JPS632864A - Fiber reinforced ceramic composite body and manufacture - Google Patents

Fiber reinforced ceramic composite body and manufacture

Info

Publication number
JPS632864A
JPS632864A JP61143875A JP14387586A JPS632864A JP S632864 A JPS632864 A JP S632864A JP 61143875 A JP61143875 A JP 61143875A JP 14387586 A JP14387586 A JP 14387586A JP S632864 A JPS632864 A JP S632864A
Authority
JP
Japan
Prior art keywords
fibers
carbide
alumina
silica
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61143875A
Other languages
Japanese (ja)
Other versions
JPH0684267B2 (en
Inventor
山田 銑一
真一 砥綿
武民 山村
敏弘 石川
昌樹 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP61143875A priority Critical patent/JPH0684267B2/en
Publication of JPS632864A publication Critical patent/JPS632864A/en
Publication of JPH0684267B2 publication Critical patent/JPH0684267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、繊維強化セラミック複合体(FRC)及びそ
の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fiber reinforced ceramic composite (FRC) and a method for producing the same.

(従来の技術) 耐熱性セラミックは、超高温下、超高圧下あるいは腐食
性環境下などの苛酷な条件下で使用されている。−般に
、耐熱性セラミックは機械的衝撃に弱く、高温になると
機械的強度や耐食性が低下する欠点を有している。これ
らの欠点を補うため、アルミナ、炭素などからなる連続
繊維もしくは炭化ケイ素などからなる短繊維やウィスカ
とセラミックとを複合させた複合体が開発されている。
(Prior Art) Heat-resistant ceramics are used under harsh conditions such as extremely high temperatures, extremely high pressures, and corrosive environments. - In general, heat-resistant ceramics have the disadvantage that they are weak against mechanical shock, and their mechanical strength and corrosion resistance decrease at high temperatures. To compensate for these drawbacks, composites have been developed in which continuous fibers made of alumina, carbon, etc., short fibers made of silicon carbide, or whiskers are combined with ceramic.

例えば、特開昭52−81309号公報には、有機ケイ
素高分子化合物から得られる炭化ケイ素繊維で補強され
た耐熱性セラミック複合体の製法が記載されている。
For example, JP-A-52-81309 describes a method for producing a heat-resistant ceramic composite reinforced with silicon carbide fibers obtained from organosilicon polymer compounds.

(発明が解決しようとする問題点) しかしながら、上記従来の方法では、強化用繊維がマト
リックスであるセラミック中に均一に分散しがたいため
、得られる複合体は強度及び耐熱性が必ずしも充分では
ない。
(Problems to be Solved by the Invention) However, in the conventional method described above, it is difficult to uniformly disperse the reinforcing fibers in the ceramic matrix, so the resulting composite does not necessarily have sufficient strength and heat resistance. .

本発明は上記従来技術における問題点を解決するための
ものであり、その目的とするところは、マトリックスと
なるセラミック中に連続繊維が均一に分散されたことに
より特性の向上したセラミック複合体、及びその製法を
提供することにある。
The present invention is intended to solve the above-mentioned problems in the prior art, and its purpose is to provide a ceramic composite with improved properties due to continuous fibers being uniformly dispersed in the ceramic matrix; Our goal is to provide the manufacturing method.

(問題点を解決するだめの手段) すなわち本発明の繊維強化セラミック複合体は、炭化ケ
イ素、窒化ケイ素、アルミナ、シリカ、アルミナ−シリ
カ、ジルコニア、ペリリア。
(Means for Solving the Problems) That is, the fiber-reinforced ceramic composite of the present invention includes silicon carbide, silicon nitride, alumina, silica, alumina-silica, zirconia, and perilia.

炭化ボロン、炭化チタン等のセラミック、炭素、金属、
金属間化合物等の耐熱性物質より選択された少なくとも
1種からなる連続繊維、又は該繊維から作製された織物
と該連続繊維の繊維間隙に介在する炭化ケイ素、窒化ケ
イ素、アルミナ、シリカ、アルミナ−シリカ、ジルコニ
ア。
Ceramics such as boron carbide and titanium carbide, carbon, metals,
Continuous fibers made of at least one kind selected from heat-resistant substances such as intermetallic compounds, or fabrics made from the fibers, and silicon carbide, silicon nitride, alumina, silica, alumina interposed in the fiber gaps of the continuous fibers. Silica, zirconia.

