formula is Ti or indicates Zr,
The inorganic fiber-reinforced ceramic composite according to claim 1 or 2, wherein X is a number greater than 0 and less than 1. 6. The inorganic fiber reinforced ceramic composite according to claim 1, wherein the volume ratio of fine particles, short fibers and/or whiskers to continuous fibers is 0.5 to 500%. 7 The blending ratio of continuous fibers to the composite is 10~
The inorganic fiber reinforced ceramic composite according to claim 1, characterized in that the content is 70% by volume. 8 Ceramic which is the matrix of the composite is carbide ceramic such as silicon carbide, titanium carbide, zirconium carbide, vanadium carbide, niobium carbide, tantalum carbide, boron carbide, chromium carbide, tungsten carbide, molybdenum carbide, graphite; silicon nitride, nitride Nitride ceramics such as titanium, zirconium nitride, vanadium nitride, niobium nitride, tantalum nitride, boron nitride, aluminum nitride, hafnium nitride; alumina, silica, magnesia,
Oxide ceramics such as mullite and cordierite;
The inorganic fiber-reinforced ceramic composite according to claim 1, which is a glass ceramic such as borosilicate glass, high silica glass, or aluminosilicate glass. 9. Continuous fiber bundles made of continuous fibers containing at least one member selected from the group consisting of ceramics, carbon, and metals, or woven fabrics made of the continuous fiber bundles, are selected from heat-resistant materials such as ceramics, carbon, and metals. The fine particles, the short fibers and/or the whiskers are immersed in a treatment solution in which at least one of the continuous fibers is suspended, and the fine particles, the short fibers and/or the whiskers are coated on the surface of each of the continuous fibers. 1. A method for producing an inorganic fiber-reinforced ceramic composite, which comprises embedding a fibrous body produced by adhesion in ceramic powder and firing it. 10. The method for producing an inorganic fiber-reinforced ceramic composite according to claim 9, wherein the average particle diameter of the fine particles is 1/30 or less of the average length of short fibers and/or whiskers. 11. Production of an inorganic fiber-reinforced ceramic composite according to claim 9, wherein the ceramic that is the continuous fiber is at least one selected from carbide, nitride, oxide, and boride ceramics. Method. 12. Production of an inorganic fiber reinforced plastic composite according to claim 11, wherein the carbide ceramic is silicon carbide, the nitride ceramic is silicon nitride, and the oxide ceramic is alumina. Method. 13 Ceramic, which is a continuous fiber, is (i) an amorphous material consisting essentially of silicon, M, carbon, and oxygen, or (ii) a solid solution of β-SiC, MC, β-SiC and MC, and/or Or each crystalline ultrafine particle of MC 1-X with a particle size of 500 Å or less and amorphous SiO 2
or ( iii ) a mixture of the amorphous substance in () above and the aggregate consisting of crystalline ultrafine particles and amorphous in () above (however, M in the above formula is Ti or indicates Zr,
11. The method for producing an inorganic fiber-reinforced ceramic composite according to claim 9 or 10, wherein X is a number greater than 0 and less than 1. 14. The method for producing an inorganic fiber-reinforced ceramic composite according to claim 9, wherein the volume ratio of fine particles, short fibers and/or whiskers to continuous fibers is 0.5 to 500%. 15 The blending ratio of continuous fibers is 10 to the composite.
10. The method for producing an inorganic fiber-reinforced ceramic composite according to claim 9, wherein the content is 70% by volume. 16 The ceramic matrix of the composite is made of silicon carbide, titanium carbide, zirconium carbide,
Carbide ceramics such as vanadium carbide, niobium carbide, tantalum carbide, boron carbide, chromium carbide, tungsten carbide, molybdenum carbide, graphite;
Nitride ceramics such as silicon nitride, titanium nitride, zirconium nitride, vanadium nitride, niobium nitride, tantalum nitride, boron nitride, aluminum nitride, hafnium nitride; alumina, silica, magnesia,
Oxide ceramics such as mullite and cordierite;
10. The method for producing an inorganic fiber-reinforced ceramic composite according to claim 9, wherein the ceramic composite is a glass ceramic such as borosilicate glass, high silica glass, or aluminosilicate glass. 17. The inorganic fiber-reinforced ceramic composite according to claim 9, characterized in that many fine particles are attached to the vicinity of the surface of continuous fibers, and many short fibers and/or whiskers are attached to the outside thereof. manufacturing method. 18. The method for producing an inorganic fiber-reinforced ceramic composite according to claim 9, which comprises applying ultrasonic vibration to the treatment liquid. 19. The method for producing an inorganic fiber-reinforced ceramic composite according to claim 9, characterized in that one treatment tank containing a treatment liquid is used. 20. The method for producing an inorganic fiber-reinforced ceramic composite according to claim 9, characterized in that two or more treatment tanks containing treatment liquid are used. 21 A continuous fiber bundle or woven fabric is immersed in a treatment liquid in which fine particles are suspended, and then immersed in a treatment liquid in which short fibers and/or whiskers are suspended, so that many fine particles are attached near the surface of the continuous fibers. 21. The method for producing an inorganic fiber-reinforced ceramic composite according to claim 20, characterized in that many short fibers and/or whiskers are attached to the outside of the composite.
JP62096889A 1986-06-17 1987-04-20 Inorganic fiber reinforced ceramics composite and its production Granted JPS63265871A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62096889A JPS63265871A (en) 1987-04-20 1987-04-20 Inorganic fiber reinforced ceramics composite and its production
EP87108618A EP0249927B1 (en) 1986-06-17 1987-06-15 Fibrous material for composite materials, fiber-reinforced composite materials produced therefrom, and processes for producing same
DE8787108618T DE3774939D1 (en) 1986-06-17 1987-06-15 FIBERS FOR COMPOSITE MATERIALS, COMPOSITE MATERIALS USING SUCH FIBERS AND METHOD FOR THEIR PRODUCTION.
US07/061,548 US4961990A (en) 1986-06-17 1987-06-15 Fibrous material for composite materials, fiber-reinforced composite materials produced therefrom, and process for producing same
CA 539851 CA1283763C (en) 1986-06-17 1987-06-16 Fibrous material for composite materials, fiber- reinforced composite materials produced therefrom, and processes for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62096889A JPS63265871A (en) 1987-04-20 1987-04-20 Inorganic fiber reinforced ceramics composite and its production