ヘリリア、炭化ポロン、炭化チタン等のセラミック、炭
素、金属、金属間化合物等の耐熱性物質より選択された
少なくとも1種からなる短繊維、ウィスカ又は粉末とを
、マトリックスであるセラミック中に均一に分散したこ
とを特徴とする。
Short fibers, whiskers, or powder made of at least one selected from ceramics such as heliaria, poron carbide, and titanium carbide, and heat-resistant substances such as carbon, metals, and intermetallic compounds are uniformly dispersed in the ceramic matrix. It is characterized by what it did.

本発明の繊維強化セラミック複合体は、連続繊維、及び
該連続繊維の間に介在する耐熱性物質の短繊維、ウィス
カ又は粉末からなる強化用繊維でセラミックが強化され
ていることを特徴とする。
The fiber-reinforced ceramic composite of the present invention is characterized in that the ceramic is reinforced with reinforcing fibers consisting of continuous fibers and short fibers, whiskers, or powder of a heat-resistant substance interposed between the continuous fibers.

本発明のセラミック複合体に使用する場合においては、
連続繊維をそのまま使用する方法すなわち、繊維そのも
のを単軸方向、多軸方向に配向させる方法、あるいは前
記繊維を平織、繻子織、模紗織、綾織、からみ織、らせ
ん織物、三次元織物等の各抽織物にして使用する方法、
あるいはチ鵞ツブドファイバーとして使用する方法等が
ある。
When used in the ceramic composite of the present invention,
A method of using continuous fibers as is, that is, a method of orienting the fibers themselves in a uniaxial direction or a multiaxial direction, or a method of using the fibers as a plain weave, a satin weave, a patterned weave, a twill weave, a leno weave, a spiral weave, a three-dimensional weave, etc. How to use it as a drawn fabric,
Alternatively, there is a method of using it as a thickened fiber.

連続繊維の繊維間隙に介在させる短繊維、ウィスカ又は
粉末を構成する耐熱性物質としては、炭化ケイ素、窒化
ケイ素、アルミナ、シリカ、シリカ−アルミナ、ジルコ
ニア、ペリリア、炭化ボロン、炭化チタンのようなセラ
ミック、金属、金属間化合物が挙げられる。耐熱性物質
の短繊維、ウィスカ又は粉末の割合は、連続繊維に対し
て0.5〜500容量チであることが好ましい。
Heat-resistant substances constituting the short fibers, whiskers, or powder interposed between the fiber gaps of continuous fibers include silicon carbide, silicon nitride, alumina, silica, silica-alumina, zirconia, perilia, boron carbide, and ceramics such as titanium carbide. , metals, and intermetallic compounds. The proportion of short fibers, whiskers or powder of the heat-resistant material is preferably 0.5 to 500 by volume to the continuous fibers.

本発明においてマトリックスとして用いるセラミックと
しては、炭化物セラミック、窒化物セラミック、酸化セ
ラミック、ガラスセラミック等が単独又は組合わせて使
用される。
As the ceramic used as the matrix in the present invention, carbide ceramics, nitride ceramics, oxide ceramics, glass ceramics, etc. are used singly or in combination.

炭化物セラミックの例としては、炭化ケイ素、炭化チタ
ニウム、炭化ジルコニウム、炭化バナジウム、炭化ニオ
ブ、炭化タンタル、炭化ポロン、炭化クロム、炭化タン
グステン、炭化モリブデン、グラファイト等が挙げられ
る。
Examples of carbide ceramics include silicon carbide, titanium carbide, zirconium carbide, vanadium carbide, niobium carbide, tantalum carbide, poron carbide, chromium carbide, tungsten carbide, molybdenum carbide, graphite, and the like.

窒化物セラミックの例としては、窒化ケイ素、窒化チタ
ン、窒化ジルコニウム、窒化バナジウム、窒化ニオブ、
窒化タンタル、窒化ボロン、窒化アルミニウム、窒化ハ
フニウム等が挙げられる。
Examples of nitride ceramics include silicon nitride, titanium nitride, zirconium nitride, vanadium nitride, niobium nitride,
Examples include tantalum nitride, boron nitride, aluminum nitride, and hafnium nitride.

酸化物セラミックの例としては、アルミナ、シリカ、マ
グネシア、ムライト、コージライト等が挙げられる。
Examples of oxide ceramics include alumina, silica, magnesia, mullite, cordierite, and the like.

ガラスセラミックの例としては、ホウケイ酸塩ガラス、
高シリカ含有ガラス、アルミノケイ酸塩ガラスが挙げら
れる。
Examples of glass-ceramics include borosilicate glass,
High silica-containing glasses and aluminosilicate glasses may be mentioned.

上記の他に、連続繊維、ウィスカ、粉末及び結合剤の1
種又は28[以上と同一の組成を有するセラミックも使
用することができる。
In addition to the above, 1 of continuous fibers, whiskers, powders and binders
Ceramics having the same composition as the species or 28 [above] can also be used.

本発明における連続繊維と、その間に介在する耐熱性物
質の短繊維、ウィスカ又は粉末とからなる強化用繊維は
、懸濁浸漬法により好適に製造することができる。
The reinforcing fiber in the present invention, which is composed of continuous fibers and short fibers, whiskers, or powder of a heat-resistant substance interposed therebetween, can be suitably produced by a suspension dipping method.

懸濁浸漬法の一例としては、ボビン等に巻付けた連続繊
維又は適当数の連続繊維を束ねた繊維束を巻戻して、あ
るいけ連続繊維の織物を、短繊維、ウィスカ又は粉末を
懸濁した液体中に浸漬し、連続繊維又は織物の繊維の各
々の表面に短繊維、ウィスカ又は粉末を付着させる方法
が挙げられる。
As an example of the suspension dipping method, continuous fibers wound around a bobbin or a fiber bundle of an appropriate number of continuous fibers are unwound, and short fibers, whiskers, or powder are suspended in a woven fabric of continuous fibers. Examples include a method of attaching short fibers, whiskers, or powder to the surface of each continuous fiber or fiber of a woven fabric by immersing the fiber in a liquid.

繊維数の多い連続繊維束又は織物を浸漬する場合には、
超音波により振動を与えて、短繊維、ウィスカ又は粉末
を各繊維に均一に付着させることが好ましい。超音波の
振動数は10〜2000KHz程度が便利である。
When dipping continuous fiber bundles or fabrics with a large number of fibers,
It is preferable to apply vibration using ultrasonic waves to uniformly adhere the short fibers, whiskers, or powder to each fiber. The frequency of ultrasonic waves is conveniently about 10 to 2000 KHz.

懸濁液は水でもよいが、有機溶剤、例えばエタノール、
メタノール、アセトンが好ましく使用される。懸濁液と
して上記有機溶媒を使用すると、無機繊維がサイジング
されている場合には、サイジング剤の溶解により短繊維
等の付着が容易となり、また揮発性が水に比較して高い
ので乾燥が早く、生産性が向上する利点がおる。
The suspension may be in water, but it may also be in an organic solvent, such as ethanol,
Methanol and acetone are preferably used. When the above-mentioned organic solvent is used as a suspension, when the inorganic fibers are sized, short fibers, etc. can be easily attached by dissolving the sizing agent, and drying is faster because the solvent has higher volatility than water. This has the advantage of improving productivity.

懸濁液中の短繊維、ウィスカ又は粉末の濃度は特に制限
されないが、過度に小さいと連続繊維に均一に付着せず
、過度に多いと付着量が多くなりすぎるため、0.5〜
30yμであることが好ましい。
The concentration of short fibers, whiskers, or powder in the suspension is not particularly limited, but if it is too small, it will not adhere uniformly to the continuous fibers, and if it is too large, the amount of adhesion will be too large.
It is preferable that it is 30yμ.