Publications (2)

Publication Number Publication Date
JPS63265871A JPS63265871A (en) 1988-11-02
JPH0534308B2 true JPH0534308B2 (en) 1993-05-21

Family

ID=14176953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62096889A Granted JPS63265871A (en) 1986-06-17 1987-04-20 Inorganic fiber reinforced ceramics composite and its production

Country Status (1)

Country Link
JP (1) JPS63265871A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69524432T2 (en) * 1994-09-12 2002-08-01 Toshiba Kawasaki Kk FIBER COMPOSITE BODY ON A CERAMIC BASE
DE19944345A1 (en) * 1999-09-16 2001-03-22 Sgl Technik Gmbh Composite material reinforced with fibers and / or fiber bundles with a ceramic matrix
JP5371894B2 (en) * 2010-06-30 2013-12-18 コバレントマテリアル株式会社 Manufacturing method of fiber reinforced composite ceramic material and fiber reinforced composite ceramic material
JP5525436B2 (en) * 2010-12-28 2014-06-18 コバレントマテリアル株式会社 Fiber reinforced composite material
JP7343360B2 (en) * 2019-11-01 2023-09-12 イビデン株式会社 Ceramic composite material and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850196A (en) * 1981-09-18 1983-03-24 Service Res:Kk Dehydrating method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850196A (en) * 1981-09-18 1983-03-24 Service Res:Kk Dehydrating method

Also Published As

Publication number Publication date
JPS63265871A (en) 1988-11-02

Similar Documents

Publication Publication Date Title
US4460639A (en) Fiber reinforced glass matrix composites
US4778722A (en) Reinforcing fibers and composite materials reinforced with said fibers
Weisensel et al. Laminated object manufacturing (LOM) of SiSiC composites
US4961990A (en) Fibrous material for composite materials, fiber-reinforced composite materials produced therefrom, and process for producing same
Li et al. Fabrication and characterization of carbon-bonded carbon fiber composites with in-situ grown SiC nanowires
JP3856338B2 (en) Boron carbide cermet structural material with high bending strength at high temperature
JPH1135376A (en) Silicon-silicon carbide material with silicon concentration gradient and silicon carbide fiber reinforced silicon-silicon carbide composite material with silicon concentration gradient and their production
Liu et al. Continuous carbon fiber reinforced ZrB2-SiC composites fabricated by direct ink writing combined with low-temperature hot-pressing
JPH0534308B2 (en)
JP6824601B2 (en) Reinforcing fiber material and its manufacturing method, and fiber reinforced ceramic composite material
JPH0524266B2 (en)
US5609741A (en) Method of manufacturing a composite material
JPH07502965A (en) Composite material manufacturing method
EP0613454B1 (en) Method of manufacturing a composite material
JPS632864A (en) Fiber reinforced ceramic composite body and manufacture
JPH10167831A (en) Sic fiber reinforced si-sic composite material and its production
EP0444426B1 (en) Process for producing a silicon carbide whisker-reinforced silicon nitride composite material
JPS62299568A (en) Inorganic fiber for composite material
JPS62297278A (en) Inorganic fiber reinforced ceramic composite body and manufacture
JP3439241B2 (en) Manufacturing method of composite reinforcement for manufacturing functionally graded metal matrix composites
JPS63265620A (en) Inorganic fiber reinforced plastic composite and its preparation
JPS63120169A (en) Reinforcing inorganic fiber and reinforced composite
JPH0432798B2 (en)
JPH04325481A (en) Oxidation resisting treatment of carbon fiber reinforced carbon composite material
JPS63277730A (en) Fiber body for composite material and its production