本発明において、複合体製造の際に必要により添加され
る結合剤としては、セラミック母材を高密度に焼結する
ための結合剤と、セラミック粉状母材と繊維の密着性を
高めるための結合剤とがある。前者としては、それぞれ
炭化物、窒化物、酸化物ガラスセラミックを焼結する際
に使用される結合剤が挙げられる。例えば、炭化ケイ素
の結合剤としてはホウ素、炭素、炭化ホウ素があり、窒
化ケイ素の結合剤としてはアルミナ、マグネシア、イツ
トリア、窒化アルミニウムがある。後者としては、ジフ
ェニルシロキサン、ジメチルシロキサン、ポリボロジフ
ェニルシロキサン、ポリボロジメチルシロキサン、ポリ
カルボシラン、ポリジメチルシラザン、ポリチタノカル
ボシラン、ポリジルコノカルボシラン等の有機ケイ素重
合体、及びジフェニルシランシール、ヘキサメチルジシ
ラザン等の有機ケイ素化合物が挙げられる。
In the present invention, the binder added as necessary during composite production includes a binder for sintering the ceramic base material to a high density, and a binder for increasing the adhesion between the ceramic powder base material and the fibers. There is a binding agent. The former include binders used in sintering carbide, nitride, and oxide glass ceramics, respectively. For example, binders for silicon carbide include boron, carbon, and boron carbide, and binders for silicon nitride include alumina, magnesia, ittria, and aluminum nitride. The latter include organosilicon polymers such as diphenylsiloxane, dimethylsiloxane, polyborodiphenylsiloxane, polyborodimethylsiloxane, polycarbosilane, polydimethylsilazane, polytitanocarbosilane, polyzirconocarbosilane, and diphenylsilane seals. , hexamethyldisilazane and other organosilicon compounds.

これらの結合剤の使用量は通常0.5〜20M量チであ
る。
The amount of these binders used is usually 0.5-20M.

本発明の繊維強化セラミック複合体は、以下に示す方法
に従って製造することができる。
The fiber reinforced ceramic composite of the present invention can be manufactured according to the method shown below.

セラミック粉状母材と強化用繊維との集合体を得る方法
は種々あり、特にセラミック粉状母材又はセラミックと
結合剤よシなる混和体に繊維を埋没させる方法や、強化
用繊維と上記セラミック粉状母材又は上記混和体を交互
に配設する方法や、予め強化用繊維を設置しておき、そ
の間隙に上記セラミック粉状母材又は上記混和体を充填
する方法等によれば比較的容易に重合体を得ることがで
きる。次に、これらの集合体を焼結する方法としては、
ラバープレス、金型プレス等を用いて前記集合体を50
〜50001y/iの圧力で加圧成形した後、加熱炉で
800〜2400℃の温度範囲で焼結する方法や、50
〜5000If/、lの圧力で加圧したままで800〜
2400℃の温度範囲でホットプレス焼結する方法等が
ある。
There are various ways to obtain an aggregate of ceramic powder matrix and reinforcing fibers, and in particular, there is a method of embedding the fibers in a ceramic powder matrix or a mixture of ceramic and a binder, and a method of embedding the fibers in a ceramic powder matrix or a mixture of ceramic and a binder. According to the method of alternately disposing the powdered base material or the above-mentioned mixture, or the method of installing reinforcing fibers in advance and filling the gap with the above-mentioned ceramic powdery base material or the above-mentioned mixture, the Polymers can be easily obtained. Next, the method for sintering these aggregates is as follows.
Using a rubber press, mold press, etc., the aggregate is
After pressure forming at a pressure of ~50001y/i, sintering in a heating furnace at a temperature range of 800~2400℃,
~800~ while pressurized at ~5000If/,l pressure
There are methods such as hot press sintering in a temperature range of 2400°C.

上記焼結は、真空中、あるいは窒素、アルゴン、−酸化
炭素、水素等から選ばれる不活性ガスからなる雰囲気下
に行うことができる。
The above sintering can be performed in a vacuum or in an atmosphere consisting of an inert gas selected from nitrogen, argon, carbon oxide, hydrogen, and the like.

このようにして得られた繊維強化セラミック複合体は、
以下に述べる一連の処理を少なくとも1回以上施すこと
により、さらKより高密度な焼結体とすることができる
。即ち、焼結体を減圧下で有機ケイ素化合物又は有機ケ
イ素重合体の溶融液、又は必要により該化合物又は該重
合体を有機溶媒に溶解させた溶液に浸漬して、該溶融液
又は該溶液を焼結体の粒界及び気孔に含浸させ、前記含
浸機の焼結体を加熱する一連の処理により、より高密度
の焼結体を得ることができる。加熱処理は800〜25
00℃の温度範囲で、真空中あるいは窒素、アルゴン、
−酸化炭素、水素等から選ばれる不活性ガスからなる雰
囲気下に行われる。
The fiber-reinforced ceramic composite thus obtained is
By performing the series of treatments described below at least once or more, a sintered body with a higher density than K can be obtained. That is, the sintered body is immersed under reduced pressure in a melt of an organosilicon compound or an organosilicon polymer, or if necessary, in a solution in which the compound or polymer is dissolved in an organic solvent. A higher-density sintered body can be obtained by a series of treatments in which the grain boundaries and pores of the sintered body are impregnated and the sintered body is heated in the impregnation machine. Heat treatment is 800-25
In a temperature range of 00℃, in vacuum or with nitrogen, argon,
- carried out under an atmosphere consisting of an inert gas selected from carbon oxide, hydrogen, etc.

(実 施 例) 以下に実施例によって本発明を更に詳しく説明する。な
お、本発明は下記実施例に限定されるものではない。
(Examples) The present invention will be explained in more detail below using Examples. Note that the present invention is not limited to the following examples.

炭化ケイ素ウィスカ(平均直径0.2μ、平均長さ10
0μ)52をエタノール1tの入りた処理槽に投入した
後、超音波振動を与えて懸濁させ、懸濁液を調整した。
Silicon carbide whiskers (average diameter 0.2μ, average length 10
After putting 0 μ) 52 into a treatment tank containing 1 t of ethanol, it was suspended by applying ultrasonic vibration to prepare a suspension.

炭化ケイ素繊維の繊維束(500本糸)をボビンから巻
戻し、浸漬時間が約15秒となるように可動ロールによ
って調節し、上記懸濁液中に浸漬し、ついで加圧ロール
により押圧した後、ボビンに巻取り、室温、大気中で乾
燥した。無機繊維束10m当たりウィスカが0.02F
付着していた。
A fiber bundle of silicon carbide fibers (500 threads) was unwound from the bobbin, the immersion time was adjusted to about 15 seconds with a movable roll, immersed in the suspension, and then pressed with a pressure roll. , wound onto a bobbin, and dried in air at room temperature. Whisker is 0.02F per 10m of inorganic fiber bundle
It was attached.

この処理した繊維束を一軸方向に揃えたシート状物と、
炭化ホウ素3重量%及びポリチタノカルボシラン10重
i%とが混合されたβ−炭化ケイ素粉末(平均粒径:0
.2μ)とを交互に積層させ、金型ブレスを用い、so
o切−でプレス成形した。この成形体をアルゴン雰囲気
下で200℃/分の昇温速度で1550℃にまで加熱し
て、強化された炭化ケイ素複合焼結体を得た。
A sheet-like product made of the treated fiber bundles aligned in a uniaxial direction,
β-silicon carbide powder mixed with 3% by weight of boron carbide and 10% by weight of polytitanocarbosilane (average particle size: 0
.. 2μ) and laminated alternately, and using a mold press, so
Press molding was performed using an o-cut. This molded body was heated to 1550° C. at a heating rate of 200° C./min in an argon atmosphere to obtain a reinforced silicon carbide composite sintered body.

この複合焼結体の繊維含量は40重it%であった。複
合体の断面を走査型電子顕微鏡で調べたところ、マトリ
ックスである炭化ケイ素中に強化用繊維が互いに接する
ことなく分散していることが認められた。複合体の室温
抗折強度は651<q/−であり、1400℃における
抗折強度は42吻/−であった。
The fiber content of this composite sintered body was 40% by weight. When a cross section of the composite was examined using a scanning electron microscope, it was found that the reinforcing fibers were dispersed in the silicon carbide matrix without touching each other. The room temperature bending strength of the composite was 651<q/-, and the bending strength at 1400°C was 42 Q/-.

なお、炭化ケイ素ウィスカを付着させなかった以外は上
記と同様にして得られた複合体の室温抗折強度は40 
kg/、jであった。
The room temperature bending strength of the composite obtained in the same manner as above except that silicon carbide whiskers were not attached was 40.
kg/,j.

(発明の効果) 本発明の複合体は、連続繊維、耐熱性物質の短繊維ウィ
スカ又は粉末、及びマ) IJフックスなるセラミック
の種々の組合せが可能であり、広い範囲にわたる要求特
性を満たすことができる。又、複合体中に繊維が均一に
分散し、かつ複合体中での連続繊維同志の接触が極めて
少ないので、連続繊維の繊維軸に直角方向の強度が著し
く改善される。
(Effects of the Invention) The composite of the present invention can be made of various combinations of continuous fibers, short fiber whiskers or powder of a heat-resistant material, and ceramics such as IJ hooks, and can satisfy a wide range of required properties. can. Furthermore, since the fibers are uniformly dispersed in the composite and there is very little contact between the continuous fibers in the composite, the strength of the continuous fibers in the direction perpendicular to the fiber axis is significantly improved.

更に本発明の製法は前記の優れた特性を有する複合体を
容易に得ることができるので実用上優れた方法である。
Furthermore, the production method of the present invention is a practically excellent method because it can easily produce a composite having the above-mentioned excellent properties.

Claims (4)

【特許請求の範囲】[Claims] (1)炭化ケイ素、窒化ケイ素、アルミナ、シリカ、ア
ルミナ−シリカ、ジルコニア、ペリリア、炭化ボロン、
炭化チタン等のセラミック、炭素、金属、金属間化合物
等の耐熱性物質より選択された少なくとも1種からなる
連続繊維、又は該繊維から作製された織物と、 該連続繊維の繊維間隙に介在する炭化ケイ 素、窒化ケイ素、アルミナ、シリカ、アルミナ−シリカ
、ジルコニア、ペリリア、炭化ボロン、炭化チタン等の
セラミック、炭素、金属、金属間化合物等の耐熱性物質
より選択された少なくとも1種からなる短繊維、ウィス
カ又は粉末とを、 マトリックスであるセラミック中に均一に 分散したことを特徴とする繊維強化セラミック複合体。
(1) Silicon carbide, silicon nitride, alumina, silica, alumina-silica, zirconia, perilia, boron carbide,
Continuous fibers made of at least one type of heat-resistant material selected from ceramics such as titanium carbide, carbon, metals, and heat-resistant substances such as intermetallic compounds, or woven fabrics made from the fibers, and carbonized fibers interposed in the gaps between the continuous fibers. Short fibers made of at least one selected from ceramics such as silicon, silicon nitride, alumina, silica, alumina-silica, zirconia, perilia, boron carbide, and titanium carbide, and heat-resistant substances such as carbon, metals, and intermetallic compounds; A fiber-reinforced ceramic composite characterized in that whiskers or powder are uniformly dispersed in a ceramic matrix.
(2)連続繊維に対する耐熱性物質の短繊維、ウィスカ
又は粉末の体積率が0.5〜500%であることを特徴
とする特許請求の範囲第1項記載の繊維強化セラミック
複合体。
(2) The fiber-reinforced ceramic composite according to claim 1, wherein the volume ratio of the short fibers, whiskers, or powder of the heat-resistant substance to the continuous fibers is 0.5 to 500%.
(3)連続繊維の配合割合が、複合体に対して10〜7
0容量%であることを特徴とする特許請求の範囲第1項
記載の繊維強化セラミック複合体。
(3) The blending ratio of continuous fibers to the composite is 10 to 7
The fiber-reinforced ceramic composite according to claim 1, characterized in that the content is 0% by volume.
(4)炭化ケイ素、窒化ケイ素、アルミナ、シリカ、ア
ルミナ−シリカ、ジルコニア、ペリリア、炭化ボロン、
炭化チタン等のセラミック、炭素、金属、金属間化合物
等の耐熱性物質より選択された少なくとも1種からなる
連続繊維と、 該連続繊維の繊維間隙に介在する炭化ケイ 素、窒化ケイ素、アルミナ、シリカ、アルミナ−シリカ
、ジルコニア、ペリリア、炭化ボロン、炭化チタン等の
セラミック、炭素、金属、金属間化合物等の耐熱性物質
より選択された少なくとも1種からなる短繊維、ウィス
カ又は粉末とからなる強化用繊維、又は該繊維から作製
された織物とを、セラミック粉末に埋設して、しかる後
焼成することを特徴とする繊維強化セラミック複合体の
製法。
(4) Silicon carbide, silicon nitride, alumina, silica, alumina-silica, zirconia, perilia, boron carbide,
Continuous fibers made of at least one kind selected from heat-resistant substances such as ceramics such as titanium carbide, carbon, metals, and intermetallic compounds, and silicon carbide, silicon nitride, alumina, silica, etc. interposed in the fiber gaps of the continuous fibers. Reinforcing fibers made of short fibers, whiskers, or powder made of at least one selected from ceramics such as alumina-silica, zirconia, perilia, boron carbide, titanium carbide, and heat-resistant substances such as carbon, metals, and intermetallic compounds. , or a woven fabric made from the fibers, is embedded in ceramic powder, and then fired.
JP61143875A 1986-06-19 1986-06-19 Fiber-reinforced ceramic composite and its manufacturing method Expired - Lifetime JPH0684267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61143875A JPH0684267B2 (en) 1986-06-19 1986-06-19 Fiber-reinforced ceramic composite and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61143875A JPH0684267B2 (en) 1986-06-19 1986-06-19 Fiber-reinforced ceramic composite and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS632864A true JPS632864A (en) 1988-01-07
JPH0684267B2 JPH0684267B2 (en) 1994-10-26

Family

ID=15349036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61143875A Expired - Lifetime JPH0684267B2 (en) 1986-06-19 1986-06-19 Fiber-reinforced ceramic composite and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0684267B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9228493B2 (en) 2012-11-08 2016-01-05 Toyota Jidosha Kabushiki Kaisha Heat shield structure and engine cover

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850196A (en) * 1981-09-18 1983-03-24 Service Res:Kk Dehydrating method
JPS5895647A (en) * 1981-11-30 1983-06-07 トヨタ自動車株式会社 Manufacture of silicon nitride/boron nitride composite material
JPS5930778A (en) * 1982-08-09 1984-02-18 日本特殊陶業株式会社 Manufacture of fiber reinforced sic sintered body
JPS62299568A (en) * 1986-06-17 1987-12-26 宇部興産株式会社 Inorganic fiber for composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850196A (en) * 1981-09-18 1983-03-24 Service Res:Kk Dehydrating method
JPS5895647A (en) * 1981-11-30 1983-06-07 トヨタ自動車株式会社 Manufacture of silicon nitride/boron nitride composite material
JPS5930778A (en) * 1982-08-09 1984-02-18 日本特殊陶業株式会社 Manufacture of fiber reinforced sic sintered body
JPS62299568A (en) * 1986-06-17 1987-12-26 宇部興産株式会社 Inorganic fiber for composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9228493B2 (en) 2012-11-08 2016-01-05 Toyota Jidosha Kabushiki Kaisha Heat shield structure and engine cover

Also Published As

Publication number Publication date
JPH0684267B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
US4778722A (en) Reinforcing fibers and composite materials reinforced with said fibers
CA1283763C (en) Fibrous material for composite materials, fiber- reinforced composite materials produced therefrom, and processes for producing same
US5078818A (en) Method for producing a fiber-reinforced ceramic honeycomb panel
JPH0239468B2 (en)
JPH0146474B2 (en)
JPH055785B2 (en)
EP2549001A1 (en) Inorganic fibers for fiber bundles, process for production of the inorganic fibers, inorganic fiber bundles for composite material produced using the inorganic fibers, and ceramic-based composite material reinforced by the fiber bundles
JPH0244271B2 (en)
JPS6359473A (en) Production of inorganic fiber for composite material
US5609741A (en) Method of manufacturing a composite material
JPH07502965A (en) Composite material manufacturing method
USH1682H (en) Method for producing ceramic coatings on fibers
JPS632864A (en) Fiber reinforced ceramic composite body and manufacture
EP0613454B1 (en) Method of manufacturing a composite material
JPS63265871A (en) Inorganic fiber reinforced ceramics composite and its production
JPS62299568A (en) Inorganic fiber for composite material
JPH06507878A (en) Ceramic-ceramic composite filter
JPS62297278A (en) Inorganic fiber reinforced ceramic composite body and manufacture
JPH0411664B2 (en)
JPS63324A (en) Fiber reinforced plastic composite and its preparation
JPS63123875A (en) Inorganic fiber reinforced ceramic composite body
JPS62297426A (en) Inorganic fiber-reinforced metallic composite and its production
JPH041112B2 (en)
JPH0577631B2 (en)
JPH01317177A (en) Inorganic fiber-reinforced ceramic composite material